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Abstract
This paper focuses on cross-sectional inference based on data from a longitudinal survey which carries some additional
components to achieve cross-sectional representativity. When inferring about the differences in the cross-sectional
populations at two different points in time, problems arise with  variance estimation for the difference of the respective
estimates, when the estimates are derived from such a survey. There are several factors contributing to these problems.
Of these, the most important is the sample overlap at the two time points due to the underlying longitudinal survey
design; this introduces a strong covariance component which must be included in the estimate of the variance of the
difference. Also associated with the underlying longitudinal sample is the complexity introduced by longitudinally
sampled individuals moving from one geographical part of the country to another, and thus being used to represent a
different part of the cross-sectional population than that for which they were selected.  The degree of complication that
such factors introduce to the variance estimation problem is determined by the manner in which the longitudinal sample
has been supplemented and adjusted in order to attain cross-sectional samples and by the available design information
that may be used for cross-sectional inference.

The variance estimation problem is addressed for Canada’s Survey of Labour and Income Dynamics (SLID) within a
Taylor linearization approach as well as within the resampling framework with emphasis on the bootstrap method. For
cross-sectional purposes, SLID combines two independent panels of longitudinal individuals sampled three years apart
and also includes all members of the families and households with whom the originally selected longitudinal individuals
live at a certain point in time.  A numerical illustration  based on SLID is included.
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1.  Introduction
The objective of most cross-sectional surveys is to produce unbiased (or nearly unbiased) estimates
of levels such as totals or means at a given time point, and, in the case of repeated surveys, to
produce estimates of the net change that occurred in the population between two time points. These
estimates are often accompanied by estimated measures of precision. The primary objective of
longitudinal surveys is the production of longitudinal data series that are appropriate for studying the
gross change in a population between collection dates, and for research on causal relationships
among variables. 

In order to improve the cost-effectiveness of surveys, statistical agencies very often derive cross-
sectional estimates from longitudinal survey data assuming that the survey design takes this
possibility into account, and that estimation procedures are developed to satisfy cross-sectional as
well as longitudinal requirements.  A good example of such ‘double’ utilization of a longitudinal
survey is the Canadian Survey of Labour and Income Dynamics (SLID). It was originally designed



to provide longitudinal estimates and analyses. However, recognizing the cross-sectional capabilities
of SLID, Statistics Canada  made it a principal survey for providing annual income data and used
it to replace a classic cross-sectional Survey of Consumer Finances (SCF) as of 1998. 

In order to achieve cross-sectional representativity,  different approaches have been taken in different
longitudinal surveys. SLID employs overlapping panels, each of six years duration and selected three
years apart.  The cross-sectional sample for a particular year also includes cohabitants of the
longitudinal individuals from the two panels, i.e., all individuals that are living with the originally
selected longitudinal individuals at a certain point in time. In this way, only households composed
entirely of immigrants who have arrived since the last panel selection (at most three years out of
date) are not represented in the sample.  The elaborate cross-sectional weighting scheme that
includes a non-response adjustment, an optimal combination of the two panels, adjustments for
interprovincial migration and influential values, and post-stratification to a number of post-stratum
totals completes the adjustments towards cross-sectional representativity of the population at a given
time (Levesque and Franklin, 2000). 

Point estimation of parameters of the cross-sectional population based on data from longitudinal
surveys in general, and from SLID in particular,  has been studied and documented (Lavallee 1995,
Merkouris 1999, Levesque and Franklin 2000). However, variance estimation for these estimates
hasn’t received as much attention. In particular, the problem of formal comparison of the estimates
from two years, which requires variance estimation for the difference of the estimates, is seldom
addressed. This paper focuses on that problem. It is an extension of previous work by Roberts and
Kovacevic (1999) on the comparison of cross-sectional prevalence rates estimated from the Canadian
National Population Health Survey. 

The paper is organized into five sections. Section 2 contains a description of the problem and details
some of its causes.  Two approaches to variance estimation as a practical solution to the problem are
given in Sections 3 and 4. Section 5 contains a numerical illustration and some concluding remarks.

2.  Problem Description
Statistics Canada conducted the Survey of Consumer Finances (SCF) annually beginning in 1971
to provide income data for families and individuals. Its output consisted of estimates of a variety of
income distribution parameters at the national and provincial levels for a number of different
subpopulations. Due to the near independence of the samples in consecutive years,  inference about
net change from year to year was straightforward and computable from the reported annual estimates
of levels and their standard errors. Since the survey contents of the SCF and SLID are almost
identical, Statistics Canada decided to replace the SCF by SLID starting in 1998. The main reason
was a gain in efficiency. Also the extensive demographic, socio-economic and labour content of
SLID would allow different perspectives on income distributions through a better fitting of a variety
of models.

The longitudinal underpinnings of SLID introduce complexities that cause difficulties when it comes
to estimation of the variance of the difference of estimates in any two years (that are not more than
6 years apart).  Some of these complexities are the following:

i) The cross-sectional SLID sample in any year contains all longitudinal individuals and their
cohabitants who are in-scope for cross-sectional purposes. Thus, the cross-sectional samples are
not independent at the two time points and  have a large degree of overlap. Longitudinal



individuals are in-scope cross-sectionally for a given year if they are still members of Canada’s
ten provinces as of December 31 of the reference year, excluding those who live in institutions,
military barracks or on Indian reserves . 

ii) The cohabitants of the originally selected longitudinal individuals generally stay with these
individuals for more than a year and thus  increase the overlap of the samples.

iii) At each of the time points after 1995, the cross-sectional samples contain two longitudinal panels
that were selected three years apart. Each panel represents the entire survey population at the
time of its selection.  These overlapping panels are optimally combined to represent the cross-
sectional population in a reference year. The optimality criterion was based on minimizing the
variance of an estimated total and resulted in ‘panel allocation factors’ calculated at the level of
province for each reference year. These factors were then applied to individual weights. The
overlapping panels can be thought of as a special case of a dual frame survey (Merkouris, 1999).

iv) For cross-sectional purposes the longitudinal individuals who changed province of residence
after being selected into the longitudinal sample are considered to be part of the sample for the
province in which they reside at the time of the cross-section. However, for variance estimation
these individuals must be considered to be part of their original province, stratum and cluster.

v) The cross-sectional samples are affected by longitudinal non-response because of the way in
which longitudinal individuals are included in the cross-sectional samples. 

Many of these complexities are accounted for through SLID’s elaborate weighting scheme so that
point estimation of cross-sectional parameters and their net change over time is consistent.  Bootstrap
weights specifically created for each cross-sectional sample  also account for most of these
complexities. However, estimation of the variance for the difference of two estimates obtained in
different years is not straightforward due to the sample overlap.

For purposes of illustration, suppose we are interested in estimating the variance of the difference
of estimates for  reference years, 1997 and 1998. Here we illustrate some difficulties in determination
of SLID individuals who are in the cross-sectional samples in these two years through graphical
presentation of the composition of the cross-sectional and  longitudinal SLID samples for 1997 and
1998.  There are 78,532 individuals with positive 1997 cross-sectional weights, and 79,611 with
positive 1998 cross-sectional weights. An individual with a  positive cross-sectional weight in a
particular year is cross-sectionally in scope and belongs to a responding household in that year. The
total number of cross-sectional individuals common to both years is 75,351, of which 66,847 are
longitudinal individuals. The remaining 8,504 common individuals are the cohabitants who were
with longitudinal individuals in both years. The common individuals represent  96% of the cross-
sectional sample in 1997 and 95% in 1998. There were 101 (23+78) longitudinal individuals for
1997 that were not in scope cross-sectionally in 1997; 78 of them remained longitudinal in 1998 and
also became cross-sectionally valid in 1998, while the remaining 23 individuals are probably
longitudinal non-respondents in 1998. Another 225 individuals, who were in the longitudinal
samples in both years and in the 1997 cross-sectional sample, were lost for cross-sectional estimation
in 1998, most likely by moving out of scope (due to moving into institutions or out of the ten
provinces, or dying).  It is also interesting to observe that 530 (142+388) individuals had positive
longitudinal weights in 1998 but had zero longitudinal and cross-sectional weights in 1997, most
likely due to wave nonresponse in 1997. Only 388 of these were cross-sectionally in scope in 1998.
Most of cross-sectional individuals in SLID stayed in the province where they were originally
selected: in 1997 only 3.2% lived in a different province and in 1998 only 3.9%.
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In order to address the problem of variance
estimation for the difference of cross-sectional
estimates obtained in 1997 and 1998, we now
introduce some notation.  Let  be the
individuals on the cross-sectional SLID sample
at time t, where t=1 for 1997 and t=2 for 1998.
Suppose that we are interested in the mean
after-tax income within a domain of the
population at each time point.  The mean
income within the domain at time t may be
estimated by , with  and

, where  is the cross-sectional
weight of the ith individual in  (who will be
called called the itth individual); if
the itth individual is in the domain, and 
otherwise; and if the itth individual is in
the domain, and   otherwise. Then

 estimates the net change in the mean

income between the two time periods.  The main problem addressed in this paper is the estimation
of the variance of .  In the next two sections we present two possible methods, Taylor linearization
and a pseudo-coordinated bootstrap method.

3. Variance Estimation:  Taylor Linearization Approach

3.1 Linearization of 

One possible approach to obtaining a design-based variance estimate of  is Taylor linearization.
In developing this approach, for ease of presentation, adjustments to the final weights will be
ignored.  Since  is a non-linear function  of the data from both samples , t=1,2, the first step is
to linearize  by expansion into a Taylor series around the true net change in means.  Assuming that
the remainder term is negligible for a sufficiently large sample, the following approximation holds:

,  (1)

where , t=1,2.  This implies that

. (2)

Sample  can be expressed as  where  represents those observations in  forming the

cross-sectional sample for province k at time t.  It then follows that 

, (3)
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where , and , t=1,2.

If we ignore, for the moment, longitudinal individuals who are residing in a different province than
the one for which they were selected, the provincial samples  are  independent due to design of
SLID, where there was independent sample selection in different provinces .  This then implies that

. (4) 

The kth provincial component of this variance, , can be expanded further as

. (5)

The problem of estimating the variance of   then reduces to estimating the terms on the right hand
side of (5).

3.2  Notation and Assumptions Required for Variance Estimation

The following detailed notation is required for explanation of the variance estimation:
 # of strata in the cross-sectional sample in province k at time t,
 # of sampled clusters in the hth stratum in province k at time t,
 # of sampled individuals in cth cluster of hth stratum in province  k at time t,
 weight on the ith individual in cth cluster of hth stratum in  province k at time t, and
 .

It should be noted that the strata and weights are those in use after the combining of the two panels.
See Levesque and Franklin (2000) and Merkouris (1999) for details.

The following standard assumptions for variance estimation for data from a survey with a stratified
multistage design are considered to hold for each of the cross-sectional SLID samples:

i) The design of each cross-sectional sample is approximately stratified with selection of psu’s with
replacement.

ii) Each psu is selected at most once  (because of small sampling fractions).
iii)  (i.e., × weighted cluster total) is approximately unbiased as

an estimator for the stratum total  for any z variable and for any value of t, k, h, and c.

Under these assumptions, there is a straightforward approach to estimate a stratum total and the
variance of stratum total at each time point.  As well, if the same psu’s are represented in a stratum
at both time points, there is a straightforward approach to estimating a covariance between stratum
totals at the two time points.  In particular,  under these assumptions:

i) An (approximately) unbiased estimate for  is .
ii) An (approximately) unbiased estimate of the variance of  is

,
where .

iii) If, at times t=1 and t=2, the same psu’s are observed in a stratum sample, (which implies that
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), an (approximately) unbiased estimate of the covariance of  and  is given
by

 .

3.3 Application

These results can then be readily applied to the cross-sectional SLID samples for 1997 and 1998. By
the design of SLID, cross-sectional samples for those two years should consist of the same strata and
psu’s within each province at both time points, even though there are several reasons to expect that
the individuals within a particular psu would not be exactly the same at the two time points (such
as nonresponse of a longitudinal individual to the income questions at one of the time points or a
longitudinal person entering an institution between the two time points).  The following variance and
covariance estimates would follow in a straightforward manner from the results above:

, and 

,

while  and  would consist of weighted sums over different individuals if the khc-th psu
contained different individuals at the two time points.

3.4  Accounting for Movers Between Provinces

In the development above, it was assumed that individuals continue to reside in the province for
which they were selected into the sample.  Modifications  need to be made to the Taylor linearization
variance approach when there are movers, that is, people who, for either time point,  are cross-
sectionally representing a different province than the one for which they were drawn into the sample.
This can be done by first decomposing  into  where  are those people
in  who were selected into the sample in province j. Then,  can be expanded in the , and
terms be grouped according to the province of selection.  Making use of the fact that independent
sampling was done by province, formulae similar to those in 3.3 above may be developed readily
for calculating the required variances and covariances among the  domains.  While theoretically
straightforward, implementation could be tedious if many of the  are non-empty.

4. Variance Estimation: Bootstrap Methods
Replication methods for variance estimation are becoming increasingly popular for analysis of data
from complex surveys.  Methods suitable for data from stratified multistage survey designs are now
available, and their properties have been investigated both theoretically and empirically.  One
attractive feature of these methods is that the relatively difficult task of deriving replicate survey
weights only needs to be done once by the methodologists most familiar with the survey design and
weighting.  In particular, complexities due to multistage sampling, multiple frame estimation,
interprovincial migration of longitudinal panel members, adjustments to the weights to account for
non-response, etc., can be incorporated into these replicate weights.  Use of the replicate weights by
any analyst to derive valid design based variance estimates is then relatively simple, and does not
require any direct knowledge of the complex survey design or weighting procedures.
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In this section we first briefly describe a bootstrap method, called the coordinated bootstrap, which
is suitable for overlapping samples on two occasions.  We then describe an approximation to the
coordinated bootstrap, called the pseudo-coordinated bootstrap, which may be used when
coordinated bootstrap weights are unavailable.

4.1 Coordinated Bootstrap Method

In this subsection we describe a coordinated bootstrap method for estimation of the variance of the
difference of two cross-sectional estimates.  The bootstrap resampling method for iid samples has
been extensively studied  (see Efron, 1982).  It was extended by Rao and Wu (1988) to stratified
multistage designs and again by Rao, Wu and Yue (1992) to include nonsmooth statistics.  Yung
(1997) contains a concise description of the procedure.  To summarize, for each bootstrap replicate
a sample of PSUs is drawn with replacement from the set of sampled PSUs in each stratum.
Sampling weights of each sample unit are then adjusted to reflect this resampling; this is called the
bootstrap adjustment to the sampling weights.  Any further adjustments to the sampling weights,
such as nonresponse adjustments or calibration of the weights, should also be applied to each
bootstrap replicate to produce what we will call a set of bootstrap weights.  The bootstrap variance
estimator for a weighted estimator  is then calculated as 

(6)

where  is the estimate of  based on the bth set of bootstrap weights, and  is the mean of 
over the B bootstrap replicates.  Alternatively,  is often substituted for  in (6).

The same method may be used for multistage sampling on two occasions with overlapping samples.
The following procedure is used for each bootstrap replicate.  For sample PSUs that are common to
the two occasions by design, the bootstrap samples for the two occasions must be “coordinated”; i.e.,
the same bootstrap samples of PSUs should be used for each occasion.  For the sample PSUs that
are chosen independently on either occasion, bootstrap samples of PSUs should also be chosen
independently.  Bootstrap adjustments to the sampling weights would be applied as usual, and any
further adjustments to the weights would be applied independently in each sample.  Now, if 
is the difference between two cross-sectional estimates, one from each of the samples, then its
variance can be estimated consistently from (6) using these coordinated sets of bootstrap weights.

4.2 Pseudo-Coordinated Bootstrap Method

Although the coordinated bootstrap offers a neat solution to the problem of variance estimation for
the difference of two cross-sectional estimates, it cannot be applied when the bootstrap samples were
drawn independently for each of the two samples, as is often the case for cross-sectional files
produced from longitudinal surveys.  Recalling that ,
we propose here a method to produce approximate coordinated bootstrap weights which may be used
for estimation of the covariance of the two cross-sectional estimates.  Because of the approximations
and assumptions involved it is recommended that the original bootstrap weights, , be used for
estimation of the variances of the cross-sectional estimates.

In the coordinated bootstrap approach, for individuals in PSUs that are common to the two samples
the bootstrap adjustment of the basic sampling weights would be the same for both samples.  Thus
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for an individual in the overlap of the two samples, the ratio of the bth coordinated bootstrap weight
to the final estimation weight should be approximately the same for both samples, with any
differences in these ratios due only to differences in the other adjustments to the weights.  If we also
assume that individuals not in the sample overlap were sampled independently of the overlap, and
independently on each occasion, then their contribution to the covariance should be zero.   Under
these conditions the procedure described below should yield reasonable results.  For SLID, cross-
sectional individuals who are not in the overlap are not independent of the overlap; however, the
number of such individuals is relatively small.

From the bth set of bootstrap weights associated with  we define a set of pseudo-coordinated
bootstrap (PCB) replicate weights as follows:

(7)

We can similarly define PCB weights,  and , corresponding to the bth set of bootstrap
weights associated with .  If PSU identifiers were available, then we could replace the PCB
adjustment factor  in (7) by , which would be more stable.  If we
have B replicates in each set of bootstrap weights then it may be reasonable to construct B/2 sets of
PCB weights based on bootstraps and B/2 based on ; however, we may have as many as B sets
based on each sample.  If the original bootstrap weights are benchmarked to some population totals,
then we may wish to similarly benchmark the PCB weights, assuming that the benchmarking
procedure is known.  The covariance of two cross-sectional estimates,  and , would then be
estimated by 

(8)

where the summation is over the  sets of PCB weights, and  and  are calculated using,
respectively, either  and  from (7), or  and .

4.2.1  Pseudo-Coordinated Bootstrap for Non-independent Non-overlap 

If the assumption of independence of the sampling of individuals not in the overlap is not reasonable,
then the above procedure would tend to underestimate the magnitude of the covariance.  However,
the procedure could be modified in various ways.

The first approach to accounting for dependence of the non-overlapping part of the sample is based
on identifying PSUs within the samples.  For  individuals whose PSU intersects the common
sample, PCB weights based on  bootstrap weights could be constructed by multiplying  by

.  For PSUs that do not intersect the common sample at all, it might be
reasonable to assume that such PSUs from  are sampled independently of those in .
Alternatively, if  such PSUs from  can be linked to corresponding PSUs from , then a similar
type of adjustment can be used to construct PCB weights.

For a second, somewhat simpler approach, if  is a smooth function of population totals, then some
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of the extra covariance due to the non-overlapping parts of the samples could be captured using a
linear approximation.  Suppose for example that  where X is the population total of a
variable x.  If we write , where the superscript “o” denotes the overlap part of the
sample, and the superscript “no” denotes the non-overlap part, then we may write an approximation:

If we now define PCB weights based on  bootstraps as

then these weights could be used to estimate  and .  Similarly defined
PCB weights based on  bootstraps could be used to estimate  and .
However, estimation of the component  requires PCB weights that simultaneously
adjust the weights for both of the non-overlapping parts of the samples.

5. Illustration
The proposed methods are applied to SLID data where the average after-tax incomes for individuals
aged 16 and over with income for 1997 and 1998 are compared. There were 60,901 and 62,272 such
individuals in the 1997 and 1998 cross-sectional samples, respectively. The averages, their difference
and the corresponding standard errors obtained by the proposed methods are given in the Table
below. 

Estimated averages of  income-after-tax, their
 difference and standard errors

For application of the Taylor method all
longitudinal individuals, and so their
cohabitants, were associated with their
province of residence at their time of
selection.  Also, it was assumed that the
weights of all individuals from a stratum
were multiplied by the same panel
allocation factor (PAF).  In such a case  the
stratum total can be estimated unbiasedly
and the basic assumptions for variance
estimation by Taylor linearization method
as stated in Section 3 are satisfied. 

Estimates

Standard Errors

Taylor

Bootstrap

Coordinated Pseudo-
Coordinated

20285 137 132

21125 142 137

- -840 79 82 81

This, however, may not be exactly true since the weights of individuals that joined the population
after the selection of the first panel are not modified by the PAF, meaning that within a Panel 2
stratum some individual weights may be multiplied and some may not. However, the number of such
individuals represents less then 0.6% of the Panel 2 size.

The bootstrap calculations are based on 500 replicates.  The bootstrap weights that were produced
for SLID for the 1997 and 1998 cross-sectional samples are already coordinated.  The PCB weights
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for this empircal comparison are defined as in (7), using an individual level PCB adjustment factor,
with no subsequent benchmarking, and based on the assumption of independence of individuals not
in the sample overlap.  The first 250 sets PCB weights were based on the first 250 sets of  bootstrap
weights for , while the second 250 were based on the second 250 sets of bootstrap weights for .

The estimate of  based on the Taylor linearization method was 16346, while that based
on coordinated bootstrap was 14806, and that based on the pseudo-coordinated bootstrap was 14838.

The preferred method for variance estimation in this set-up is the coordinated bootstrap, as it can
take explicit account of all of the complexities of the survey design and estimation. The pseudo-
coordinated bootstrap performed well in our example. Some additional empirical investigation is
needed to assess its properties. Standard errors estimated by Taylor method are very close to those
obtained by the bootstrap methods despite the approximations involved, including the ingnoring of
weight adjustments.
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