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Abstract

This paper applies the theory of semi-coherent structures (also known
as monotonic boolean functions) to the problem of linking records across
databases. We use the parameter estimates from a best fitting generalized
linear model to derive the equivalent semi-coherent structure function, which
we then call our best fitting record linkage rule. In this paper, we first de-
scribe the application area of record linkage, followed by a description of
the Fellegi-Sunter model of record linkage. We then describe how the record
linkage problem can be encompassed in partial order theory, and use the the-
ory of semi-coherent structures to develop a parallel record linkage approach.
We develop two methods for implementing the semi-coherent structure ap-
proach: 1) Estimate an inequality constrained generalized linear model and,
using the parameter estimates, determine the semi-coherent structure that
best fits the training data; and 2) Estimate a Bayesian generalized linear
model and, using the posterior kernels, determine the semi-coherent struc-
ture that best fits the data. The best-fitting semi-coherent structure, derived
from each approach, is our final estimated decision rule. We illustrate the
approaches with analyses of a factorial experiment.

1. A Description of Record Linkage Problems

Imagine two databases, database A and database B, each of which contain infor-
mation on individual persons. (We note for the record that it is not important
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that the object of the database is a person; it could be housing units or estab-
lishments or any other object of interest.) Suppose that each of these databases
contains some information not contained in the other. If the databases refer to
the same population, it would be of some analytic value to combine the separate
information on each person into a single record. Presumably, we can then tabu-
late characteristics from the first database with characteristics from the second,
and ipso facto we are able to make broader statements from the joint database
than we could make from either separately.

Suppose further that each database does not contain an unique identifier—
there is no “SSN” or comparable field in each database, but suppose that there
are several fields which, when used together, might be sufficient to uniquely match
cases. (Notably, this is the same problem as that of protecting the identity of
an individual person in a microdata file release [11], only in reverse—we want to
identify the person uniquely.)

The above is a simplified description of the fundamental “record linkage prob-
lem” ([9], [30]). For the purposes of this description, we have ignored some typical
problems, for example, address standardization issues, street name conventions,
differences in coding conventions across different databases, criteria for calling
two names with typographical errors a match, and the like. These are not trivial
matters; however, our emphasis in this paper is on the algebraic structure of the
problem, not particular implementation issues.

2. The Fellegi-Sunter model of record linkage

The Fellegi-Sunter (which we shall abbreviate F-S on occasion) model is framed
as an “hypothesis test” when two records are compared. The separate fields are
compared on a field-by-field basis, and the F-S model uses information about the
relative frequency of those fields to output one of three “decisions”: The records
are declared to be a positive match; the records are declared to be a positive
nonmatch, or the decision “Don’t know” is returned ([9]). The ”don’t know”
region is then sent to presumably expensive clerical review and resolution. If
we (arbitrarily) label positive match with 1, don’t know with 2, and positive
nonmatch with 3, then the F-S model is a function from the space A x B into the
space {1,2,3}.

In the general F-S model, the problem is framed as an ordering of configura-
tions by their ”weight.” For any collection of N individual fields 7, that configu-
ration gets a ratio of match weight and nonmatch weight, w (") = m(7T) /u (7).
The configurations are presumed ordered by this ratio (ties broken arbitrarily),
indexed in order from highest weight to lowest weight, and cutoffs are chosen



defining a function f(77) as:

Positive match if 7 > upper cutoff
f(@) =< Positive nonmatch if i < lower cutoff
Don’t know if upper cutoff > i > lower cutoff

(Here we are using F-S’s corollary 1 to ignore randomized choices falling ex-
actly on a boundary.)

The only remaining task is to define the weights w. In the standard F-S model,
denoting the event ”the records are in fact a match” by M and ”the records are
in fact a nonmatch” by "M, these weights are defined as likelihood ratios, viz.,

P [T configuration|M]

™) = 2.1
w (%) P [T configuration|” M] (2.1)

The F-S paper (|9]) demonstrated that these weights are optimal in the sense
that, for a fixed false match rate a and fixed false non-match rate p, this decision
rule, using these weights, minimize the clerical review region.

3. The implications (and limitations) of conditional independence

3.1. Conditional independence

The Fellegi-Sunter model of record linkage remains the standard today. Variations
have been proposed on how weights should be calculated or used ( [29]), but
fundamentally the notion of an “hypothesis test” involving three regions, and
a mapping from the space of field comparisons into the space of record linkage
decisions, has not been modified since its original proposal.

Definition 3.1. Suppose we have two or more databases with N fields on which
we wish to perform matching. We will call our matching fields x1 ... xy, and
define x; = 1 if the two ith fields match, and x; = 0 if the two ith fields do not
match.

Note that we have ignored the practical problem of exactly defining when
two fields match. For the purposes of visualizing this system, one can con-
sider a "match” to have occurred when the two fields are the same, i.e., FIRST-
NAME="Joan” in database A and FIRSTNAME="Joan” in database B. In
actual practice, one might prefer to call two fields matching under some less re-
strictive criterion. In practice, this is substantially more problematic that it might
appear on first consideration. For the purposes of this theory, however, we are
going to sidestep such practical matters.



In practice, however, an important additional assumption is often made: Con-
ditional independence. We shall refer to models making the conditional indepen-

dence assumption as CI models. This assumption allows the weights in the

equation above to be factored into:w (7) = 15[511::11'%[/[]] 1;&22::11”];[/[]] Iﬁgﬁ’:ﬁyﬂ];

when logarithms are taken, as is typically done in practice, this becomes a sum.

In order to identify the theoretical limits of the conditional independence
assumption, it is necessary to define more terminology.

Definition 3.2. We call a vector T boolean if it consists of N individual boolean
variables, thus T = (x1,x2,...xN) . We call a function f : X — 'Y boolean if the
domain of the function consists of vectors T = (v1,%2,...xN), with z; € {0,1},

and the codomain of the function consists of a single boolean variable y € {0,1} .

Definition 3.3. We call a boolean function f : X — Y monotonic if, for all &
in the domain of f, and each x;, f(@)|z;=1 > f(T)|z;—o0-

3.2. The importance of monotonicity

Many problems in data analysis can be considered problems in which a collection
of data contribute monotonically to some decision. In the conditional indepen-
dence context, we argue that if two fields within the two databases do match,
it cannot be the case that we would therefore conclude that the two records do
not match; for if so this would imply that IIDD[E?:;% < 1, which would imply
that P[z1 =1|M] < P[z; =1|"M]. But how can it be that a field is more
likely to match if the persons are not the same person? Thus, we argue that the
function from the space of possible field matches to the space of record match
decisions can in most cases be assumed to be monotonic, and should be modeled

as a monotonic boolean function.

3.3. Why the conditional independence model is a linear threshold
model

Definition 3.4. We call a boolean function a “linear threshold” if it can be
written in the form I {Zﬁl Wik; > k} ,where N = the number of components;

k = the chosen threshold; x; = the value of the ith component; w; = the weight
associated with the ith component; and I is the ”indicator function”, taking the
value 1 if the statement inside the brackets is TRUE, otherwise taking the value
0 if the statement inside the brackets is FALSE.

Now, if we temporarily ignore the “don’t know” category of the F-S model,
then the upper cutoff equals the lower cutoff and the F-S model partitions the data



space into two zones, “matched” and “unmatched.” In practice, the mechanism
by which this is done is the sum of the logarithms of match weights and non-
match weights. Under the conditional independence assumption, the F-S model
postulates that if the sum of the “match weights” minus the "nonmatch weights”
is greater than the upper cutoff, then the cases match, otherwise they do not.
That is, if Zf\il Inw;z; + Inw; (1 —xz;) > UPPER or,zi]il (Inw; —Inw;) x; >
UPPER — Zf\il (Inu;) where N = number of matching fields; x; = the result
of the comparison on the ith matching field, 1 = matches, 0=nonmatch; w; =
the match weight associated with the ith matching field; u; = the nonmatch
weight associated with the ith matching field; and UPPER = the cutoff for the
”match” threshold in the F-S model, then we declare the two records a match.The
CI model fits the definition of a linear threshold: Based on the sum of the re-
sults of individual record comparisons, we either add weights (if fields match in
the two databases) or subtract nonmatch weights (if they do not) to the sum.
Furthermore, we have argued above, and will now assume, that the CI model
is monotonic, such that f(@)|g;=1 > f(T)|z;=0- (As noted in [15], this implies
that the weights are nonnegative!.) A linear threshold is a particular kind of map
from the space of field comparisons X to the space of record linkage decisions, Y.
However, it is not the only kind of map from X to Y. We claim that the most
important feature of such a map is that it be monotonic, not that it be a linear
threshold. Further, it is known that the space of linear threshold functions is a
subset of the space of monotonic functions—that is, there exist monotonic func-
tions that cannot be written as equal to some linear threshold; but every linear
threshold can be written as equal to one of a general class of monotonic functions.
Thus, the linear thresholds do not exhaust all possible monotonic functions that
we might consider ([15]; [26]); the set of all monotonic functions includes linear
thresholds as a proper subset.

4. A nonlinear partial order model based on monotonic boolean
functions

We will now outline an alternative, less restrictive and nonparametric model of
record linkage. Our central construct will be the monotonic boolean function that
maps a space of database fields to a space of linkage decisions. We will begin
with a definition of the monotonic function ¢, whose domain is the vector of field
match outcomes, and whose codomain is the decision to accept the record as a

! We note that this implication applies only to weights under the CT (no interaction) assump-
tion. Later in this paper, when we add interaction terms, we will find that coeflicients associated
with interaction terms could be negative and the function would still satisfy monotonicity.



match (¢ (Z°) = 1) or as a nonmatch (¢ (Z) = 0). We will demonstrate that a
monotonic boolean function can be completely characterized by its ”minimal path
vectors” and "maximal cut vectors”, a fact which we shall exploit in the inference
section. Note that this section is entirely nonprobabilistic, focusing instead on
setting the algebraic foundations for the later statistical inference problem.

Definition 4.1. Let the state of the decision rule be represented by a binary
variable in {0,1}. We let ¢ be a discrete function wholly determined by the
states of the N members: ¢ : {0,1}" — {0,1} will be defined by ¢(7), with
T = (x1,...,xN) . We call ¢ a decision rule. We denote the space {O,I}N by
BY, and where necessary the structure is fully defined by specification of the pair

(BN, ¢).

Definition 4.2. The ith component is irrelevant to ¢ if ¢ is constant in x;; that
is, if ¢(T) |g;=1 = ¢ (T) |a;=0 for all combinations of T . Otherwise the ith

component is relevant to the structure.

Definition 4.3. A structure ¢ is semi-coherent if and only if it is monotonic and

$(0) =0 and $(T) = 1.

As described in [13], these definitions imply that ¢ defines two sets on the
domain of field matching outcomes BY : The set of vectors 7" such that ¢ (7') = 1
(called the on-set, with the set of vectors denoted by Y'); and the set of vectors
T such that ¢ (@) = 0 (called the off-set, with the set of vectors denoted by
N). These vectors define two concepts, that of a ”path vector” (where the record
linkage decision is to declare the pair matched) and that of a ”cut vector” (where
the record linkage decision is to declare the pair non-matched). Additionally,
there are minimal path vectors, or min-paths, and maximal cut vectors, or max-
cuts, which we now define.

Definition 4.4. Let T indicate the states of the components indexed by C =
{0,1,..., N} . Define Cyy (7") = {i|x; = 0} and Cy (") = {i|z; = 1} . A path vector
is a vector T such that ¢ (T') = 1. The corresponding path set is C1 (7). A cut
vector is a vector T such that ¢(T) = (0. The corresponding cut set is Cy (T') .

Definition 4.5. A minimal path vector is a path vector T such that § < T =
¢ () = 0. The corresponding minimal path set is C} (') . A maximal cut vector
is a cut vector T such that § > T = ¢(7 ) = 1. The corresponding maximal
cut set is Cg (@) . If @1...@ , is the collection of all min-paths of a semi-coherent
structure, then Cf ({@'1...7@»}) = Ul_1{C} (@) },and similarly for Cg (T') .



For example, consider the structure in which there are 3 components, and
we say that any 2 of the 3 components must function for the system to func-
tion?. Then clearly the set {1,2,3} indexes a path vector, but the minimal
path sets consist of {1,2} ,{1,3} ,and {2,3} (So C} ({(1,1,0),(1,0,1),(0,1,1)}) =
{{1,2},{1,3},{2,3}}). The concept of a minimal path vector emerges later in
this paper when we are attempting to infer a record linkage rule from data about
its field match decisions. For the inference problem, the following proposition is
also useful-if a component is relevant to a structure, then it will appear in at

least one minimal path set.

Proposition 4.6. A component x; is relevant to a structure ¢ if and only if
i € Cf () for some Cf (') a minimal path set.

Proof. See [1] or [15]. B Using the concept of a minimal path set, we can write
a coherent structure in terms of its minimal paths, as illustrated in the following
proposition.

Proposition 4.7. Let ¢ be a structure function, with a collection of minimal
path sets M; for j = 1,2,...,r. Let xz;; be the ith component in the jth path
set. Let p; (7) = [ Licas, wij- Then the coherent structure ¢ can be written as

o(T) = Uj_1p; (7).

Proof. See [1] or [15]. B Proposition 4.7 sets important groundwork for our
later inference problem. The proposition states that if we can construct the
minimal path sets of a structure function ¢, we can write a structure function as
a disjunction of all the minimal path sets (L_;p; (")) that will be equal to ¢ for
all points in BY. In this sense, then, all of the necessary information about ¢ is
”contained” in its minimal path sets. We will exploit this proposition repeatedly
in later sections. Furthermore, [13] proves that the upper boundary of the set
N, denoted UB(N), is equivalent to the set of "max-cuts” ([1]) of the structure
function ¢, and the lower boundary of the set Y, denoted LB(Y), is equivalent to
the set of "min-paths” ([1]) of the structure function ¢. We define these below,
and state, but do not prove the proposition.

Definition 4.8. Let " and ™ be vectors in BY . Define the set Y = {7 e BY : ¢ (%)
as the set of all vectors " such that ¢ (") = 0. Similarly, define N = {0 € BV : ¢ ()
as the set of all vectors T such that ¢ (7) = 1.

’In the decision context, 2 of the 3 must vote "yes” for the measure to pass and thus the
group to vote "yes.” In the game theory context, any 2 of the 3 members must form a coalition
to win. In the reliability context, 2 of 3 components must function for the system to function.
In the diagnosis context, 2 of 3 symptoms must be present for us to diagnose the cause. See [13]
for discussion.



Definition 4.9. (BOUNDARY). Let N be a nonempty subset of BN such that
¢(m) = 0 for all @ € N. Define the upper boundary of N, denoted UB(N),
as UB(N) = {mW e N: VT €N, w>1 or W#?} Similarly, let Y be a
nonempty subset of BN such that ¢(77) = 1 for all 77 € Y. We will define the
lower boundary of Y, denoted LB(Y ), as LB(Y) ={y €Y :VC €Y, T <€ or T#7C}.

Remark 1. Using a standard definition of an "antichain” in a partial order (e.g.,
2], p.95), UB(N) and LB(Y') are each antichains.

Thus, the upper boundary of a set is a subset of maximal incomparable el-
ements, and the lower boundary of a set is a subset of minimal incomparable
elements. Suppose we know the entire structure <IB%N, d>>, then NUY = B" and
the lower boundary of Y and the upper boundary of N have special properties;
they are the min-path and max-cut vectors, respectively ([1]).

Proposition 4.10. Let <IB%N, ¢> be a semi-coherent structure with minimal path
vectors T'1, ..., @ r, and maximal cut vectors Z'1,..., Z s, let BN = NUY and
let LB(Y) and UB(N) be defined as above. Then LB(Y) ={@1,..., Tr}, and
similarly UB(N) = {Z"1,..., Z's} -

Proof. See [13]. B These three concepts can easily be illustrated by a Hasse
diagram for a four component structure, in figure 4.1. The structure for this
figure is ¢ (T) = w122 U xgxy, with min-path set {(1,1,0,0), (0,0,1,1)}. We use
a square double border box to indicate configurations (that is, 7’’s) in the domain

for which ¢(@) = 1, and a rounded dark border box to indicate configurations
in the domain for which ¢ (@) = 0.

5. Dealing with stochastic data: A parametric generalized linear
model approach

Several authors (see [13], [6], [7], and [28]) focus on the problem of learning a single
semi-coherent structure given data about that structure. However, in the record
linkage problem, the problem is generalized. Previous authors have imagined a
single deterministic structure in which we have an active agent deciding which
configuration to test next until we have learned the entire structure. We now
presume that we are sampling from a population of record linkage decisions (thus
our training data set is ”passive” rather than "active”), and we wish to infer the
structure that best represents this population of record linkage decisions. That
is, the outcome of the record linkage decision is now a random variable. More
formally: Let Y be the record linkage decision, Y € {0,1}, where 1 denotes the
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N={(1010),(1001),(0110),(0101),(1000),(0100),(0010),(0001),(0000)} = set of cuts or off-set
UB(N)={ (1001),(0110),(1010),(0101)} = set of max-cuts

Y={(1111),(1110),(1101), (1011), (0111),(1100),(0011)} = set of paths or on-set
LB(Y)={(1100),(0011)} = set of min-paths

Figure 4.1: Illustration of upper boundary, lower boundary, min-path set and
max-cut set.



decision that the two records match, and (0 denotes the decision that the two
records do not match.

Suppose that we construct a 2 x 2 x ... X 2 cross classification table, where each
margin takes on the value 0 or 1 if the corresponding match field is a non-match
or a match, respectively. We wish to note that our space {0, 1}N , and this cross-
classification table are equivalent (strictly speaking, there is a set isomorphism
between them). We will presume that we have a sampled collection of data in
which we know the field match status for each field in the data and the record
linkage status for each pair of records in the data. We will presume that all
are drawn consistently from a population with a single structure, that is, there
exists a correct decision structure on this population. But instead of observing
the record linkage structure deterministically, we will assume that we observe the
record linkage structure under a stochastic process. We will take our goal to be to
infer the best fitting structure from this sampled collection of data coming from
that structure.

Our strategy for inferring the best fitting semi-coherent structure from a col-
lection of observations of structures will take the following steps: For each cell
in the 2 x 2 x ... x 2 cross-classification table, we will increment the count in
that cell by one if the records are considered a match in our sample of training
cases, otherwise we will not increment the count in that cell by one. We will show
that, for each semi-coherent structure on {0, 1}N , there exists a generalized linear
model (GLM, see [18]) on the 2 x 2 x ... x 2 cross-classification table correspond-
ing to the semi-coherent structure. This generalized linear model will incorporate
monotonicity constraints. Using data sampled from a population of record link-
age decisions, we will find the best-fitting GLM (see [27] for details) for the given
cross-classification table, incorporating monotonicity constraints.Finally, we will
use the parameter estimates from the best fitting GLM to derive the equivalent
semi-coherent structure function, which we will then call our best fitting record
linkage rule. In so doing, we will have parameterized the problem, transforming it
out of its nonparametric form into one where these parameters can be estimated.

Definition 5.1. Let & be a boolean vector of length N. 77 be a random vector
of length 2V, indexed by T . Each element ?7 represents a count of the number
of decisions in state T in which the records are declared "matched.”

Given a collection of N fields on which we wish to match, there will be 2V
possible configurations of field matches or nonmatches, and thus Y has 2V el
ements. For a particular configuration of field match/nonmatch results, we can
presume that there exists some probability ps that the record linkage rule will
declare that the two records are a match. Again, we index by 7.

10



A concrete example will help to illustrate. In figure 4.1, we presumed that
the true matching rule was ¢ (@) = xjx9 L 2314, and declare the two records
a match if fields 1 and 2 match, OR if fields 3 and 4 match. We, however, are
dealing with a probabilistic process, and so, for the configuration = = (1, 1,0,0),
there is some probability ps that the two records will declared a match and some
probability 1 —p— that the two records will be declared a nonmatch. Now, if each
record linkage decision is independent of the next, then the decisions for the ith
configuration will form a sequence of Bernoulli trials, each with probability pz of
returning a “match” result. If there are k4 cases in the T configuration, and if
we count the number of cases returning a match result in the ith configuration and
define that random variable as Y+, then clearly Yo ~ BINOMIAL(k—,p=)-
This is true for each and every configuration, for all 2V # configurations. Thus,
we make the following definition.

Definition 5.2. Let Yo ~ BINOMIAL(kw,p+w), for k+ some fixed number
of record linkage decisions, and p- € [0,1].

By construction, we have proposed that Yo ~ BINOMIAL(k=,p=) for
each and every of the 2V 7
by the sampling design. However, we believe that the probability of the two
records being declared a match is a monotonic function of how many, and in
what combination, the individual matching fields match.What we need at this
point is a link between these two notions.

For generalized linear models, the canonical link function for a dependent
binomial random variable and a collection of independent variables is the logit

link, In (15:1?) = % 3, which of course implies that (152;) = eTﬁ, which

configurations, with the number of trials k- fixed

—1_7:577 which is exactly what we're looking for (Harville

implies that pp =
and Moore ([10]) developed a similar approach for business linkages). For the
remainder of this paper, we shall assume that p» is related to the boolean vector

Z in such a fashion, and that 3, > 0 Vi > 0.

Definition 5.3. Let P () = By+5z1+...+Byen+B19T1 T2+ A+ By NEN—1TN +
et Bi93...yT1 - -y (that is, P () is a linear function of x1, ..., x N plus an inter-
cept, plus all 2N — N —1 possible interaction terms), for 3, € R,and 31, ..., B123..n €
R*. We will refer to P () as the projection of @ into R. In order to avoid con-
fusion, we will use an upper case P for this projection function, and we will use

a lower case p for a probability.

—1_T_Z;T_i>) ,with P (@) as defined above. Then,

for any 7 and 7" in BN if 7 > 7 ,then p5 > p—.

Proposition 5.4. Suppose p» =

11



Proof. (Omitted in this version.) H

Remark 2. Note: The converse of this proposition is not true; ps > p» can
occur without 5 > Z' if Y#7Z .

This proposition has an immediate corollary showing how to construct struc-
ture functions from these p functions.

Corollary 5.5. Suppose p : BN — [0,1] is defined as p (&) = lj_};(%. Fix
1 ifpp>r i

==\ . RN -\ _ T
r € [0,1]. Define ¢, (') : B — {0,1} by¢, (7)) = { 0 othermise .Then ¢, is

monotonic. If, further, r € <minp (@), maxp (T)), then ¢, is semi-coherent.
T T

Proof. (Omitted in this version.) B Finally, in order to show that we have a

relationship between this generalized linear model and the semi-coherent structure

¢, we must prove that the canonical link we have specified is sufficiently flexible

to properly represent any semi-coherent structure ¢.

Theorem 5.6. Let (b:{O,l}N — {0,1} be any semi-coherent structure func-
tion, with collection of min-paths M, ...,M,. Let P(T) be the projection
of @ into R*. Finally, let F (%) = —2r

TPty > With corresponding ¢ (7) =
{ 1 ifF(7) >3

- N : :
0 otherwise Then, for any ¢(7'), 3 27 weights (o, b1, "'6121.“11\]7 with

By € R and 3; € Rffori = 1,2,...,2N, such that ¢(7) = ¢p(T),V T €
{0,1}"V.

Proof. (Omitted in this version.) B This theorem is the culmination of our model
development. We have established that, on a space {0, 1}N0f partially-ordered
boolean vectors, on which is defined a semi-coherent structure ¢ (7), we can
always find nonnegative real-valued 3’s by which to construct a function P (")
that, when transformed by the logistic function p (7)), maps to (0,1) ,and that
this transformation can be further mapped onto a boolean function ¢, (T), a

decision rule, that is equal to ¢ (') at all points in the space {0, 1}N. Our next
goal is to show how to estimate such a model with live data.

5.1. Estimation of the model

As specified, our generalized linear model consists of: The structural component
—
T [3; the stochastic specification that Yo ~ BINOMIAL(kw,pw), for k-

12



some fixed number of record linkage decisions;the link p» = %; and the

monotonicity assumption that 3; € R* for i = 1...2Y. With the exception of the
last component, the problem is a standard estimation problem. We deal with the
fourth assumption in the next section.

5.2. Incorporating non-negativity constraints: Inequality-constrained
maximum likelihood estimation

The nonnegativity constraints on each 3; create a somewhat nonstandard esti-
mation problem. Obviously, applying an unconstrained optimization algorithm
on the parameter vector of all possible interactions has the potential to generate
negative parameter estimates. Such estimates have been ruled out by the logic of
the matching situation, so we must find a way to rule them out in the estimation
procedure, as well.

There are several possible options for applying the nonnegativity constraints.
We explore two of them. First, computing an unconstrained estimate and apply-
ing the Kuhn-Tucker conditions ([17]) to the remaining quadratic programming
problem to solve for parameter estimates. This approach has been explored in
detail in Judge, et. al. ([12]), and will be explored as a solution method in future
work. Second, applying a prior on the (3,’s that will incorporate the constraint
into the posterior. Also recommended by [12], we might apply a prior to each f3;
that is non-negative by definition, and thus will remain non-negative upon incor-
poration of the data. For example, we might assume a prior on 3; ~ Exp(6;),
for 07 some pre-chosen hyperparameter for each parameter. Obviously, f3; is de-
fined only on the positive real numbers, and hence automatically incorporates our
prior information. Finally, one can use the method of projection ([12]:974), which
takes a particularly simple form in this context. In the method of projection, any
iterative meth_o)d is used for unconstrained maximization. If, on _t)he nth iteration,
an infeasible 3 is found, it is projected onto a feasible vector 3, which is on the
boundary of the feasible region. The next maximization step is started from 6_”)
In our context, we use the following algorithm: If ﬁ_; lies within the feasible region
(B; > 0, Vi), stop and return the estimates. If 5—; is infeasible, find $* = ming;,

K2

set 3* = 0.Using iteratively reweighted least squares® with #* = 0, maximize
the unconstrained likelihood function, then go to the first step. The Kuhn-Tucker
method is a competitor for future consideration. The Bayesian and Projection
methods have the desirable property that, through the projection/maximization

3IRLS is recommended by [18] for generalized linear models, and is equivalent to the Gauss
method recommended for inequality constrained problems by [12]. IRLS for generalized linear
models is asymptotically equivalent to maximum likelihood [18].

13



process, we learn which combinations of fields are to be ignored (those for which
B; is set to zero or for which the posterior crowds toward zero), and which should
be retained (the remainder).

5.3. Finding the implied threshold and interpreting coefficients

After estimating the logistic regression equation, we have estimated parame-
ters BB,B; ey m, all nonnegative. The parameters may be considered vot-
ing weights in a nonlinear threshold voting (record linkage) rule, and as esti-
mates of the Fellegi-Sunter likelihood ratios. Obviously, the definitions given
above imply that, with some collection of data drawn from the population and
obeying the proposed logistic regression relationship, we can estimate 3 for all
ke{1,2,...,123...N} . But, at this point we ask, what do the individual regres-
sion coeflicients (3, mean in this context? It is the answer to this question that
illustrates how we can use the logistic regression model to estimate Fellegi-Sunter
weights.

Theorem 5.7. For any collection of data drawn from a population satisfying the
logistic regression model above, for k = 2,...,123...N,and all i € {1,2,..., K},

o P [the kth configuration is a match, all others nonmatch|Records are a match]|
e 2.

P [the kth configuration is a match, all others nonmatch|Records are a nonmatch]’

(That is, the regression coefficients are proportional to Fellegi-Sunter weights.)

Proof. (Omitted in this version.) B In this context, certain additional informa-

tion is provided by parameter relationships. Obviously, if we set exp (3,) = %,
we obtain strict equality between 3, and the Fellegi-Sunter weight, so clearly
exp(fy) is an estimate of the prior odds ratio of a record being declared a match
under the condition that 1 = x9 = ... = x19._ny = 0. In most populations, we
would assume that exp () is far less than one, indeed it approaches zero. Addi-
tionally, we can call T the vector representing some configuration of field match
values, F = (Fi,...,Fn) for F; € {0,1}, ¢ = 1,2..., N. Since [3;, represents the
Fellegi-Sunter weight under the configuration F =1, F; = 0 for j # k, we can
use the same methods to derive the following immediate corollary.

Corollary 5.8. Given any vector of field match values T = (F1,...,Fy) for
F,€{0,1},i=1,2..,N, —F;[F"V‘ﬁ] oc @bt B PNt Abig NP1 FN
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This corollary implies that, if we have a particular configuration F of match
fields and we wish to evaluate their total weight toward a positive record linkage
decision, then, consistent with the Fellegi-Sunter model, we merely sum the coef-
ficients associated with fields that match, including all nonzero interaction terms,
and exponentiate the sum. Finally, how should the intercept be interpreted? The
parallel question is: How to find the threshold? The answer to both questions is
given in the following proposition.

Proposition 5.9. Set the false match and false nonmatch rates equal. After

estimating the model In% =% f, fixp=.5 Thenr = —BB is the optimally
predictive threshold for the nonlinear threshold record linkage rule, within the
sample data.

Proof. (Omitted in this version.) H

6. Illustration of the inequality-constrained maximum likelihood
estimation method and the Bayesian method with simulated
databases

Following the ideas introduced by Belin ([4]), we designed our simulation as a
factorial experiment. We wished to test three different factors affecting the record
linkage decision, and determine our ability to reconstruct the true record linkage
rule under these different factors in combination. Our first factor is to specify
the true decision rule!. Our first factor is the true decision rule generating the
data: Either a weighted vote rule (we use 3x; + =2 + w3 + x4 > 3 as our true
decision rule) versus a semi-coherent structure (we use the structure ¢ (7)) =
x179 U x374, which cannot be represented as a weighted vote [15]). Our second
factor is to identify whether individual matching field results can occur with
error. We wish to determine whether the methods proposed here are unduly
sensitive to the accuracy of individual field match determinations. Either case
1, where the individual field match results occur with no error; case 2, where
the individual field match results occur with a modest amount of error (that is,
where the probability that any particular field match is in error is relatively small,
we set this probability to .1); or case 3, where the individual field match results
occur with a substantial amount of error (that is, where the probability that any

*We will note for the record that Winkler, [29], suggests that the belief that there exists
a "true” decision rule might be erroneous. He demonstrated that the parameters, cutoffs, and
thus, rules vary significantly across geography with seemingly similar files and matching suations
of the post-enumeration survey. Developing methods to deal with that complication is a natural
direction for future work.
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particular field match is in error is relatively large, we set this probability to .2.
Our third factor is to specify the properties of the record linkage decision itself.
Even given matching fields that are measured without error, we would expect
that the record linkage decision in the training sample would be fallible. Our
third factor specifies the degree of error for our simulation. Either case 1, where
record linkage decisions are made with small error (we set this probability to
.05); case 2, where record linkage decisions are made with moderate error (we set
this probability to .1); or case 3, where record linkage decisions are made with
large error (we set this probability to .2). For the second and third factors, if
the field match or record linkage decision is randomly determined to be in error,
then the opposite field match or record linkage decision is returned (i.e., ”match”
becomes "nonmatch” or vice-versa, and ”link” becomes “nonlink” or vice-versa).
For each level of each factor, we have 20 cases fully crossed with all levels of all
other factors. Thus, overall, we have (20 + 20) (20 + 20 + 20) (20 4+ 20 + 20) =
144,000 individual cases, 8000 in each condition. Our simulation experiment
fully crosses these three factors and determines how well the methods described
above reconstruct the true decision rule, both under each condition separately
and under all conditions together?.

7. Results of the inequality-constrained method

We first present the results from a selection of conditions. Fach condition is
labeled, thus condition 1,3,3 represents the condition where the true decision rule
is weighted majority, field match decisions are made with large error, and record
linkage decisions are made with large error. Similarly, condition 2,3,3 represents
the condition where the true decision rule is semi-coherent, field match decisions
are made with large error, and record linkage decisions are made with large error.
In each case we perform the projection method described earlier, and present the
terminating results.

®The simulation was also performed with higher levels of error: The results in the second
simulation were consistent with those reported here.
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7.1. Condition 1,3,3 (Weighted majority, large matching error, large
linkage error)

Final glm estimates for condition [1,3,3]

f3 0.066

(1.01)

fifo 0.223

(1.71)

fofafy 2.249
(10.10)**

fi 2.742
(38.22)**

Constant -1.394
(38.07)**

Observations 8000

Absolute value of z-statistics in parentheses
Implied threshold: 1.394

Implied minimal path sets: {1},{2,3,4}

7.2. Condition 2,3,3 (Semi-coherent structure, large matching error,
large linkage error)

Final glm estimates for condition [2,3,3]

i 0.055

(0.70)

fofy 0.063

(0.49)

fifs 2.823
(23.78)**

f3fy 2.882
(21.96)**

Constant -1.424
(41.98)**

Observations 8000

Absolute value of z-statistics in parentheses
Implied threshold: 1.424

Implied minimal path sets: {1,2},{3,4}
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8. Results of the Bayesian MCMC method

We now present results of the second method, using Markov-Chain Monte Carlo
simulation methods to generate simulated posterior densities. In these simula-
tions, implemented with the software package BUGS ([25]), prior densities for
all coefficients except the intercept were chosen to be exponential with a prior
hyperparameter of 1. The hyperparameter value of 1 indicates a prior centered
on P [xijn = 1|M] = P [z, = 1|7 M] indicating a field that provides no informa-
tion. For the intercept, a normal(0, 166666) prior was used. The large variance
simulates very uncertain prior information. After a burn-in of 1000 iterations,
4000 simulated draws from the conditional distributions were performed. Re-
sults for two conditions, condition 1,1,3 and condition 2,3,3 are presented below.
All other conditions behaved in a fashion similar to these two.
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8.1. Condition 1,1,3 (Weighted majority, no matching error, large link-

age error)

Final MCMC estimates for condition [1,1,3] with 8000 observations

Posterior
Field mean stddev  2.5%ile median  97.5%ile
f1** 2.718 0.0707  2.58 2.717 2.858
fy 0.02362 0.02181 6.616E-4 0.01733 0.08125
fy 0.06474 0.04476 0.003681 0.05694 0.1699
fs 0.02971 0.02644 8.732E-4 0.02248 0.09847
fify 0.1707  0.1068  0.01043 0.1545  0.4067
fif3 0.05024 0.04598 0.001407 0.03703 0.1711
fify 0.04828 0.04457 0.001418 0.03579 0.1699
fofs 0.06624 0.0569  0.001945 0.0516  0.2117
fofy 0.06687 0.05649 0.002479 0.05201 0.213
f3fy 0.05014 0.046 0.001233 0.03793 0.1715
fifofs 0.09006 0.08354 0.00295  0.06441 0.3169
f1fofy 0.1015  0.09135 0.002854 0.07651 0.3384
f1f3fy 0.06709 0.06501 0.001556 0.04796 0.2358
fofgfy ** 1.982 0.2354 1.53 1.982 2.447
f1fof3fy 0.1498  0.15 0.004336  0.102 0.5642
Constant -1.415 0.03524 -1.486 -1.416 -1.345
Observations 8000

Implied threshold: 1.415
Implied minimal path sets: {1},{2,3,4}
*# |Posterior mean / Posterior SD| > 1.96

The posterior kernel densities forf3y, 3, 8234 and 34 from the MCMC simula-
tion are displayed below. As expected, the posterior density for (3;, shifts toward
zero, while the intercept f3, the coefficient on the first field alone ((3;) and the
interaction term coefficient (3434) are centered on their posterior estimates.
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Figure 8.1: Posterior kernel densities for 3, 3;, 3234, 314 under condition 1,1,3.

8.2. Condition 2,3,3 (Semi-coherent structure, large matching error,

large linkage error)

Final MCMC estimates for condition [2,3,3] with 8000 observations

Posterior
Field mean std dev 2.5%ile median 97.5%ile
fi 0.0478  0.0390 0.0018 0.0381 0.1443
fo 0.0483 0.0385 0.0020  0.0396 0.1434
f3 0.0459  0.0377 0.0015 0.0362 0.1392
fa 0.0798 0.0533 0.0044 0.0724 0.2013
fifp** 2.660  0.1262 2.4120 2.6620 2.9080
fifs 0.0610 0.0528 0.0016  0.0469 0.1947
fify 0.0473  0.0434 0.0014  0.0350 0.1594
fofs 0.0479 0.0433 0.0015 0.0357 0.1611
fofy 0.0881  0.0703 0.0034 0.0715 0.2538
fafy ** 2.740 0.1344 2.475 2.740 3.0020
f11of3 0.1301  0.1141 0.0041  0.1000 0.4291
fifofy 0.0930 0.0873 0.0026  0.0675 0.3183
f1f3fy 0.0835 0.0780  0.0023  0.0608 0.2836
fofsfy 0.1667  0.1442 0.0049 0.1292 0.5295
f1fof3fy 0.2032  0.2019 0.0054 0.1437 0.7435
Constant -1.466  0.0355  -1.537  -1.465 -1.398
Observations 8000
Implied threshold: 1.466 20

Implied minimal path sets: {1,2},{3,4}

** |Posterior mean / Posterior SD| > 1.96
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Figure 8.2: Posterior kernel densities for 3, 3, 312, 31234under condition 2,3,3.

The posterior kernel densities for3,, 31, 312 and 315934 from the MCMC simu-
lation are displayed below. As expected, posterior densities for 3, and 3934 tend
to shift toward zero, while the intercept (/3,) and the interaction term coefficient
(312) are centered on their posterior estimates.

9. Conclusions and future research

Based on the ability of the inequality-constrained maximum-likelihood method
and the Bayesian method to robustly reconstruct the true decision rule, we con-
clude that these results are wery promising. In particular, the ability of the
estimation method to find the true rule, merely by focusing on the values of the
estimated coefficients of the binomial model, is impressive. These results strongly
support further consideration of these methods.

There are several directions future research might take: 1) While the inequality-
constrained maximum likelihood and Bayesian approaches are relatively easy to
program, the Kuhn-Tucker approach also offers opportunities for development.
Both of these should be explored. 2) The Bayesian approach, in particular, would
allow us to incorporate information from previous record linkage studies into cur-
rent record linkage work, thus incrementally improving our ability to infer record
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linkage rules from new data sets. 3) It has been argued in other contexts that the
assumption that we have a training data set ignores some practical limitations
in record linkage studies. In particular, record linkage has been used extensively
in the context of census and post-enumeration survey (a/k/a A.C.E.) matches,
and these matches take place on a very tight time frame. This time frame might
preclude use of a training data set—although obtaining the training set prior to
census/ ACE matching might serve to satisfy this objection. However, supposing
that a training data set is not available, these methods should be extended into
the latent class framework explored by Winkler ([29], [30]), Thibaudeau (]27]),
and others. In particular, the inequality-constrained maximum likelihood esti-
mation scheme should be expanded to allow individual record linkage cases to
belong to one (matched) or another (unmatched) latent class, and the likelihood
function should incorporate this model and attempt estimation. 4) An opera-
tional test should be performed using this method. To that end, the author and
colleagues are developing a test data set of address matches that will be used
to compare traditional Fellegi-Sunter methods with the methods described here.
The first planned evaluation is simply to compare the methods and their impact
on operational matching decisions; later, a test deck will be developed consisting
of carefully reviewed ”ground truth” cases. From that test deck, evaluations of
false positive and false negative error rates will be performed. Evaluating false
positive and false negative error rates has been a challenging dilemma for record
linkage researchers (see, e.g., [21], [3], [5]), and a general statistical approach has
not yet been found to outperform clerical review evaluation methods. 5) The
current inequality-constrained maximum likelihood algorithm begins by fitting
all possible interactions between individual fields, and eliminates fields one by
one using a greedy algorithm. This method suffers two practical disadvantages:
First, for N fields, there are 2V possible coefficients, which grows rapidly in N.
Second, a non-greedy algorithm might more rapidly discover the optimal decision
rule. Therefore, methods for efficiently exploring the search space are needed.
Algorithms used in the data mining literature (e.g., [19]) for bagging, pasting and
boosting might be of some help here. In particular, it might be more feasible
to begin the search at the intercept-only model, and add field match variables
sequentially using some desirable stopping rule, rather than at the fully satu-
rated model and removing terms. Such an approach will be explored in future
evaluations of this method.
(References omittted in this version. Available in the full version.)
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