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Abstract 
 

We consider two-phase sampling in which values of a variable of interest are observed only in 

the second-phase sub-sample. Values for the first-phase units not sampled in the second-phase 

are mass imputed, using values from an administrative file when available and regression 

imputation otherwise. Such two-phase sampling methods are often used in annual business 

surveys to reduce survey costs and respondent burden, assuming that collecting values from 

administrative sources is much cheaper than obtaining values through questionnaires from 

sampled units. We study both naïve and design-consistent estimators for a total or mean under 

the above set-up. We also obtain associated variance estimators using a unified approach 

proposed by Demnati and Rao (2004). Simulation results on the finite sample performance of the 

estimators and associated variance estimators are also presented, using substitution or ratio mass 

imputation. We also study the case of missing sub-sample values and develop estimators of the 

total and associated variance estimators. Sample allocation issues are also studied.  

 

KEY WORDS: Regression imputation; Sample sizes determination; Substitution method; Two-

phase sampling. 

 

 

1. Introduction 
 

At Statistics Canada, more than sixty annual business surveys are carried out using a holistic design termed as the 

Unified Enterprise Survey (UES). One of the objectives of the UES is to reduce survey cost and response burden by 

replacing some questionnaires with values from administrative data. We assume that obtaining values from 

administrative data is much cheaper than obtaining values through questionnaires. A random sample of size m  units 

is first selected. Then a sub-sample of size n  is selected and surveyed. The remaining nm −  units as well as non-

respondents are imputed using administrative files. Composite imputation involving two or more different methods 

is also often used; for example, the values from administrative file (e.g., tax file), when available, and regression 

imputation otherwise. 

 

Demnati and Rao (2008) considered the case of simulated census data generated from a probability sample by 

imputing for the non-sampled units and sample non-respondents using auxiliary variables. They studied the 

estimation of a finite population total and other parameters. In this paper, we extended their work to two-phase 

sampling. For variance estimation, we have used the unified approach proposed by Demnati and Rao (2004). We 

have studied naïve estimators based on the simulated first-phase data as well as design-consistent estimators of a 

population total. In section 2, we consider the case of complete response and report the results of a simulation study. 

The case of missing data is studied in section 3. In section 4, we consider stratified simple random sampling in both 

phases and obtain “optimal” first-phase and second-phase strata sample sizes, 
h

m  and 
h

n , that minimize the cost 

subject to constraints on the variances of estimators for one or more characteristics of interest. 

 

 

2. Complete Response 

 



2.1 Imputed Estimators 

 

We first consider the case where complete responses are obtained from the second-phase subsample. Imputation is 

performed on all the first-phase units not sampled in the second-phase. Here, the imputed values *ˆ
k

y  are given by 

*

2

*

1

* ˆˆ)1(ˆ
kkkkk

yIyIy +−=  with 
kk

ty =*

1
ˆ  and *

2
ˆ

k
y  based on an imputation model, where 

k
t  is the value from an 

administrative file and the constant 
k

I  is the missing 
k

t  indicator.  

 

A naïve estimator of the finite population total 
k

yY ∑=  is given by 

 }ˆ)1({ˆ *)1|2()1|2()1()(
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where )1()1()1( /
kkk

ad π= , )1(

k
a  is the first-phase sample membership indicator variable, )(

)1()1(

kpk
aE=π , 

p
E  denotes 

design expectation, and )1|2(

k
a  is the conditional second-phase sample membership indicator variable.  

 

Suppose the imputation model on the responses 
k

y  is specified by a generalized linear model with mean 

)()()( βxβ T

kkkm
hyE == µ , where 

k
x  is a 1×p  vector of explanatory variables for the model mean, ()h  is a “link” 

function and 
m

E  denotes model expectation. For example, the choice aah =)(  gives a linear regression model, and 

)1/()( aa eeah +=  gives a logistic regression model for binary responses 
k

y . The imputed values *

2
ˆ

k
y  are given by 

)ˆ(ˆ )(*
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y βµ= , where the naïve estimator )(ˆ Nβ  is obtained as the solution to the estimating equations 
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kmkk
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kk
xβ =)(Φ  for linear and logistic regression 

models. 

 

The finite population parameter 
N

θ  induced by the estimator )(ˆ NY  is given by 

 *)1|2()1|2()( )1()ˆ(
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yyYE ππθ −∑+∑≈= , (2.3) 

where )ˆ(
**

kpk
yEy = . It is clear from (2.3) that 

N
θ  depend on the selection probabilities. For example, the use of )(ˆ NY  

under simple random sampling at both stages induces a mixture of two totals as finite population parameter: 
*)1|2()1|2( )1(
kkN

yfyf ∑−+∑≈θ  where )1|2(f  is the conditional sampling fraction for the second-phase sample. 

 

The sampling bias induced by the estimator )(ˆ NY  in estimating the finite population total Y  is given by 

 ByyY
kkkN
≡−−∑−≈− ))(1( *)1|2(πθ . (2.4) 

 

In order to remove the sampling bias, one may first estimate the bias (2.4) by 

 )ˆ)(1(ˆ *)1|2(

kkkk
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and then adjust )(ˆ NY  to get the bias-adjusted estimator 
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yddydY −∑+∑= , (2.6) 

with )ˆ(ˆ *
2

β
kk

y µ= , the estimator β̂  is obtained as solution to the estimating equations 

 0))()(()(ˆ =−∑= βββl
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where 
kkk

ad π/=  and )(
kpk

aE=π . The design-based estimator Ŷ  is approximately unbiased for Y : YYE
p

≈)ˆ( . 

We may also write Ŷ  as  
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kkkkk
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2.2 Variance Estimation 



 

We suppose first that the parameter of interest is )ˆ( )(N

pN
YE=θ . Let T

kkk
dd ),(

21
=d , where )1(

1 kk
dd = , and 

kk
dd =

2
. 

The Demnati–Rao (DR) variance estimator (Demnati and Rao, 2004) is simply given by 

 )()ˆ( )( zϑϑ =N
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Y , (2.8) 

where )(uϑ , in operation notation, is the variance estimator of the linear combination 
k

T

k
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vector of constants, 
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d
A  is a N×2  matrix with thk  column 

k
d , and 

b
A  is a 

N×2  matrix of arbitrary real numbers with thk  column T

kkk
bb ),( )1(=b . The design based variance estimator )(uϑ  

of the total Û  is given by 
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with 
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where )1()1()1()1( /
kttkkt

πππω = , 
kttkkt

πππω /= , and ( )1(

kt
π ,

kt
π ) denote respectively the first and two phase joint inclusion 

probabilities. Substituting (2.10) into (2.9) we get 
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and 
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We may write ),( yxc
s

 as 
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where 
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ad π=  is the conditional second-phase weight. It is seen from (2.15) that ),( yxc
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is computed from the first-phase sampling variance estimator. 

 

It remains to evaluate 
k
z . We have )(ˆ)()( *)1|2()1()1|2( bA

kkkkkkkb
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A . Hence, 
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where βββJ ∂−∂= /)(ˆ)(ˆ )()( NN Yθ , and ββlβJ ∂−∂= /)(ˆ)(ˆ )()( NN

ββ .  

 

Under the linear model 

 βxT
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=µ  and 

kkm
cyVar /)( 2σ= , (2.18) 

for some specified constants 
k

c , 
kkk

cxβ =Φ )( , β  is estimated by 
kkkkkN

N ycIa xQβ ∑= −1
)(
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T
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)(
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A variance estimator of the bias-adjusted estimator Ŷ  is given by (2.9) with 
k
u  replaced by 
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where 
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2

T
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2.3 Simulation Study  

 

We conducted a small simulation study to examine the performances of the estimators )(ˆ NY  and Ŷ  and associated 

variance estimators, when substitution imputation or ratio imputation is used. The more general case of values from 

administrative file when available and regression imputation otherwise is not studied in this section. We first 

generated a finite population },...,,...,{
1 Nk

yyy , with T

kkkk
yyy ),,(
321

=y , of size 393=N  from the following 

models: 
kkkk

xxy ε2/1
1

+= , 
kkkk

xxy ε2/1
2

2.1 += , and 
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xxy ε2/1
3

2.15 ++= , where 
k

ε  are independent observations 

generated from )1,0(N , and the fixed 
k

x  are the “number of beds” for the Hospitals population studied in Valliant et 

al. (2000, p.424-427). We stratified the population into two strata with 272 units k  having 350≤
k

x  in stratum 1 

and 121 units k  with 350>
k

x  in stratum 2. We selected 000,5=R  stratified two-phase simple random samples of 

sizes 50
21
== mm  and 15

21
== nn . Our vector parameter of interest is the finite population total T

N
YYY ),,(

321
=θ . 

Values for the first-phase units not sampled in the second phase are mass imputed. For each variable l , 3,2,1=l , 

four estimators are considered. Two estimators used the substitution imputation method: the naïve estimator 
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xayad −+∑=θ , and the corresponding design-based estimator 
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3,2,1=l . The other two estimators used the ratio imputation method: the naïve estimator 
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l
xaya ∑∑= /ˆ )(β  and 
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lR
θ̂  reduces to the two-phase ratio estimator: 
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Let θ̂  denote an estimator of a population total 
N

θ  and )ˆ(θϑ  be the associated variance estimator. We calculated the 

simulated relative bias of θ̂  and )ˆ(θϑ  as 
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RB θθθθ /)ˆ()ˆ(
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. =
− ∑=  is the mean of the estimates 

r
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r
RMSE θθθ −∑= =

−  is the simulated mean squared error (MSE). We calculated )ˆ(θRB , )}ˆ({ θϑRB  and 

mean squared error (MSE) ratios for each component of the vector TTTT )ˆ,ˆ,ˆ(
321
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lSl
)ˆ,ˆ,ˆ,ˆ(ˆ )()( θθθθ=θ  

( 3,2,1=l ), and those values are reported in Table 1.  

 

It is clear from Table 1 that the substitution naïve estimator )(ˆ N

S
θ  can lead to large relative bias and loss in efficiency 

when the model generating the variable of interest is different from the model generating the imputed values. For 

example, )(ˆ N

S
θ  performs poorly for the variables 2 and 3. On the other hand, the design based estimator θ̂  performs 

well regardless of the population model and imputation method. The variance estimator 
L

ϑ  for )(ˆ N

S
θ  leads to serious 



underestimation of MSE for variables 2 and 3. On the other hand, variance estimator 
L

ϑ  for θ̂  performs well with 

small RB . The naïve estimator )(ˆ N

R
θ  under ratio imputation is more robust to model deviations than )(ˆ N

S
θ . 

 

 

3. Missing Responses 

 

In this section, we consider the case of missing second-phase responses, y . Imputation is performed on all the first-

phase missing responses. The resulting first-phase sample is complete. An estimator of the finite population total 

k
yY ∑=  is given by 
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for specified 
k,θτ , where 1=

k
o  if 

k
y  is observed, and 0=

k
o  otherwise. Here, the imputed value *

2
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y  is given by 
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β
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y µ=  where the estimator β̂  is obtained as solution to the estimating equations 
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for specified 
k,βτ . 

 

In the case of complete response, the choice of 1
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r

E  denotes model expectation under response mechanism. 

 

 

We suppose that the parameter of interest is ))(ˆ( τθ YEE
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. Then the Demnati–Rao (DR) variance estimator (Demnati and Rao, 2007) is simply given by 

 )())(ˆ( zϑτϑ =Y
DR

, (3.3) 

 

where )(uϑ , in operation notation, is the variance estimator of the linear combination 
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It remains to evaluate )(uϑ . We have 
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The design based variance estimator )(
ss
uϑ  is given by (2.9) with 

k
u  replaced by 

sk ;
u . 

 

The response estimated variance )(u
r

ϑ , assuming that the order of expectation can be interchange so that 
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o . A 

variance estimator of )(ˆ τY  is then given by (3.7) with 
k
u  replaced by 

k
z  given by (3.4). Note that Y

N
=θ  if )(ˆ τY  

is unbiased for Y  under the assumed response mechanism and the sampling design. 

 

 

4. Determination of “Optimal” Sample Sizes 

 

4.1 Complete Response 

 

Let 
k

y  be the value obtained using a questionnaire, and 
k

t  or 
k

x  be the value obtained from administrative sources. 

We assume that obtaining values from administrative sources is much cheaper than obtaining values through 

questionnaire. We consider the case where a stratified first-phase sample of size ),...,,...,(
1 Hh

mmm=m  of 
k
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k

x  is 

obtained, and then from each first-phase sample )1(

h
s , a sub-sample 

h
s  of size 

h
n  is interviewed and the response 

k
y  

is recorded. Our interest is to find the “optimal” sample sizes ),...,,...,(
1 Hh

mmm=m  and ),...,,...,(
1 Hh

nnn=n  for 

estimating the finite population parameter 
N

θ  that minimize the cost subject to constraints on the variances and the 

sample sizes.  

 

Consider first the general form of an estimator in the complete response case: 
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Even when the conditional second-phase inclusion probabilities are random the right side of equation (4.2) is often 

used as an approximation to ),(
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Cov dd . Using (4.2), the sampling variance of the estimated total Û  is given by 
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Substituting (4.2) into (4.3), we get 
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Under stratified simple random sampling (STSRS) at both stages: )1(

h
s  is a simple random sample of size 

h
m  from 
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4.2 Optimal Sample Sizes: STSRS 

 

Consider the complete response case with p  characteristics of interest 
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We consider the bias-adjusted estimator *)1( ˆ)(ˆ
jkkkjkkj

yddydY −∑+∑=  of the total 
j

Y , given by (2.6) with β̂  

obtained as solution to the estimating equations 0))()(()(ˆ =−∑= βββl
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yId µβ Φ . In this case 
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4.3 Empirical Study 

 

We considered the case of a single characteristic, y , and generated a finite population },...,{
1 N

yy  of size 393=N  

from the model 
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with independent errors 
k

ε  generated from )1,0(N , 
kkmk

xyE βαµ +== )(  and specified constants ),,( σβα , 

where the fixed 
k

x  are the “number of beds” in hospital k  for the hospitals population. We stratified the population 

into two strata with 272 units k  having 350≤
k

x  in stratum 1 and 121 units k  with 350>
k

x  in stratum 2. For the 

cost, we set 0
0
=c , 1

22
== cc

h
, and two different costs for 

11
cc

h
= : 0.1 and 0.5. We set 05.0=φ  for the 

tolerances. Two estimators are considered 
kkkkkS
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Ŷ , where 
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We repeated the optimization process for different value of )15,..,0(,σ  keeping )1,0(),( =βα  and (0,1.2). Figures 1 

and 2 provide the minimum cost for 0.1=β  under the two-phase design for 5.0
1
=c  and 1.0

1
=c  respectively. The 

results under substitution and ratio imputation are similar. 

For comparison, the minimum cost under stratified single phase sampling, using the unbiased Horvitz-Thompson 

(HT) estimator are also presented. It is seen from Figure 1 that when the cost ratio 
12

/ cc  is small ( 2/
12
=cc ), 

minimum cost under two-phase is smaller than under one-phase sampling only for small values of σ  ( 2≤ ). On the 

other hand, Figure 2 shows that when the cost ratio is large ( 10/
12
=cc ), minimum cost is smaller under two-phase 

sampling for a much wider ranger of σ  ( 10≤ ). Figures 3 and 4 report the minimum cost for the case of 2.1=β  

under substitution and ratio imputation for 5.0
1
=c  and 1.0

1
=c  respectively. 

 

4.4 Missing Responses 

 

 

In the case of missing responses, y , in the second-phase sample, the variance of the estimator of general form 
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and 
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We assume independent response mechanism. Under stratified simple random sampling at both stages, we have 
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Table 1: Simulation Results 

Imputation Method Estimator Variable )ˆ(θRB  )ˆ(/)ˆ( )( YMSEYMSE N  )}ˆ({ θϑRB  

1 .0001 .94 -.01 

2 -.1181 9.85 -.93 

Naïve 

3 -.1228 10.66 -.93 

1 .00004 1 -.01 

2  .0003 1 -.001 

Substitution 

Design-based 

3  .0005 1 -.001 

1 -.0004 .99 -.010 

2 .0004 .99 -.011 

Naïve 

3 -.0023 .99  -.006 

1 .00004 1  -.011 

2 .0003 1 -.010 

Ratio 

Design-based 

3 .0006 1 -.002 

 

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5

Sigma

m
in

im
u

m
 c

o
st

 

Two-phase-Substitution One phase Two-phase-Ratio

 

Figure 1:  minimum cost for )5.0,0.1(
1
== cβ  
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Figure 2: minimum cost for )1.0,0.1(
1
== cβ  
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Figure 3: minimum cost for )5.0,2.1(
1
== cβ  
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Figure 4: minimum cost for )1.0,2.1(
1
== cβ  

 

  


