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Abstract 

Multiple variations of complementary cell suppression procedures are used by statistical agencies to 

protect sensitive tabular format magnitude data from a statistical disclosure. In this paper, we address 

potential weaknesses associated with some of the most commonly used home-grown cell suppression 

procedures to protect tabular format magnitude data. We also provide some guidance to the survey 

operations staff on the standard procedures that need to be followed to ensure adequate protection from 

statistical disclosure of sensitive tabular cells in statistical publications.  

 

Introduction 

 

Statistical agencies routinely use complementary cell suppression techniques to protect sensitive tabular cells from 

statistical disclosure in published tables. Irrespective of the technical advances in the linear programming (LP) based cell 

suppression methods, there is a tendency among statistical agencies to rely heavily on the variations of “home grown” 

manual cell suppression procedures. Over time, in an attempt to increase the efficiency and to maintain the consistency of 

these manual cell suppression procedures, attempts are made to automate the logic used in these same “home grown” 

manual cell suppression procedures. In this paper, we use the basic principles from graph theory to demonstrate the 

potential weaknesses associate with flawed “automated/manual” home grown cell suppression procedures. In the recent 

past, these flawed procedures have been advocated to the statistical community in the conference and workshop setting. Our 

objective here is to make the statistical community aware of the potential pitfalls associated with these procedures and to 

emphasize the importance of using appropriate solution procedures based on the linear programming models. 

 

Typical Manual Cell Suppression Procedure 

 

Three basic pieces of information are required to properly identify sensitive tabular cells. They are: a) cell value, b) largest 

contribution to the cell value, and c) second largest contribution to the cell value. To get around the “relatively complex 

computational logic/task” required to determine the largest and the second largest contribution to each and every published 

cell in all tables in statistical publication, often a total number of contributors to the cell value is used as a surrogate 

variable. A total cell count of either two contributors or three contributors is used solely to declare the table cell as sensitive. 

For a discussion in this paper, we assume that the proper procedure based on the cell value, largest and second largest 

contribution to the cell value in combination with appropriate sensitivity rule is used to identify sensitive table cells.  

 

Almost always, after a table cell is identified as a sensitive cell, the amount of protection required by the sensitive cell is 

completely ignored during the search for potential candidate complementary suppression cells. Historically it is known that 

(1) “minimizing the information loss” should be the primary objective in the manual search for potential candidate table 

cells as complementary suppression cells, and that (2) suppressing only one cell in a given table row or table column (or in 

any given table dimension) causes exact disclosure of the suppressed cell, when marginal total cell values are readily 

available. Based on these two criteria, the individuals tasked to perform manual cell suppression procedures are often 

instructed to ensure that (1) at least two table cells are suppressed in every table dimension and (2) cells selected for the 

http://mysite.verizon.net/vze7w8vk/


complementary cell suppression task are the smallest available in the pool of candidate cells available in a given row or 

column. Over time, these two basic principles used in typical “home grown” manual complementary cell suppression 

procedure evolve into computer programming steps as a part of the automation of complementary cell suppression task. 

Figure 1 summarizes steps in one such manual complementary cell suppression procedure. Figure 2, in combination with 

the criterion identified in Figure 1, shows steps in widely advocated automated complementary cell suppression procedures. 
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Illustrative Example 

 

To illustrate the basic logic behind the widely advocated “home grown” complementary cell suppression procedure, we use 

a simple two dimensional 7 columns by 8 rows table as in Figure 3. The table contains one sensitive cell in row 5, column 6 

position. We use the notation Cnm to identify a table cell in row n and in column m. Using this notation, the sensitive cell 

in Figure 3 is identified as C56 with a value of  C56 = 4175. To protect this sensitive cell and by using the   procedure from 

Figure 1 and Figure 2, the complementary suppression cells are selected in the following sequence:  

 

a) To protect sensitive cell in 5
th

 row, C56 => C51 (to protect C56 in row 5) => C61 (to protect C51 in column 1) => C64 

(to protect C61 in row 6) => C14 (to protect C64 in column 4) => C11 (to protect C14 in row 1). We now have more than 

two suppressions in column 1 (C11, C51, C61).  



 

b) We then proceed to protect sensitive cell in 6
th

 column C56 => C86 (to protect C56 in column 6) => C83 (to protect C86 

in row 3) => C33 (to protect C83 in column 3) => C32 (to protect C33 in row 3) => C72 (to protect C32 in column 2) => 

C71 (to protect C72 in row 7).  We now have more than two suppressions in column 1 (C11, C51, C61, C71).  

 

A total of eleven complementary cell suppressions are required to protect sensitive table cell C56. 

 

 

                                                                           FIGURE 3             

 

 
 

 

 

Separability of Cell Suppression Pattern 

 

Based on the basic principles from a graph theory, the suppression pattern consisting of 12 suppressions from Figure 3 is 

made up of two separate components. The first separable component consists of eight suppressions C56 => C51 => C71 => 

C72 => C32 => C33 => C83 => C86 (Figure 4) and it includes sensitive cell C56. The second separable component 

consists of 4 suppressions C11 => C61 => C64 => C14 (Figure 5). The second component is not connected to the sensitive 

cell C56 at all.  The lack of connection of Figure 5 suppressions with the sensitive cell C56, makes these four suppression 

unnecessary and therefore should be considered over-suppressions.  Over-suppression is one major drawback of the 

“home grown” complementary cell suppression procedure. 
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FIGURE 5 

 

 

 

 

Figure 6 shows the lower and the upper bounds of the suppressed cells from Figure 3.  These bounds are determined 

by using a linear programming audit of the cell suppression pattern. The Disclosure Audit Software (DAS) developed by 

the Federal Committee on Statistical Methodology (FCSM) was used to perform this task. Based on the DAS outcome 

in Figure 6, the distance between the true cell value from the lower and upper bounds for the eight cells belonging to the 

first component are determined by cells C32 (value = 998) and C33 ( value = 1130). The distance between the true cell 

values from the lower and the upper bounds for the four cells belonging to the second component are determined by 

cells C11 (value = 1976) and C14 (value = 470) . The outcome in Figure 6 further confirms the existence of two distinct, 

separable, and independent cell suppression patterns in the table shown in Figure 3.  Notice that cells C32 and C33 were 

selected as complementary suppression cells because they were the smallest among the candidate complementary 

suppression cells. Relatively small values for C32 and C33, such as say 5 units, would have brought lower and upper 

bounds for the remaining six cells too close to the true call values. This would have caused statistical disclosure for the 

remaining six cells belonging to the first component. 
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Naked Cell Suppression Pattern 

 

Another undesirable property of the “home grown” complementary cell suppression procedure is that it creates naked 

suppressions (suppressed cell, for which values could be determined exactly). This property is relatively easy to 

demonstrate by using any generic table. In Figure 7 and in Figure 8, we use two different generic two-dimensional tables 

containing 10 rows and 10 columns. The last column in these two tables is the sum of the first nine columns. Similarly, 

the last row in these two tables is the sum of the first nine rows. Both the tables have only one sensitive cell located in 

row 5 and column 5. The sensitive cell is denoted by a symbol “P”.   
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In both of these tables, a total of eighteen complementary cell suppressions are required to protect sensitive cell “P” 

by using the typical homegrown complementary cell suppression procedure. The complementary suppression cells were 

selected in an increasing sequence from X1 to X18. Cell Xn (n= 1 to 18) was selected to protect cell Xn-1
1
, entirely 

based on the criteria that the cell Xn was determined to be the smallest value cell in a given column or a given row 

during the search process to locate the small value cell. Based on the separability principles , both Figure 7 and Figure 8 

cell suppressions have three "independent" components, identified by using a separate color scheme. In both tables, a 

component associated with the sensitive cell “P” consists of naked suppressions. The values for these cells (including 

the value of the sensitive cell “P”) can be determined exactly.  The other two components are not at all "connected" to 

the sensitive cell and therefore should be considered over-suppressions. It is relatively easy to quantitatively verify these 

findings by performing suppression pattern audits of tables in Figure 7 and in Figure 8.  This could be done by first 

populating these tables with any numeric non-zero (and additive) table cell values and thereafter by performing a cell 

suppression audit of resultant table to determine the lower and the upper bounds on the suppressed cells.  

 

 

 

                                                 
1
 An exception to this rule is when Xn is used to directly protect sensitive cell. In Figure 7, X15 and in Figure 8, X10 is 

used to directly protect sensitive cell. 
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We have used cell values from Figure 9 and have super-imposed cell suppression patterns from Figure 7 and Figure 8 

to quantitatively verify the findings based on graph theory.  The cell suppression audit outcome is presented in Figure 10 

and Figure 11.  Figure 10 and Figure 11 cell suppression audit findings further confirms the existence of “naked 

suppressions” and “over-suppressions” associated with the typical “home grown” complementary cell suppression 

procedures.  
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Solution By Using Network Flow Model 

 

In Figure 12 we show the complementary cell suppression outcome from the network flow model made available to other 

Federal statistical agencies by the U. S. Census Bureau, when used on a table in Figure 3. A total of five complementary 

cell suppressions are required to protect the sensitive cell at 10% protection level. The overall quantity suppressed is 

minimal in an attempt to minimize the information loss.  
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Summary Findings and Conclusions 

 

“Home grown” complementary cell suppression procedures which have been traditionally used by the statistical community 

for the last ten to fifteen years are flawed. These procedures have a tendency to over-suppress, under-protect and often 

create naked suppressions. Often these procedures fail to protect sensitive tabular cells.  Complementary cell suppression 

procedures based on network flow models and on generic linear programming models have the better track record in 

protecting sensitive tabular cells.  There is no substitute for linear programming-based cell suppression procedures. 
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   Abstract 
 
 
A graph-theoretic approach is used to separate sparse multi-
dimensional arrays into multiple blocks of non-zero arrays.  The 
separability technique demonstrated in this paper has a 
significant application in sparse multi-dimensional data 
analyses.  Typical application areas include: contingency table 
analyses, multi-variate sampling of sparse data matrices and 
determining suitable complementary suppression patterns to avoid 
disclosure of individual respondent's data in tabulated data. 
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 Introduction 
 
In many situations, instead of working directly on a large sparse 
multi-dimensional array of data, it is advantageous to first 
separate the big array of data into blocks of smaller individual 
non-zero arrays.  The separation of the sparse multi-dimensional 
array into its smaller counterparts not only reduces the 
complexity of the analytical task, but in many instances saves on 
the computational resources.  This is easy to visualize by 
considering, as an example, the following three dimensional 5 x 5 
x 3 Boolean array.  In this array the value one indicates a non-
zero count in the cell. 
 
      1  0  0  0  1         0  1  1  1  0        1  0  0  0  1 
      0  1  1  1  0         1  0  1  1  1        0  0  1  1  0 
      1  0  0  0  1         0  1  1  1  0        0  0  0  0  0 
      0  1  1  1  0         1  1  1  1  1        0  1  1  1  0 
      1  0  0  0  1         0  1  1  1  0        1  0  0  0  1 
 
In this array each 5 x 5 block is labeled from left to right with 
the third subscript.  The first two subscripts are row and column 
subscripts, respectively, within each block.    By using the 
graph-theoretic method from this paper, the Boolean array could 
be rearranged in to two or more blocks of non-zero cells to give 
the following appearance:     
 
      1  1  0  0  0         1  1  0  0  0        0  0  1  1  1 
      1  1  0  0  0         1  1  0  0  0        0  0  1  1  1 
      1  1  0  0  0         0  0  0  0  0        0  0  1  1  1 
      0  0  1  1  1         0  0  1  1  1        1  1  1  1  1 
      0  0  1  1  1         0  0  1  1  0        1  1  1  1  0 
 
The rearranged array contains blocks of nonzero cells.  Depending 
on the circumstances, increased efficiency could result by 
processing these individual blocks of arrays separately instead 
of processing the original sparse data matrix in its entirety.  
In some other instances, such as in the analysis of contingency 
tables, unless the separability is detected incorrect degrees of 
freedom will be associated with models fitted to the data. 
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 Mathematical Background 
 
A multidimensional array is a function of several integer 
variables.  Therefore, it is appropriate to write such an array 
in the functional form A = A(i1,i2, ...,ip).  Here, each ir  is an 
integer from the set Ik  = {1, 2, ..., Nk }.  Therefore the 
domain of the function is the set I = I1 xI2 x...xIp  which can 
obviously also be regarded as a lattice of points in the 
p-dimensional Euclidian space Rp.  Since the separability problem 
is concerned with the presence or absence of zero values at 
points of the domain of A, it is sufficient to consider a Boolean 
array.  Thus, one may look upon A as a mapping A:I->{0, 1}. 
 
It is essential to regard ik  as the k-th variable in the 
definition of A.  The ordering of the variables can be emphasized 
by writing the array A in the form A1,2,...,p(i1 ,i2 ,...,ip ).  A 
convenient notation is then to write P = (1,2,...,p) and hence 
also to write AP(i1,i2,...,ip). 
 
We need to define connectedness and separability in general 
terms.  Suppose Q is a proper subset of P (subsets of P will 
always be regarded as ordered).  Define Q' = P\Q. 
 
Then a useful notation is to write 
 
AP(i1,i2,...,ip) = AQQ'(i1,i2,...,ip) . 
 
For example, if p = 5, P = (1,2,3,4,5), and Q = (2,3,5), 
then Q' = (1,4) and 
 
AQQ'(i1,i2,i3,i4,i5) = A(2,3,5)(1,4)(i1,i2,i3,i4,i5). 
 
With the above notation two elements of A are called Q-adjacent 
if they have the same Q subscripts and both have the value one.  
Thus the elements 
 
     A(2,3,5)(1,4)(i1,i2,i3,i4,i5) and 
 
     A(2,3,5)(1,4)(j1,j2,j3,j4,j5) 
 
are (2,3,5)-adjacent if i2 = j2,i3 = j3,i5 = j5 and both of these 
elements have the value one. 
 
The algorithm to be presented below is concerned with the 
following rather general situation.  Suppose Q1 Q2 ...,Qr are each 
proper subsets of P.  (Usually one will have Q1 � Q2 �...� Qr = 
P).  Two elements of A are called (Q1,Q2,...,Qr)-adjacent if they 
each have the value one and they are Qk -adjacent for at least 
one k satisfying 1  k  r. 
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It is convenient to denote by B, the subset of points of I at 
which the array A takes on the value one.  The array is then 
called (Q1,Q2,...,Qr)-connected if any two points in B can be 
regarded as the endpoints of a finite sequence of points in B 
with the property that each pair of successive points in the 
sequence is (Q1,Q2,...,Qr)-adjacent.  If the array A is not 
(Q1,Q2,...,Qr)-connected, it is called (Q1,Q2,...,Qr)-separable. 
 
Now it is well known (see, for example, [V62], [BHM80], and 
[GLM81]) that separability problems can generally be solved by 
reducing them to a graph-theoretic form.  This is because very 
efficient algorithms exist for finding the components of a graph. 
 Thus a graph G = (V,E) is constructed for the above separability 
problem as follows. 
 
The vertex set V = B.  Two elements in V are adjacent (i.e., 
define an element of E) if, and only if, they are Qi-adjacent for 
at least one value of i, 1  i  r.  In this way, the graph G has 
the same adjacencies as the array A itself and can be labeled 
G(Q1,Q2,...,Qr).  We will show that A is (Q1,Q2,...,Qr)-separable 
if, and only if, G(Q1,Q2,...,Qr) is not connected and, moreover, 
the components of A, when A is separable, are completely 
determined by the components of G(Q1,Q2,...,Qr).   
 
 
 Mathematical Proof 
 
Theorem:  The array A is (Q1,Q2,...,Qr)-connected if and only if 
G(Q1,Q2,...,Qr) is a connected graph.   
 
(Recall that a graph G is called connected if, given any two 
vertices x and y, there exists a path in G joining x and y.  This 
means a sequence [x1,...,xp] of vertices exists in G with x1 = x, 
xp = y with the property that each of the edges [xi,xi+1], i = 
1,...,p-1, belongs to E.) 
 
 
Proof:  Suppose that A is (Q1,Q2,...,Qr)- connected.  This means 
that given any two points, i and j in B, there is a finite 
sequence [i1,i2,...,ip] of points in B, with i1 = i, j = ip and 
ik,ik+1  Qx-adjacent for some x, for k = 1,2,...,p-1.  By the 
definition of G = (V,E), V = B, hence the sequence of i1,...,ip 
corresponds to a sequence of vertices x1,...,xp in G with x1 = x 
which corresponds to i, and xp = y which corresponds to j.  Since 
ik and ik+1 are Qi-adjacent in A, they correspond to an edge 
[xk,xk+1] in E.  This being true for each value k = 1,2,...,p-1, 
it follows that x and y are connected in G if i and j are 
connected.  Thus, the connectedness of G(Q1,Q2,...,Qr) follows 
from that of A since the elements of V are in one-to-one 
correspondence to those of B. 
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For the converse, suppose G(Q1,Q2,...,Qr) is a connected graph.  
Let x and y be distinct vertices of G and [x1,...,xp] a path in G 
joining them.  Let i1,...,ip be the corresponding points of the 
set B, i1 = i corresponding to x and j = ip  corresponding to y. 
 Since [xk,xk+1]E, k = 1,2,...,p-1, the points ik, ik+1 must be 
Qi-adjacent for some i for k = 1,2,...,p-1.  Thus i and j are 
connected in A.  Again it follows that A is 
(Q1,Q2,...,Qr)-connected because of the one-to-one correspondence 
between V and B. � 
 
Next, observe that a connected (Q1,Q2,...,Qr) component of the 
array A is defined as a maximal (Q1,Q2,...,Qr)-connected subset if 
A is separable.  Likewise, a connected component of 
G(Q1,Q2,...,Qr) is a maximal connected subset.  The components of 
G and A must therefore correspond both in number and size as a 
result of the above proof that the two concepts of connectedness 
are equivalent. 
 
Since the graph we are using to investigate separability may be 
used to investigate separability for a rectangular matrix, we 
must explain why it is consistant with known methods for solving 
this problem.  Let A = [aij] be an m by n matrix.  It is well 
known that  one can associate with A a  bipartite graph G(A) = 
(R,C,E) as follows.  The vertex set consists of disjoint sets 
R={r1,r2, ...,rm} and C={c1,c2, ...,cn} with an edge [ri,cj]  E if 
and only if aij is not zero.  Then A is separable if and only if 
G(A) is not connected and when this happens, the nonzero blocks 
of A are in one to one correspondence both in number and size to 
the components of G(A).  By this we mean that, if G0(A) is a 
component of G(A) containing m0 elements of R and n0 elements of 
C, then there will correspond a block of A of size m0 by n0.   
 
The graph G(A) is not the graph used in our method.  We are in 
the matrix case G((1),(2))=(V,E) where V contains  elements 
which are in one to one correspondence with the nonzero entries 
of A, and there is an edge in E joining the vertices (i0,j0) and 
(i1,j1) and only if either i0 = i1 or j0 = j1.  It is obvious that 
G((1),(2)) is the line graph of the bipartite graph G(A).  Our 
method works because G((1),(2)) is connected if and only if G(A) 
is connected and when G(A) is not connected, both graphs have the 
same number of components.  If G0((1),(2)) is a component of 
G((1),(2)), then the corresponding block of A has the same number 
of nonzero entrees as the number of vertices in the component 
G0((1),(2)). 
 
In general, for a very large (and not so sparse) matrix A, the 
graph G((1),(2)) has many more vertices than the graph G(A) which 
always has m+n vertices.  Therefore, it is usually more efficient 
to use G(A) in the matrix  case.  Of course G(A) can be recovered 
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from G((1),(2)) and vice versa.  The point is that our algorithm 
is not the most efficient one for the matrix case. 
 
For an array of several dimensions we do not have any general 
method of making our algoritm more efficient.  How does one 
relate G((1,3,4),(2,5)) to graph having a fixed number of 
vertices?  Fortunately in most applications in physics and 
statistics the multidimensional arrays that occur in practice are 
not too large.  Hence neither are the graphs we use.  Neverthless 
it would be a big improvement if our graphs could be related in a 
systematic way with graphs having a fixed number of vertices.  
 
 
 
  Potential Applications 
 
(A) Multi-dimensional Contingency Tables 
 
The separability of a multi-dimensional contingency table is 
important in two situations.  In the first, it affects the 
computation of degrees of freedom used to assess the goodness- 
of-fit of a hierarchical model.  In the second, it imposes 
constraints on the allocation of sample sizes to strata in 
multi-attribute sampling.  
 
Contingency tables are frequently analyzed by fitting 
hierarchical log-linear models.  Maximum likelihood cell 
estimates are obtained by the iterative proportional fitting 
algorithm.  A measure of goodness-of-fit between the estimates 
and the observed cell counts is computed.  This measure, together 
with the appropriate degrees of freedom, is used to provide the 
probability that the observed data could have arisen from the 
specified model.  (For details see for example BFH75) 
 
The presence of occasional cells with structural zeroes does not 
require any alteration of the usual iterative algorithm in order 
to obtain estimates for the non-zero cells.  The degrees of 
freedom are easily modified. 
 
Degrees of freedom can be defined as "total number of cells 
estimated" minus "number of parameters fitted."  The total number 
of cells estimated is then counted as the total number of 
elementary cells in the array minus the number of cells with 
structural zeroes.  The number of parameters fitted is equal to 
the number of non-redundant cells in the minimum set of marginal 
elements comprising the sufficient statistics. This is unaltered 
from the number for a complete table when these sufficient 
statistics do not contain elements with zero entries.  The number 
of parameters is reduced by the number of empty cells in the 
sufficient statistics if they occur. 
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The difficulty arises when the table is so sparse that (1) the 
elementary cells can be separated into two or more subsets, and 
(2) the sufficient statistics computed for each subset of 
elementary cells constitute a subset of the sufficient statistics 
for the complete array. 
 
Example for two-dimensional arrays 
 
The rows and columns of a separable two-dimensional array can 
always be arranged so that the non-zero cells form two or more 
diagonal blocks as in Table 1. 
 

                         Table 1           
 
                                 Totals 
   x11     x12     0     0  0        x1. 
   x      x      0     0  0        x . 21 22 2
    0       0    x33   x34   x35      x3. 
    0       0    x43   x 4   x 5      x . 4 4 4
    x.1     x.2   x.3    x.4   x.5      x.. 
 

Here, the xij are positive cell entries, and the marginal totals 
{xi.} and {x.j} are all positive.  The marginal totals are the 
elements of the sufficient statistics for the model of 
independence.  There is one redundancy because xi. = x.j.  So 
the number of parameters fitted by the usual strategy that 
ignores separability is (4 + 5 - 1) = 8.  The number of non-zero 
cells is 10, so the usual approach yields (erroneously) 10 - 8 = 
2 degrees of freedom. 
 
The existence of separability means that the 4 positive cells in 
the top left-hand corner comprise a component separate from the 
remaining positive cells.  Estimates under the independence model 
can be derived from the 4-cell component using the same marginal 
values x1., x2. for variable 1 and x.1, x.2 for variable 2, as 
would be used when fitting the model to the whole array.  The 
model for this component alone has 1 degree of freedom for 
assessing goodness-of-fit.  Repeating the procedure with the 6 
positive cells in the bottom right-hand corner, we have 2 degrees 
of freedom.  Thus by separating the components of the table, it 
is apparent that the correct degrees of freedom are 3, not the 2 
computed when separability was ignored.  The reason for this 
difference in the number of degrees of freedom is that the 
separability of the sufficient statistics imposes an additional 
constraint, namely x1. + x2. = x.1 + x.2.  Thus the number of 
independent parameters fitted is reduced from 8 to 7, and 
subtracted from the 10 fitted cells yields the correct 3 degrees 
of freedom. 
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(B)  Allocating strata sample sizes. 
 
When a survey is conducted to obtain estimates for several 
variables, a variety of sampling strategies have been proposed.  
If a master frame list with attributes correlated with the 
variables of interest is available, the following procedure is a 
contender to minimize the number of respondents required to 
attain specified coefficients of variation.  The members of the 
frame are segregated into strata according to magnitude on each 
attribute; thus, they are categorized into a multidimensional 
array.  Then the total sample size is allocated to the strata for 
each attribute, using classical univariate methods.  These 
strata-specific sample sizes are then allocated to elementary 
cells using an iterative proportional fitting algorithm.  The 
result is fractional sample sizes in each elementary cell that 
mimic the correlation structure and distribution of the members 
of the frame.  These fractional requirements are rounded to whole 
numbers so that samples can be randomly selected in each 
elementary cell. 
 
The presence of separability in the frame array will impose 
further constraints on the strata-specific sample sizes.  If 
separability is not detected, the allocation to elementary cells 
of the sample sizes for each attribute is not possible unless 
these constraints are met.  In the array used as an example 
above, let {ni.} and {n.j} be the desired sample sizes such that 
ni. = n.j = N, and ni.  xi. for all i, n.j  x.j for all j.  The 
separability imposes the additional constraint that n1. + n2. = n.1 
+ n.2.  Thus, it is desirable to test for separability before 
attempting to allocate the sample sizes to the elementary cells 
if the number of zeroes in the frame array is large, namely, it 
exceeds r + c - 1 in an r x c array. 
 
 
(C) Complementary Suppression Patterns to Avoid Disclosure. 
 
Detection of separability is also important when cell suppression 
is used to avoid disclosure of individual responses in tabulated 
data. 
 
In a two-way table, for example, if one sensitive cell xij is 
suppressed, then other complementary cells must be suppressed to 
ensure that this cell is not reproducible from the marginal 
totals.  In a complete table this is achieved by any choice of 
nonzero xim, xnj and xnm.  If the table is separable, it is 
necessary for the complementary cells to be selected from the 
same separate component as the suppressed cell. 
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 Overview of the Software Algorithm 
 
The user sees elements of the graph G(Q1,...,Qr) as p-tuples of 
integers as explained above.  These p-tuples, representing the 
points at which the array A takes on the value one, constitute a 
portion of the input data to the computer program.   
 
In addition to the indices of the nonzero cells of the array, the 
user supplies: 
 
     (a)  P, the number of variables in the array.  
 
     (b)  I1, I2, ..., Ip, the numbers of categories in each of   
            the P variables.  
 
     (c)  R, the number of sets defining the type of separability 
           to be investigated. 
 
     (d)  The number of variables in each of the sets Q1, Q2,..., 
            Qr.  
 
     (e)  The identification numbers of the variables            
            constituting each of the sets. 
 
The last three items, (c) - (e), are recognized as the 
descriptors of the sufficient statistics defining a specific 
model. 
 
If separability is detected, and the array can be separated into 
components, print outs for each component includes: 
 
     (a)  The indices of the cells in the component. 
 
     (b)  The number of cells in the component. 
 
     (c)  The number of distinct categories in each of the P     
            variables. 
 
     (d)  The number of distinct combination of categories of 
          variables present in the component. 
 
From this information, the user can compute the number of degrees 
of freedom associated with each component.  An example of this is 
illustrated below. 
 
The graph-theoretic algorithmic work form a set of arrays that 
are either adjacency lists for G whose elements are integers or 
are pointer lists which keep track of the location of distinct 
adjacency lists.  These latter arrays are also simply lists of 
integers.  Therefore, it is necessary to compress p-tuples of 
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integers into single integers as required by the graph-theoretic 
algorithm.  Towards the end of the algorithm, the integers are 
then decomposed back into p-tuples of integers required for the 
output.  The algorithm for compression is reverse lexicographic 
ordering (first index changes most rapidly, second next, etc.).  
The decomposition is implemented, therefore, as the inverse of 
reverse lexicographic ordering. 
 
The algorithm used for finding components of the graph G is 
Nonrecursive Depth First Search which, as the name implies, is a 
fast depth first search algorithm designed to create a spanning 
tree.  This is the fastest known algorithm for finding components 
of a graph. 
 
 
 
 Sample solution for three-dimensional array 
 
Consider as an example 5x5x3 Boolean array mentioned earlier. In 
the array the value one indicates a non-zero count in the cell. 
 
      1  0  0  0  1         0  1  1  1  0        1  0  0  0  1 
      0  1  1  1  0         1  0  1  1  1        0  0  1  1  0 
      1  0  0  0  1         0  1  1  1  0        0  0  0  0  0 
      0  1  1  1  0         1  1  1  1  1        0  1  1  1  0 
      1  0  0  0  1         0  1  1  1  0        1  0  0  0  1 
 
This array is read as follows.  Each 5x5 block is labeled from 
left to right with the third subscript.  The first two subscripts 
are row and column subscripts, respectively, within each block.  
The number of variables P is 3 and the number of categories are 
I1 = 5,I2 = 5,I3 = 3.  The non-zero cells in the array are 
represented by the sequence of 3-tuples or indices as follows, in 
any order. 
                              1 1 1 
                              3 1 1 
                                . 
                                . 
                                . 
                                . 
                              5 5 3 
 
To test this array for {(1,2),(1,3),(2,3)}-separability, one sets 
r = 3, Q1 = (1,2),Q2 = (1,3),Q3 = (2,3).  The sample input is in 
Diagram 2.  The sample printout is in Diagram 3, and we find that 
the array is separable into two components. 
 
The number of parameters associated with this model are (number 
of elements in two-dimensional sets) - (number of elements in 
over-lapping one-dimensional sets) + (common grand total).  For 
component one, this gives  



 

 
 
 11

 
               (6 + 4 + 5) - (3 + 2 + 2) + 1 = 9. 
 
The number of positive cells in the component is 10.  Therefore, 
the number of degrees of freedom for component one is 10 - 9 = 1. 
 For component two we have similarly for the number of parameters 
fitted 
 
               (19 + 11 + 9) - (5 + 5 + 3) + 1 = 27. 
 
Together with the 29 positive cells, this gives 29 - 27 = 2 
degrees of freedom. 
 
Fitting the model for no three-factor effect to this array 
requires fitting the three sufficient statistics Q1,Q2, and Q3.  
By looking at the separable components, we find that this model 
has 3 degrees of freedom.  If we had not determined separability, 
we would have observed that Q2 had one zero cell so would have 
computed number of parameters fitted as 
 
               (25 + 14 + 15) - (5 + 5 + 3) + 1 = 42 
 
and the number of fitted cells as 39.  This would have yielded 
negative degrees of freedom. 
 
The following interchanges of category ordering enable us to 
visualize the structure more clearly: 
 
     Variable 1 (rows)    categories 2 and 5 
 
     Variable 2 (columns) categories 2 and 5 
 
     Variable 3 (block)   categories 2 and 3. 
 
The appearance of the array is then of diagonal form in each 
block as follows: 
 
      1  1  0  0  0         1  1  0  0  0        0  0  1  1  1 
      1  1  0  0  0         1  1  0  0  0        0  0  1  1  1 
      1  1  0  0  0         0  0  0  0  0        0  0  1  1  1 
      0  0  1  1  1         0  0  1  1  1        1  1  1  1  1 
      0  0  1  1  1         0  0  1  1  0        1  1  1  1  0 
 
The first separable component consists of the upper left hand 
positive cells in the first and second blocks. 
 
 
 Conclusion 
 
The graph-theoretic approach demonstrated in this paper has many 
applications in sparse multi-variate data analysis.   
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Abstract.   Complementary cell suppression is often used for statistical disclosure 
limitation in tabular data, and in particular for magnitude data such as aggregate 
economic statistics.   Cell suppression results in missing data, This can complicate 
and sometimes thwart thorough analysis.  Suppressed entries could be replaced by 
interval estimates of their hidden values, but this too presents analytical challenges.  
Expected values, often close to original values, threaten disclosure.  These 
approaches are also limited in the ability to preserve additive structure.  We 
demonstrate the use of synthetic tables to prevent disclosure of sensitive 
information.  Synthetic tables are relatively easy to generate and provide 
significantly more information, compared to conventional tables protected by 
complementary data suppression techniques.  Relatively low computational burden 
associated with synthetic tables make them much more attractive relative to other 
methods of tabular data protection.  The accuracies of synthetic tabular cells are 
easy to control, making them a useful tool for dissemination of statistical 
information. The primary criterion for a valid synthetic table is that the value 
presented for a disclosure cell lie outside the cell's disclosure interval.  The 
secondary objective is to hold a maximum number of synthetic cells to their true 
values.  This is accomplished via iterative refinement of synthetic tabular cells 
using a variation of classical gradient search in a manner analogous to partial cell 
suppression.    

1.   Introduction 

Procedures used to protect sensitive cells in tabular data have slowly evolved over the 
last four decades.  From the very beginning federal statistical agencies realized that just 
withholding the value for sensitive cells was not a good enough strategy to protect 
sensitive information in tables containing marginal entries.   The concept of 
complementary data suppression was, therefore, introduced and practiced ever since to 
protect sensitive cells from disclosure.  At first it was thought that suppressing at least 
two cells in any given row or column offered adequate protection from disclosure for 
sensitive cells.  Over the years statistical offices realized that the minimum of two 
suppressed cells in a row or column strategy did not work as well for sparse and multi-
dimensional tables.  Procedures based on network flow as well as linear programming 
techniques were introduced to increase the reliability and the efficiency of 
complementary data suppression procedures.  In recent years, it has become increasingly 
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obvious that by using commonly practiced missing data analysis techniques, 
probabilistic estimates for the suppressed tabular cells can be derived with great 
accuracy, limiting the applicability of complementary cell suppression techniques for 
statistical disclosure prevention.     . 
 
In this paper, we demonstrate an entirely different approach to the age-old objective of 
protecting sensitive data cells from disclosure in complex multi-dimensional link tables 
containing hierarchical structures.   In our approach, we completely discard the notion of 
complementary data suppression and in its place advocate the use of synthetic tables to 
disseminate statistical information.  Our proposed method completely eliminates the 
information loss associated with complementary data suppression procedures.  Our 
proposed approach requires a fraction of the computational resources required by the 
complementary cell suppression methods, and offers multiple alternatives to produce 
synthetic data by appropriate selection of an objective function that satisfies a wide 
variety of requirements for different statistical offices. 

2   Basic Concept 

 
The basic concept of generating synthetic tabular data that closely mimics the overall 

characteristics of real tabular data is quite straightforward.  In synthetic tables, values for all the 
sensitive cells are kept at a safe distance away from their true cell values.  The remaining non-
sensitive cell values in the table are then adjusted from their true values as little as possible by 
using some predetermined criteria to make the table contents additive in all the dimensions as in 
the original table.  The optimal mathematical structure of a synthetic table is relatively easy to 
specify by using mixed integer linear programming formulation1. 

 
Minimize  SUM [ ci  ( yi

+ + yi
-  ) ] 

 
Subject to  

M (  yi 
+ -  yi 

-  ) = 0 
0  =<  yi

+  =<  UBi

0  =<  yi
-   =<  LBi

yik
+   >=  BOUNDik  * Iik

yik
-   >=  BOUNDik   * ( 1 - Iik  ) 

where  
 Iik  is a binary zero/one variable   
 BOUNDik is confidentiality bound for sensitive cell ik 
 ik  ( k = 1, .... p )   p sensitive cells 
 i  =  1, ..... n     n non-zero table cells 
 yi

+ = positive adjustment to cell value 
 yi

-  = negative adjustment to cell value 
 UBi  and LBi  Upper and lower cell bounds 
 ci  =  cost function.  

                                                           
1 Fischetti,Salazar naming conventions are used 



Five different cost functions are commonly used. They are: 1) constant, 2)log(value), 3) 
value, 4) 1/value, and  5) log(value)/value, where 'value' denotes the cell value.  
 
It is generally known that the mixed integer linear programming formulations are 
suitable only to solve small problems. We, therefore, propose using a simplified linear 
programming formulation, which could be used in practice to generate large complex 
synthetic tables containing linked hierarchical structures.  In our simplified linear 
programming formulation, the binary integer variable is replaced by a binary constant.  
We assign the binary constant the value of zero or one prior to finding a linear 
programming solution by using the following simple heuristic:   
 

•      Arrange all the sensitive cells in the table, in an increasing order of magnitude 
of the cell values. 

•      Using an alternate sequence, assign the value of zero and one to the binary 
constant associated with each sensitive cell, except when the values of the 
sensitive cells are identical. 

•      When the values of the sensitive cells are identical, assign the same binary 
constant value to them all. 

•      To ensure that our select direction of adjustment is followed, we assign 
relatively high value to the cost coefficient associated with sensitive cell 
adjustment component in the opposite direction. 

 
 

3. Illustrative Example 
 
We use a hypothetical 3 dimensional table, containing 10 columns, 6 rows and 4 levels 
to demonstrate generation of a synthetic table to disseminate statistical information.  Our 
table contains 191 non-zero cells, of which 24 cells are sensitive cells.  The location of 
the sensitive cells, their cell values and required cell protection values are as follows: 
 

SENSITIVE CELLS AND PROTECTION REQUIREMENT 
 
 |  Col Row Lev Val Prot|  Col Row Lev Val Prot|  Col Row Lev Val Prot| 
 |  === === === === ====|  === === === === ====|  === === === === ====| 
 |   2   1   1  714   39|   2   1   2  539   59|   2   4   3  644   35| 
 |   4   1   2   70    7|   4   1   3  614   34|   4   2   2  786   87| 
 |   4   2   3  928   51|   4   4   2  382   42|   4   6   2 1238   17| 
 |   5   1   1  140    7|   6   2   2 1074   59|   6   3   2  544   30| 
 |   7   1   3  549   61|   7   3   2  631   70|   7   5   2  726   40| 
 |   7   5   3  134    7|   8   1   3   92   10|   8   4   2 1050   58| 
 |   8   5   1  664   36|   8   5   4  664   36|   9   2   1 1042   57| 
 |   9   3   3  820   91|   9   5   2 1598   88|   9   5   4 1598   88| 

 
By using the traditional complementary cell suppression technique, our test example 
requires 39 complementary cell suppressions to adequately protect 24 sensitive cells.  
The entire table contents are displayed below.  In the table, the complementary 
suppression cells are marked by a symbol c next to the cell value.  The sensitive cells are 
identified by a symbol w next to the cell value. In addition, to the symbols w and c, we 
use gray shades to identify suppressed cells.  The gray shades are to emphasize that the 
numeric values for these cells are prevented from a display to data users.  The 



complementary cell suppression technique in this example results in a significant amount 
of information loss, rendering the table useless for many practical applications.   
 
 

     DATA SUPPRESSION -- (10x6x4) TABLE 
   
      6764   714w 3356  4067c  140w   --  3932  1478c   -- |20451  
      1994c   --  5593    --  3022  3504c   --  3220  1042w|18375  
      3744c   --  3708    --  3678c 2502c   --    --    -- |13632  
      2810c10632c   --  2445c   --    --  2313  2978  7548c|28726  
      3682    --    --    --  4667  1988c 1748   664w   -- |12749  
     ------------------------------------------------------------- 
     18994 11346 12657  6512 11507  7994  7993  8340  8590 |93933  
   
        --   539w   --    70w   --  7472   715c 3832    -- |12628  
      2253c   --  4948   786w  472  1074w 1830  5030    -- |16393  
       640c   --   986    --    --   544w  631w   48c  750c| 3599  
      1334c   --  1016   382w 3175  3302c 3803  1050w   -- |14062  
      1648  2814    --    --    --  2102c  726w   --  1598w| 8888  
     ------------------------------------------------------------- 
      5875  3353c 6950  1238w 3647 14494  7705  9960  2348 |55570  
  
        --  3552c 3476   614w 1916c 1131   549w   92w 1772 |13102  
        --    --  3222   928w   --    --   308c  429    87c| 4974  
      4145    --    --  3692  2115c 4196   414c 3804c  820w|19186  
      5995   644w   --    --  2410  1677c   --  1912c 4134c|16772  
      2016    --    --  2212  2826  1627c  134w   --    -- | 8815  
     ------------------------------------------------------------- 
     12156  4196c 6698  7446c 9267  8631  1405  6237  6813 |62849  
 
      6764  4805  6832  4751  2056  8603  5196  5402  1772 |46181  
      4247    -- 13763  1714  3494  4578  2138c 8679  1129c|39742  
      8529    --  4694  3692  5793  7242  1045c 3852c 1570c|36417  
     10139 11276  1016  2827  5585  4979  6116  5940 11682 |59560  
      7346  2814    --  2212  7493  5717  2608   664w 1598w|30452  
     ------------------------------------------------------------- 
     37025 18895 26305 15196 24421 31119 17103 24537 17751 212352  

 
 
 
To generate a synthetic table that retains most of the statistical characteristics of the 
original unsuppressed table above, we use the linear programming heuristic formulation 
specified earlier. We make use of a cost function, which is proportional to the cell value, 
to identify the required controlled adjustments to select few non-sensitive cell values. 
The cell value adjustments are such that resulting table is additive in all the dimensions 
and at the same time the published estimates for the sensitive cells are kept outside of 
their disclosure range. The table below summarizes the cell locations and magnitude of 
required controlled adjustments to the true cell values. We have highlighted sensitive 
cells, in addition to marking them with symbol w, so that readers can easily verify that 
all adjustments to sensitive cells are beyond their respective confidentiality bounds.   
 
 
 
 
 



 
 
         CONTROLLED ADJUSTMENTS (10x6x4) TABLE 

 
        --    39w   --   -41    -8w   --    --    10    -- |   --  
        --    --    --    --     9    22    --    26   -57w|   --  
        --    --    --    --     8    -8    --    --    -- |   --  
         5   -35    --   -38    --    --    11    --    57 |   --  
        -5    --    --    --    --   -14    55   -36w   -- |   --  
     ============================================================= 
        --     4    --   -79     9    --    66    --    -- |   --  
   
        --   -62w   --     7w   --    --    55    --    -- |   --  
        --    --    --    78w   -9   -59w   --   -10    -- |   --  
        --    --    --    --    --    30w  -70w  -48    88 |   --  
        -5    --    --    38w   --   -80   -11    58w   -- |   --  
         5    14    --    --    --   109   -40w   --   -88w|   --  
     ============================================================= 
        --   -48    --   123w   -9    --   -66    --    -- |   --  
  
        --     9    --    34w    8    --   -55w  -10w   14 |   --  
        --    --    --    51w   --    --  -161   -16   126 |   --  
        --    --    --   -41    -8   -22    70    84   -83w|   --  
        --    35w   --    --    --    80    --   -58   -57 |   --  
        --    --    --   -88    --   -58   146w   --    -- |   --  
     ============================================================= 
        --    44    --   -44    --    --    --    --    -- |   --  
   
        --   -14    --    --    --    --    --    --    14 |   --  
        --    --    --   129    --   -37  -161    --    69 |   --  
        --    --    --   -41    --    --    --    36     5 |   --  
        --    --    --    --    --    --    --    --    -- |   --  
        --    14    --   -88    --    37   161   -36w  -88w|   --  
     ============================================================= 
        --    --    --    --    --    --    --    --    -- |   --  

 
 
 
After applying the linear programming-based control adjustments to the original table, 
our synthetic table will appear as shown below. Once again, in the following table we 
highlight all the sensitive cells for the ease of understanding of our readers. In a real 
application synthetic tables will be published in their entirety. Depending on the 
accuracy of the data a synthetic table represents, statistical offices as an option might 
decide to attach some kind of quality indicators to select a few cells where the published 
cell values are beyond some pre-determined tolerance level 

 
 
 
 
 
 
 
 
 
 
 
 



SYNTHETIC(10x6x4) TABLE 
 

      6764   753  3356  4026   132    --  3932  1488    -- |20451  
      1994    --  5593    --  3031  3526    --  3246   985 |18375  
      3744    --  3708    --  3686  2494    --    --    -- |13632  
      2815 10597    --  2407    --    --  2324  2978  7605 |28726  
      3677    --    --    --  4667  1974  1803   628    -- |12749  
     ------------------------------------------------------------- 
     18994 11350 12657  6433 11516  7994  8059  8340  8590 |93933  
   
        --   477    --    77    --  7472   770  3832    -- |12628  
      2253    --  4948   864   463  1015  1830  5020    -- |16393  
       640    --   986    --    --   574   561     0   838 | 3599  
      1329    --  1016   420  3175  3222  3792  1108    -- |14062  
      1653  2828    --    --    --  2211   686    --  1510 | 8888  
     ------------------------------------------------------------- 
      5875  3305  6950  1361  3638 14494  7639  9960  2348 |55570  
 
        --  3561  3476   648  1924  1131   494    82  1786 |13102  
        --    --  3222   979    --    --   147   413   213 | 4974  
      4145    --    --  3651  2107  4174   484  3888   737 |19186  
      5995   679    --    --  2410  1757    --  1854  4077 |16772  
      2016    --    --  2124  2826  1569   280    --    -- | 8815  
     ------------------------------------------------------------- 
     12156  4240  6698  7402  9267  8631  1405  6237  6813 |62849  
 
      6764  4791  6832  4751  2056  8603  5196  5402  1786 |46181  
      4247    -- 13763  1843  3494  4541  1977  8679  1198 |39742  
      8529    --  4694  3651  5793  7242  1045  3888  1575 |36417  
     10139 11276  1016  2827  5585  4979  6116  5940 11682 |59560  
      7346  2828    --  2124  7493  5754  2769   628  1510 |30452  
     ------------------------------------------------------------- 
     37025 18895 26305 15196 24421 31119 17103 24537 17751 212352  

 
In the synthetic table, true values are published for 103 cells. For the remaining 88 cells 
(including sensitive cells), the published cell values are altered slightly from their true 
values to protect the sensitive cell values from being disclosed within an allowable 
protection interval. Most of the cell values of the marginal cells are unaffected in the 
synthetic table. In addition, the table values are additive in all the dimensions. 
 
 
4. Multi Dimensional Linked Tables 
 
The linear programming heuristic identified above, to generate synthetic tabular data, is 
applicable to protect sensitive information in all the generic, multi-dimensional, linked 
tables containing hierarchical structure.  We next provide the overall performance 
statistics for synthetic tables generated by using two different test examples of multi-
dimensional linked tables. These two test cases were created by this author to enable 
testing of algorithm developed by Fischetti and Salazar, to generate optimum 
complementary cell suppression pattern. 
 
The first test example consists of 2, five-dimensional linked sections of a six dimensional 
table (6x4x16x4x4x4).  The table contains 1254 non-zero cells. Of this total, 1089 cells 
are non-sensitive and 165 cells are sensitive. Fischetti and Salazar determined that the 



optimum complementary cell suppression results in 419 suppressed cells, which is 34% 
of total non-zero cells.  
 
The second example consists of 4, five-dimensional linked sections of a nine 
dimensional table (4*29*3*4*5*6*5*4*5).  The table contains 1141 non-zero cells, of 
which 831 cells are non-sensitive and 310 cells are sensitive.  Fischetti & Salazar 
determined that the optimum complementary cell suppression results in 491 suppressed 
cells, which is 43% of total non-zero cells. 
 
The synthetic tables generated by using these two test examples provide additive tables 
containing cell values for all the non-zero cells in the original test examples. In the 
following two tables we summarize the overall performance statistics of change from the 
true value of nonzero synthetic cells by ten different percent change from true value 
categories. We use five different cost functions that are commonly used in tabular cell 
protection to demonstrate five different possible formulations for synthetic tables.  
 

 
NUMBER OF CELLS BY PERCENT CHANGE CATEGORY2

 
 

2 Sections Of Six Dimensional Linked Table 
 
_________________________________________________________________________________________ 
|               |c o s t   f u n c t i o n   u  s e d   f o r   o p t i m i z a t i o n | 
| Percent change|            |             |             |             |                | 
|   from true   |    const   |  log(value) |    value    |  1/value    |log(value)/value| 
|      value    |            |             |             |             |                | 
|_______________|____________|_____________|_____________|_____________|________________| 
|    .00-   .10 | 691{ 55.3%}| 716{ 57.5%} |  749{ 60.4%}|  720{ 57.5%}|  687{ 54.8%}   | 
|    .10-   .50 | 189{ 70.4%}|  154{ 69.8%}|  120{ 70.1%}|  231{ 75.9%}|  254{ 75.1%}   | 
|    .50-  1.00 |  91{ 77.7%}|   72{ 75.6%}|   37{ 73.1%}|   47{ 79.6%}|   56{ 79.6%}   | 
|   1.00-  1.50 |  38{ 80.7%}|   27{ 77.8%}|   41{ 76.4%}|   22{ 81.4%}|   28{ 81.8%}   | 
|   1.50-  2.00 |  22{ 82.5%}|   33{ 80.4%}|   22{ 78.1%}|   14{ 82.5%}|   14{ 82.9%}   | 
|   2.00-  5.00 |  52{ 86.6%}|   52{ 84.6%}|   63{ 83.2%}|   47{ 86.3%}|   42{ 86.3%}   | 
|   5.00- 10.00 |  73{ 92.5%}|   88{ 91.7%}|   98{ 91.1%}|  119{ 95.8%}|  100{ 94.3%}   | 
|  10.00- 15.00 |  58{ 97.1%}|   56{ 96.1%}|   51{ 95.2%}|   51{ 99.8%}|   69{ 99.8%}   | 
|  15.00- 30.00 |  19{ 98.6%}|   24{ 98.1%}|   30{ 97.7%}|    2{100.0%}|    3{100.0%}   | 
|  30.00-100.00 |  17{100.0%}|   24{100.0%}|   29{100.0%}|    0{100.0%}|    0{100.0%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
|               |            |             |             |             |                | 
|  unchanged    |            |             |             |             |                | 
|  cells        | 390{ 31.2%}|  422{ 33.9%}|  651{ 52.5%}|  319{ 25.5%}|  257{ 20.5%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
 

4 Sections Of Nine Dimensional Linked Table 
_______________________________________________________________________________________ 
|               |c o s t   f u n c t i o n   u  s e d   f o r   o p t i m i z a t i o n | 
| Percent change|            |             |             |             |                | 
|   from true   |    const   |  log(value) |    value    |  1/value    |log(value)/value| 
|      value    |            |             |             |             |                | 
|_______________|____________|_____________|_____________|_____________|________________| 
|    .00-   .10 | 431{ 38.1%}|  397{ 35.1%}|  494{ 44.0%}|  320{ 29.3%}|  333{ 29.9%}   | 
|    .10-   .50 |  96{ 46.6%}|  134{ 46.9%}|   33{ 46.9%}|   46{ 33.5%}|   69{ 36.1%}   | 
|    .50-  1.00 |  59{ 51.8%}|   48{ 51.2%}|   27{ 49.3%}|   23{ 35.6%}|   46{ 40.3%}   | 
|   1.00-  1.50 |  35{ 54.9%}|   23{ 53.2%}|   29{ 51.9%}|   23{ 37.7%}|   27{ 42.7%}   | 
|   1.50-  2.00 |  33{ 57.8%}|   29{ 55.8%}|   13{ 53.0%}|   25{ 40.0%}|   15{ 44.0%}   | 
|   2.00-  5.00 |  85{ 65.3%}|   90{ 63.7%}|   86{ 60.7%}|   83{ 47.6%}|   90{ 52.1%}   | 
|   5.00- 10.00 | 256{ 87.9%}|  259{ 86.6%}|  212{ 79.5%}|  242{ 69.7%}|  266{ 76.0%}   | 
|  10.00- 15.00 |  55{ 92.8%}|   64{ 92.3%}|   57{ 84.6%}|   60{ 75.2%}|   62{ 81.6%}   | 
|  15.00- 30.00 |  32{ 95.6%}|   45{ 96.3%}|   58{ 89.8%}|   81{ 82.6%}|   59{ 86.9%}   | 
|  30.00-100.00 |  50{100.0%}|   42{100.0%}|  115{100.0%}|  190{100.0%}|  146{100.0%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
|               |            |             |             |             |                | 
|  unchanged    |            |             |             |             |                | 
|  cells        | 353{ 31.2%}|  329{ 29.1%}|  453{ 40.3%}|  287{ 26.3%}|  302{ 27.1%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 

                                                           
2 The numbers in the parentheses are cumulative percentages associated with the cell count. 



 

From the summary statistics above it is clear that, by proper selection of the 
appropriate cost function, the controlled adjustments could be targeted to specific non-
sensitive cell categories. Irrespective of the choice of the cost function, approximately 
75% of the nonzero cell values in the first test case and 50% of the nonzero cell values in 
the second test case are altered within less than 1% of their true cell value. The synthetic 
cells undergoing changes in excess of 5% of true cell value are typically sensitive cells, 
which are otherwise blocked from publication using the complementary cell suppression 
method.   

 
The quality of cell level information from the synthetic table could be conveyed to 

data users by using different strategies. As an option, a quality indicator, such as g 
(good), f (fair), and p (poor) could be assigned to each synthetic cell to inform the data 
user of the level of accuracy of information contained in each synthetic cell.  Other 
options include: (1) providing overall percent accuracy of the published information, or 
(2) dividing the cells in multiple size categories and providing overall percent accuracy 
for each size category separately. 

 
We have used only five basic cost functions to demonstrate the synthetic data 

generation technique in the linear programming environment. We, however, believe that 
a much wider spectrum of cost functions is readily available to the potential practitioner 
of synthetic tables to get a wide variety of desired results. 

 
5. Iterative Refinement of LP Solution 

 
The primary objective of the synthetic table is to provide estimates for sensitive cells, 

which are outside the disclosure limits. The secondary objective is to hold a maximum 
number of synthetic cells to their true cell values. This could be accomplished via an 
iterative refinement of the linear programming solution as follows:  

 
• Exclude all the synthetic cells that are at the true cell value from future LP 

formulation. 
• For the remaining non-sensitive synthetic cells, replace the original cost 

function with the new cost function, which is an inverse proportion of change 
in the cell value in the previous LP solution.  

• Find the revised linear programming solution to generate a new subset of 
synthetic cell values. 

 
In theory, multiple iterations could be performed to successively increase the number 

of synthetic cells that are at their true cell values.  However in practice, by increasing the 
number of iterations estimates for more and more sensitive cells fall within their 
respective disclosure limits. 

 
The table below summarizes the overall statistics for the second test example, after 

single iterative refinement of the LP heuristic.  
 

 
   
 



Second Test Example After Single Iterative Refinement 
 
_________________________________________________________________________________________ 
|               |c o s t   f u n c t i o n   u  s e d   f o r   o p t i m i z a t i o n | 
| Percent change|            |             |             |             |                | 
|   from true   |    const   |  log(value) |    value    |  1/value    |log(value)/value| 
|      value    |            |             |             |             |                | 
|_______________|____________|_____________|_____________|_____________|________________| 
|    .00-   .10 | 669{ 58.6%}|  649{ 57.0%}|  625{ 55.1%}|  603{ 53.4%}|  567{ 50.0%}   | 
|    .10-   .50 |  89{ 66.4%}|   94{ 65.3%}|   73{ 61.6%}|  100{ 62.3%}|   83{ 57.4%}   | 
|    .50-  1.00 |  38{ 69.8%}|   44{ 69.2%}|   45{ 65.5%}|   32{ 65.1%}|   46{ 61.4%}   | 
|   1.00-  1.50 |  31{ 72.5%}|   22{ 71.1%}|   26{ 67.8%}|   18{ 66.7%}|   28{ 63.9%}   | 
|   1.50-  2.00 |  29{ 75.0%}|   15{ 72.4%}|   10{ 68.7%}|   15{ 68.0%}|   24{ 66.0%}   | 
|   2.00-  5.00 |  60{ 80.3%}|   84{ 79.8%}|   81{ 75.8%}|   69{ 74.1%}|   95{ 74.4%}   | 
|   5.00- 10.00 | 103{ 89.3%}|  100{ 88.6%}|  156{ 89.6%}|  139{ 86.4%}|  166{ 89.1%}   | 
|  10.00- 15.00 |  33{ 92.2%}|   57{ 93.6%}|   40{ 93.1%}|   43{ 90.3%}|   29{ 91.6%}   | 
|  15.00- 30.00 |  61{ 97.5%}|   27{ 96.0%}|   38{ 96.5%}|   38{ 93.6%}|   35{ 94.7%}   | 
|  30.00-100.00 |  28{100.0%}|   46{100.0%}|   40{100.0%}|   72{100.0%}|   60{100.0%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
|               |            |             |             |             |                | 
|  unchanged    |            |             |             |             |                | 
|  cells        | 543{ 47.6%}|  556{ 48.9%}|  565{ 49.8%}|  498{ 44.1%}|  513{ 45.3%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
 
 

From the table above, it is clear that the number of synthetic cells at their true cell 
value increases dramatically  

 
6. Conclusion 

 
Synthetic tabular data offers a significantly more attractive option for dissemination of 

statistical data containing sensitive information than conventional complementary cell 
suppression.  Conventional complementary cell suppression methods result in too 
significant an amount of information loss, irrespective of how close one attempts to get 
to the optimum cell suppression choice. The overall information generated by using the 
complementary cell suppression method fails to compare favorably in regard to the 
practical utility of information provided by synthetic tables.  The computational 
resources required to generate a synthetic table is a very small fraction of the resources 
required to generate a table protected by the complementary cell suppression method. 

 
In this paper we have demonstrated a simple heuristic to generate synthetic tabular 

data. The heuristic is based on the linear programming formulation. However, we believe 
that computational techniques, such as iterative proportional fitting and the EM 
algorithm, could also be used effectively to generate synthetic tabular data. 
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COMPLEMENTARY CELL SUPPRESSION PROCEDURES & 

RELATED RESEARCH HAVE EVOLVED OVER THE LAST

FORTY YEARS

- AT LEAST TWO CELL SUPPRESSIONS IN ROW/COLUMN

- NETWORK FLOW MODELS AT CENSUS

- LINEAR PROGRAMMING MODEL AT STAT CANADA

- OPTIMAL SOLUTIONS AT EUROSTAT

- COMPLEX LINKED TABLE STRUCTURES

- MULTI-DIMENSIONAL, MULTI-HIERARCHICAL, MULTI-

LINKED TABLES
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OVERVIEW

OF THE

HOME GROWN CELL SUPPRESSION

PROCEDURES

IN LEGACY SYSTEMS
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TYPICAL MANUAL CELL SUPPRESSION PROCEDURES

- IDENTIFY SENSITIVE TABULAR CELL …. TYPICALLY TABLE CELLS

CONTAINING THREE OR LESS RESPONDENTS ARE IDENTIFIED AS SENSITIVE.

- ENSURE THAT THERE ARE AT LEAST TWO SUPPRESSED CELLS IN A GIVEN

ROW/COLUMN/LEVEL OR A DIMENSION.

- IN AN ATTEMPT TO MINIMIZE INFORMATION LOSS, SMALLEST POSSIBLE

CELL VALUES ARE SELECTED FOR COMPLEMENTARY CELL SUPPRESSION

TASK IN A GIVEN ROW/COLUMN/LEVEL.

- MAGNITUDE OF PROTECTION REQUIRED BY THE SENSITIVE CELL IS

TYPICALLY COMPLETELY IGNORED
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WIDELY USED (AUTOMATED) MANUAL/LEGACY CELL

SUPPRESSION PROCEDURE

(1) IF THE PRESENT ROW OR COLUMN REQUIRES COMPLEMENTARY SUPPRESSION, USE AS A

COMPLEMENT THE CELL IN THE CORRESPONDING ROW OR COLUMN THAT HAS PREVIOUSLY

BEEN USED AS A COMPLEMENT THE LARGEST NUMBER OF TIMES.

(2) IF TWO OR MORE CELLS TIE FOR BEING USED AS A COMPLEMENT THE LARGEST NUMBER

OF TIME, USE AS COMPLEMENT THE CELL AMONG THE TIES WITH THE SMALLEST VALUE.

(3) IF THERE ARE TWO OR MORE TIES FOR THE SMALLEST VALUE, PICK THE COMPLEMENT

RANDOMLY.

(4) ANY ROW OR COLUMN WITH A CELL SUBJECT TO PRIMARY SUPPRESSION BECOMES A

ROW OR COLUMN REQUIRING COMPLEMENTARY SUPPRESSION.

(5) ONCE PRIMARY SUPPRESSION TRIGGERS COMPLEMENTARY SUPPRESSION IN ANY ROW OR

COLUMN, COMPLEMENTARY SUPPRESSION CONTINUES UNTIL THAT ROW OR COLUMN HAS AT

LEAST TWO CELLS THAT HAVE BEEN SUPPRESSED.

5FCSM2009 ... November 3, 2009



POTENTIAL WEAKNESSES IN THE HOME

GROWN COMPLEMENTARY CELL

SUPPRESSION PROCEDURES ARE

RELATIVELY EASY TO EXPLAIN BY USING

BASIC SEPARABILITY PRINCIPLES IN

GRAPH THEORY AND COULD BE

FURTHER VERIFIED BY USING CELL

SUPPRESSION AUDIT PROGRAM
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PECULIARITIES OF LEGACY/MANUAL CELL

SUPPRESSION PROCEDURES ARE RELATIVELY

EASY TO DEMONSTRATE BY USING GENERIC

TABLE FORMAT.

WE WILL USE 10X10 TABLE WITH ONE

SENSITIVE CELL TO DEMONSTRATE THE

POTENTIAL WEAKNESSES IN THE HOME

GROWN PROCEDURE.

7FCSM2009 ... November 3, 2009



X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15 X16

X5 X4 X14

X18 X 17

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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P

ONE SENSITIVE CELL “P” IN ROW 5 AND COLUMN 5 POSITION
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X1 P

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X1 WAS DETERMINED TO BE SMALLEST VALUE CELL IN THE ROW



X2

X1 P

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 WAS DETERMINED TO BE SMALLEST VALUE CELL IN THE COLUMN



X2 X3

X1 P

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X1 P

X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X1 P

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X1 P

X6

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X8

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X8 X9

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X10

X8 X9

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X12

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X5 X4

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X5 X4 X14

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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STOP!  THREE SUPPRESSIONS IN ROW EIGHT



X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15

X5 X4 X14

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15 X16

X5 X4 X14

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS

25FCSM2009 ... November 3, 2009



X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15 X16

X5 X4 X14

X 17

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15 X16

X5 X4 X14

X18 X 17

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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STOP!    THREE SUPPRESSIONS IN COLUMN 5



X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15 X16

X5 X4 X14

X18 X 17

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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EFFECTIVENESS OF THE CELL SUPPRESSION PATTERN

EASY TO VERIFY BY USING SUPPRESSION AUDIT PROGRAM



11   12   13   14   15   16   17   18   19  135

21   22   23   24   25   26   27   28   29  225

31   32   33   34   35   36   37   38   39  315

41   42   43   44   45   46   47   48   49  405

51   52   53   54   55   56   57   58   59  495

61   62   63   64   65   66   67   68   69  585

71   72   73   74   75   76   77   78   79  675

81   82   83   84   85   86   87   88   89  765

91   92   93   94   95   96   97   98   99  855

459  468  477  486  495  504  513  522  531 4455

SUPERIMPOSE SUPPRESSION PATTERN FROM

PREVIOUS SLIDE

PERFORM SUPPRESSION PATTERN AUDIT TO VERIFY DISCLOSURES
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LEFT DIGIT => ROW POSITION RIGHT DIGIT => COLUMN POSITION

Row Total

Column
Total



CELL SUPPRESSION AUDIT OUTCOME
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x2

x3

x1
P

x4



X12 X13

X2 X3

X10 X11

X8 X9

X1 P

X6 X7

X 15 X16

X5 X4 X14

X18 X 17

ONE SENSITIVE CELL “P” AND EIGHTEEN COMPLEMENTARY SUPPRESSIONS
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FIVE EXACT DISCLOSURES (NAKED SUPPRESSIONS)



SUMMARY OUTCOME

•SENSITIVE CELL UNPROTECTED

•FIVE EXACT DISCLOSURES (NAKED

SUPPRESSIONS)

• THIRTEEN OVER SUPPRESSIONS

( UNNECESSARY SUPPRESSIONS …….  

UNNECESSARY INFORMATION LOSS)
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POTENTIAL WEAKNESS - LEGACY

MANUAL PROCEDURES

• ADHOC IN NATURE

• FALL APART RAPIDLY WITH INCREASED TABLE

DIMENSIONALITY

• AMOUNT OF PROTECTION REQUIRED IGNORED

• TYPICALLY OVER-SUPPRESS

• COULD RESULT IN NAKED SUPPRESSIONS
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PUBLIC DOMAIN NETWORK FLOW-BASED

AND LINEAR PROGRAMMING-BASED

PROCEDURES HAVE BETTER TRACK

RECORD

USCB NETWORK FLOW BASED CELL SUPPRESSION SOFTWARE

--- ON IBM PCS IN WINDOWS ENVIRONMENT

--- SAS ENVIRONMENT FROM NASS

IN COMBINATION WITH

DISCLOSURE AUDIT SOFTWARE (DAS) FROM FCSM FOR

SUPPRESSION AUDIT
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Thank You!
ADDITIONAL INFORMATION FROM
http://mysite.verizon.net/vze7w8vk/

35Prepared By  Ramesh  A. Dandekar
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