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1. Introduction

It is a common practice to use two-way categorical tables to present survey data. For many
surveys there are missing data and this gives rise to partial classification of the sampled individuals.

Thus, for the two-way table there are both item nonresponse (one of the two categories is missing)
and unit nonresponse (both categories are missing). One may not know how the data are miss-
ing, and a model that includes some difference between the observed data and missing data (i.e.,
nonignorable missing data) may be preferred. For a general r X ¢ categorical table we address two
issues (a) an estimation of the cell probabilities of the two-way table and (b) a test of no association
between the two categories using the Bayes factor. Both problems are important because with a
substantial number of nonrespondents an analysis based on only the comp{)ete observed data may
be misleading.

Our application is in health statistics, and there are several problems at the National Center

for Health Statistics (NCHS) in which our methodology will be important. The NCHS categorizes
the sampled persons by two types of attributes, and researchers analyze such categorical tables for
%oodness of fit or independence. However, only partial classification of the individuals is available

ecause some individuals are classified by only one attribute while others are not classified. We use
data from the third National Health and Nutrition Examination Survey (NHANES III) to study
the relation between bone mineral density (BMD) and family income (FI). While FI is a discrete
variable, BMD is not; BMD is classified into three levels: normal, osteopenia and osteoporosis, and
FI into three levels: low, medium and high. About 62% of the households have both FI and BMD
observed, 8% with only BMD observed, 29% with only income observed, 1% with neither income
nor BMD among those participated in the examination stage. The data set, we used in our study
are presented in Table ?? in a 3 X 3 categorical table of BMD and FI. Our problem is to (a) estimate
the cell probabilities and (b) test for association between BMD and FI.

Nandram, Han and Choi (2002) analyze multinomial data with one attribute using a non-
ignorable nonresponse model. Nandram and Choi (2002 a,b) use an expansion model to study
nonignorable nonresponse binary data. The expansion model, a nonignorable nonresponse model,
degenerates into an ignorable nonresponse model (in the spirit of Draper 1995), allowing an ex-
pression of uncertainty about ignorability; see also Forster and Smith (1998). In this paper, for
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nonignorable nonresponse we attempt a related methodology, but the issues for a two-way categor-
ical table are more complex.

Rao and Scott (1981) investigate the effects of stratification and clustering on the asymptotic
distribution of Pearson’s chi-squared statistic for goodness of fit and independence. They propose
new measures called generalized design effects. See also Rao and Scott (1984) who generalized
the results of Rao and Scott (1981) to multi-way categorical tables. The works of Cohen (1976),
Altham (1976), Brier (1978) and Choi and McHugh (1989) are also relevant.

Chen and Fienberg (1974) describe the two issues we are discussing in this paper. For the two-
way categorical tables they can tolerate item nonresponse only; unit nonresponse is excluded from
their analysis. However, they assume that the data are missing at random (i.e., simple random
sampling), and they show how to obtain maximum likelihood estimators under multinomial and
Poisson sampling schemes. See Little and Rubin (1987) for a simple illustration of the EM algorithm
for the problem in which exactly one attribute is missing (ignorable). Little and Rubin (1987) also
discussed the nonignorable case for this problem (see also Little 1985 for a discussion of the case in
which there are both supplemental margins). It is noted in Little and Rubin (1987) that the issue
of the nonignorable model for this problem is that there are too many parameters, and therefore
many parameters are not identified so they resorted to hierarchical log-linear models. Finally, Chen
and Fienberg (1974) show how to adjust the chi-squared and the likelihood ratio statistics for the
partially classified data, an issue that has been discussed earlier by Rao and Scott (1981) and
others.

More recently Wang (2001) considers a problem with the same two issues we want to investi-
gate. However, simple random sampling and stratified random sampling (ignorable missing data
mechanism) is used and unit nonresponse is not included in the discussion. They consider marginal
imputation and conditional imputation. In mar%inal imputation the marginal probabilities are es-

timated using the completers, and the cell probabilities are imputed. In conditional imputation the
conditional probability of each cell is estimated given the margins for the completers. He obtained

asymptotic distributions for the estimated cell probabilities and an adjustment (in the spirit of Rao
and Scott 1981). Finally, we note that Greene et al. (2002) describe a simple raking method for
imputing the cell counts in a two-way table with missing data; our methodology goes far beyond
these authors.

Our methodology differs from those of Chen and Fienberg (1974) and Wang (2001) in several
ways. The major difference is that we use a Bayesian approach. This permits us to (a) use a method
that does not rely on asymptotic theory, (b) incorporate nonignorable missingness into the model-
ing and (c) obtain an alternative to Pearson’s chi-squared statistic for testing for no association. A
Bayesian method permits modeling different patterns of missingness under two different assump-
tions (i.e., ignorable and nonignorable missingness). Our idea is to start with an ignorable model,
which is then expanded into a nonignorable model. Note that we also include unit nonresponse in
our modeling which the other researchers can do as a separate problem using weighting adjustment
(e.g., see discussion in Kalton and Kasprzyk 1986). However, there can be nonignorability here as
well, and one would need to include unit and item nonresponses simultaneously.

In (c) we use the Bayes factor (see Kass and Raftery 1995) to quantify the difference between
a model with association and one without. This is the ratio of the prior odds of one model to the
other to their posterior odds (obtained through the use of Bayes’ theorem). This is the same as
the ratio of the marginal likelihoods of the data under two models, one without association and the
other with association. See Kass and Raftery (1995) for a rule of thumb for quantifying the degree
of evidence. There are several methods to compute the marginal likelihood (e.g., see Section 1 of
Chib and Jeliazkov 2001), and we note that one standard method is importance sampling.

In this paper, we introduce a Bayesian method to analyze data from an r X ¢ categorical table
when there are both item nonresponse and unit nonresponse, and missing data mechanism can be
nonignorable. In Section 2, we describe the methodology to obtain estimates of the cell probabilities
incorporating the three types of missing data, and we S%IOW how to expand an ignorable nonresponse
model into a nonignorable nonresponse model. We also show how to use Markov chain Monte Carlo
methods to fit the models. In Section 3, we use the Bayes factor to test for association of the two
attributes and assess whether the ignorable or nonignorable model prevails. We show how to use
importance sampling to compute the marginal likeliﬁoods under different models. In Section 4, we
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analyze the NCHS data to demonstrate our methods. Finally, Section 5 has concluding remarks.
2. Methodology for Nonignorable Nonresponse

We construct a nonignorable nonresponse model by expanding an ignorable nonresponse model.
We show how to fit both models using the Gibbs sampler.

2.1 Nonignorable Nonresponse Model

Let Iipe, j=1,...,7, k=1,...,¢c, £=1,...,n denote the characteristic (observed or missing)
of an individual in the two-way table (i.e., the row and column the individual belongs to). Let
Jiee = (1,0,0,0), (0,1,0,0), (0,0,1,0), or (0,0,0,1) which of the cases ((a), (b), (c) and (d)) the
£t* individual belongs (e.g., rjx, = (1,0, 0, 0) indicates that the individual belongs to the completely
observed table). We use the almost nonparametric assumption that there is multinomial sampling
in the survey. Thus, for nonignorable missing data we take

ijl | {Ijkl =1,y =0,7 # j’, k# k’,’)}'jk} %Multinomial{l,@jk} (1)
and -
I |1_) id Multinomial{1, 13}, (2)
4 T c
where Zﬂ',jk =1, M, >0, 5 =1,...,7, k =1,...,c and Zzpﬂ'k =1 pir >0, j =
s=1 j=1j=1

1,...,7, k =1,...,c. Assumption (1) specifies that the cases (a), (b), (c) or (d) an individual
belongs to depends on the two characteristics of the individual. In this manner we incorporate the
assumption that the missing data is nonignorable. Also, assumption (2) is standard when there are
no missing data.

n

Next, we need the likelihood function. Let the cell counts be y,;x = ZIJ-MJ,JM, s=1,23,4
=1

for the four cases. Here y; ;. are observed and y,;x, s = 2, 3,4 are missing. For y;;; we know that

r c c
Z Z Y1k = t, the number of individuals with complete data. For y;; we know that Z Y2k = Uj,

j=1lk=1 k=1
r

where u;, j =1,...,r are observed. For ys3;, we know that Zyg]'k = v, where v, k=1,...,c
i=1

T c
are observed. For y4;r we know that Z Z Yajr = w. In this analysis u, v and w are held fixed
j=lk=1
(i-e., fixed margin analysis). Then, the augmented likelihood function for p,m,y,, s =2,3,4 [y is

T ¢ 4 . . YYsjk
TsikPik J
9(1?’73’2‘./“322,3,4|y1,y,y,w) x II II II{%}

Ysjk!

- | aase] e

j=1k=1s=1 Joik* | |;Z1k=1
: c . T T c
subject to D2p_q Y2k = uj,J = 1,7, D251 Ysik = Uk, k= 1,...,c,and 3750 DTh g Yage = w.

Observe that in (3) the parameters p;, and 7, are not identifiable. Clearly, to estimate pj
one needs to know 23:1 Ysjk Dut only the y; ;. are known. Also, to estimate m,;; one needs to know
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Zle Ysjk- Lhus, y,;x, s = 2, 3,4 are also not identifiable. Putting very informative proper priors
on the m,;, will help, but this is not a practical solution. If an ignorable model (i.e., Tk = 7,)
is used, then all the parameters can be identified. Therefore, a sensible solution is to attempt to
link the Tk using a common feature over (j, k). If the m;; come from a common distribution with

“known” parameters, we would be able to estimate them. That is, we must attempt to “borrow
strength” as in small area estimation. This permits estimation of 'the Ysjk, § = 2,3,4 which, in

turn, will facilitate estimation of the pj.
For the pj;, we take

p ~ Dirichlet(1,...,1) (4)
(i-e., a uniform prior density on p), and for the 7er we consider * centerlng the nonignorable model
on the ignorable model which has Tk =m,J=1,...,7, k=1,...,c. We assume that
..d 4
Tik | p, 7~ Dirichlet (u17, pat, pat, pat),7 >0, Z,ua, ps >0, s=1,2,3,4. (5)
s=1

In (5) the parameter 7 tells us about the closeness of the nonignorable model to the ignorable
model. For example, if 7 is small, the 7;, will be very different, and if 7 is large, the mj; will
be very similar. Thus, inference w111 be sensitive to the choice of 7, and one has to be careful in
choosing 7. For large 7, the nonignorable model is kept at the 1gnorable model in (5).
A priori we take
p(p) =1 and T ~ Gamma(ay, Bo), (6)

where ag and By are to be specified.
Then combining (4), (5) and (6), the joint prior density of 7, p, u and 7 is

71-(13 { H H ngsk ) } Tao_le_ﬂoT. (7)

j=1k=1 /‘l’lT <oy HAT

Note that (7) is a proper prior density. Finally, combining the likelihood function in (3) with the
joint prior density in (7) via Bayes theorem, the joint posterlor density of the parameters 7, p and
the latent variables y(1) = y2,9y3,ya (-8, y2 = {¥y258, 7 =1,...,7,k=1,...),c}is

(e, T T | 1) o [H 1111 {MH {H II 5 = T )}Tao—le—ﬂ“, (8)

j=1k=1s=1 Ysik! j=1k=1 D(pa, -y paT

where D(p17, . .., pat) = {[1:_; T'(s7)}/T(7) is the Dirichlet function.
2.2 Fitting the Models

We use the Gibbs sampler to obtain iterates from the joint posterior density in order to make
inference about the parameters. Specifically, we need to make inference about p, mjx, any of

the missing cell counts, and the relationship between the two categorical variables. We need the
conditional posterior den51ty of each of the parameters glven the others.

For pwe havep | {y,,s =1,2,3,4,u,v w} D1r1chlet(2, N RTE o P 5 1 Ysrc+1). For mjp

we have w3 | {g,7,9,,5=1,2,3,4,u,v ,whR Dlrlchlet(y1]k+u17 Yajk+ B2, YsjptHaT, y4]k—}—,u47')
We need the conditional posterlor probablhty mass functions of y,, s = 2,3,4 given y1, p, mjx,j =
1,...,r, k=1,...,c. From (8) it is clear that under the conditional posterlor density y,, s = 2,3,4

are independent multlnomlal random vectors with parameters (u;, g§ )), (v, g,(c )), and(w, g( )),
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]
respectively where gg-z), g,(c?’), andg(4) are weighted means: where qJ(-Z) = T2jkPjk/ E Tajk'Pik! qj(.z) =

k=1

r [
T3jkPik/ D T3jkPjk, and qj(-:) = TajePik/ D D Tajik'Pitk'-
i'=1 j'=1k'=1
For the ignorable nonresponse model we only need p, = %, §=1,2,3,4, 7 = 4 for above p,mj,
and y,, s = 2,3,4.
The joint conditional posterior density p(g, 7 | Tk, 5 =1,...,7, k=1,...,c) of p, T is
4

I o

(,u,'r|7rjk,j:1 S k=1,...,¢c)x {‘D:(lﬂwao_l e P

S wa=1, g, >0,5=1,2,3,4, 7> 0whered, —HHﬂ',JkandD(,uT —{HI‘,ua )}/T(7)

j=1k=1
is the Dirichlet function.
We do not need to get a sample directly from p(u | 7,m%,5 = 1,...,7, k = .,¢). But,

1,.
letting p(,) denote the vector of all components of p except ps, we have p(ps | LL( ) Ty Wiks J =
L...,r k= 1,...,¢) oc 687 /{T(pyr)}™e S H2 )T JUD((1 = py — pa — pa)7)}", where
0< pe <1 =33 gzo bty 5=1,2,3.
We use a grid to draw a sample from p(g, | p(s), 7, Tjk, 5 = 1,...,7, k=1,...,c). We have used

50 grids (i.e., we have divided the range of pu,, (0 1-33_ 1, s'#s Ms'), into 50 intervals of equal

widths) to form the probability mass function of u,, s = 1, 2 3. To draw a random deviate, we

first draw a random variable from this probability mass function, and this indicates which of the

50 intervals is selected. Then, we obtain the random deviate for y, by drawing a uniform deviate

in this interval. This procedure is efficient because He is bounded, it does not lie close to 0 or 1,

the intervals are very narrow, and it is very “cheap” to construct the discrete probability mass

function for each p,, s =1, 2 3. Finally, u4 is obtained from its conditional posterior density by
3

taking pq = Z,u,.
s=1
The conditional posterior density of 7 is p(7 | g, mj,5 =1,...,7, k=1,...,¢)

HsT
lH T % ] Tao_le_ﬂo", > 0.

To draw a random deviate from above, we proceed in the same manner as for p except that we
transform 7 from the positive half of the real line to (0, 1). It is more convenient to perform a grid
in a bounded interval. Thus, letting 7 = ¢/(1 — ¢) in (?7?), we have p(¢ | p, Tjr, 5 = 1,...,7, k=

[

6”57'
L...,¢)x { lH {T( ] Tao_le_BOT} , 0 < ¢ < 1. We use 50 intervals of equal

width to draw ¢, and the random deviate for 7 is ¢/(1 — ¢).

The Gibbs sampler is executed by drawing a random deviate from each of p,,y, mu, andr
iterating the entire procedure until convergence.
Finally, we describe how to specify ag and By. We have obtained iterates for the missing cell

counts from the Gibbs sampler for the ignorable case (i.e., 7 = m) which we denote by nSJ,)e, h=

1,..., M =1000. For each h we fit the model p ~ Dirichlet(1) and 7 £ Dirichlet(a) where o, =
Iy i) e Dlatniy)
F(Zj 1( s+n£]l:) s=1 T(a,) )
0, s =1, 2, 3, 4. Using the Nelder-Mead algorithm to maximize the likelihood function over

BsT, s =1, 2, 3, 4to obtain the likelihood function [[5_; [[;-; [
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4
a, >0, s=1, 2, 3, 4at the h** iterate, we obtain g(h), h=1,...,M. Now letting 7(h) = Z agh)
s=1

we fit the prior, Gamma(ayg, Bo), to ™ h =1,...,M taking ap = a?/b and By = a/b where
M M

=M1 ZT(h) and b= (M - 1)1 Z(T(h) — a)z.
h=1

h=1
3. Bayes Factor: Tests of Association and Nonignorability

We construct two tests for (a) the presence of nonignorability and (b) association between BMD
and FI. These tests apply to any r x ¢ table. The test in (a) is an assessment of whether the ignorable
model or the nonignorable model prevails, and the test in (b) i is assessment of the assumption that

DPjk = Q1jq2k, j=1,...,7, k=1,...,c, where quj =1and Z ga2r = 1. We use the Bayes factor,
j=1 k=1
the ratio of the marginal likelihoods under two scenarios (e.g., association versus no association).
Let yo=(Ys11,- -1 Ysrc), 5=1,...,4, ¥ = (¥s,5 = 1,2,3,4)= (yl,y( ))- Note that we observe y;, but
(1) is a set of latent variables. So each marglnal hkehhood is simply the probability that y1 is
the observed value of Y';, which we denote by p(y:). Let the marginal likelihood for the 1gnorable
model be pig(y1) = a under association and pig(y1) = b under no association, and the marginal
likelihood for the nonignorable model be Pnig(y1) = A under association and pmg(yl) B under

no association. the marginal likelihoods, a and b for ignorable model and A and B for nonignorable
model are obtained by Markov Chain Monte Carlo method.
The resemblance of the ignorable and noningnorable models depends on how close A or B to

one under association and no association respectably. Bayes Factor for association is a/b under
ignorable model and A/B under nonignorable model. If Bayes Factor is greater than 6, we may
reject the idea that the two attributes of the 2-way table are not associated.

4. Data and Empirical Analysis

We apply our methodology to the data in the 3 x 3 categorical table (not included). We present
results associated with the observed data. We do not include any table related to the analysis due
to space limitation.

We compared the ignorable nonresponse model to the nonignorable nonresponse model. The
numerical standard errors (NSE) are small indicating that the computations are repeatable. The
posterior means (PM) are very similar for the two models. The posterior standard deviations (PSD)
are larger for the nonignorable model, making the 95% credible intervals wider.

We also compare t ie estimation of m, in the ignorable nonresponse model to m,;; in the non-
ignorable nonresponse model in which we present the range of the values for the nine cells of each
of s =1,2,3,4 of the posterior means (PM). The range indicates the extent of the nonignorability.
The PM’s of 7, are within the range of the m,;; and as expected the PSD’s are larger for the
nonignorable model.

We have presented the Bayes factors for testing the goodness of fit of the ignorable model and
the nonignorable model. We note that the estimates of j and B are about the same with a NSE of
roughly 4 in each case. The differences are small indicating little preference. There are very little
evidence for any preference between the ignorable and nonignorable nonresponse models. It is also
true that there is very little evidence for association between BMD and FI.

We have studied the sensitivity of inference about the p;;, with respect to the prior distribution
of 7. That is, we have taken 7 ~ Gamma(kog, Po), where & is a sensitivity parameter that we have
taken to be 1 in our analysis above. Making & bigger than 1 induces no changes in the posterior
(PM) and posterior standard deviation (PSD) of the pj; because ap = 698 and By = 1.07. We
calculate PM’s and PSD’s for k = .10, .25, .50, .75, 1.00. The changes in the PM’s are negligible
(i.e., the posterior means of the pj, are not sensitive to changes in ). There is some changes in
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the PSD’s: For values of kK > .25 the changes are not important. At & = .10 the changes are
substantial, but there is a huge difference between x = .10 and x = 1.00.

We have also studied the sensitivity of the Bayes factors at x = .10, .25, .50, .75. For the
nonignorable model the marginal log-likelihoods are —75.58, — 72.00, — 70.86, — 70.49 for with
association and —67.11, — 69.07, — 71.75, — 72.54 without association. Thus, the marginal
likelihood are not sensitive to the prior distribution of 7.

5. Concluding Remarks

We have shown how to analyze multinomial data from r X ¢ categorical tables when there are both
item nonresponse and unit nonresponse and the nonresponse mechanism may be nonignorable. We
have also shown that by using the Bayes factor (ratio of the marginal likelihoods of two models)
we can test for association between the two categories, and it may also be possible to assess
nonignorability.

or the 3 X 3 categorical data of BMD and FI we used, we are able to estimate the cell probabil-
ities very well. Also, while the chi-squared test shows strong evidence for association between BMD
and FI, our Bayes factor shows “strong” evidence for no association under the ignorable model,
but the evidence for no association under the nonignorable model is “not worth more than a bare

mention.” We have also shown that there is strong evidence that the ignorable model (simpler) is
to be chosen over the nonignorable model. (Positive evidence is 2 < 2log(Bayes Factor) < 6.)

Further research can try to reduce the number of parameters in the nonignorable model. For
example, one can fit a model in which the m,;;, can be taken to be m,;, = 7,7y, in which a prior

distribution is put on the 7;; so that the nonignorable model is centered on an ignorable one. It

is also possible to consider representing the data in two categorical tables, one with the complete
data and the other with the incomplete data, instead of three supplemental tables as we did.
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