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Abstract

Trials for comparing interventions where cluster of subjects, rather than in-
dividuals, are randomized, are commonly called cluster randomized trials
(CRTs). For comparison of binary outcomes in a CRT, although there are
few published formulations for sample size computation, the most commonly
used is the one developed by Donner, Birkett, and Buck (Am J Epidemiol
1981) probably due to its incorporation in the text book by Fleiss, Levin, and
Paik (Wiley 2003). In this paper, we derive a new χ2 approximation formula
with a general continuity correction factor (c) and show that specially for
the scenarios of small event rates (< 0.01), the new formulation recommends
lower number of clusters than the Donner et al. formulation thereby provid-
ing better efficiency. All known formulations can be shown to be special cases
at specific value of the general correction factor (e.g., Donner formulation is
equivalent to the new formulation for c = 1). Statistical simulation is pre-
sented with data on comparative efficacy of the available methods identifying
correction factors that are optimal for rare event rates. Table of sample size
recommendation for variety of rare event rates along with code in“R” lan-
guage for easy computation of sample size in other settings is also provided.
Sample size calculations for a published CRT (“Pathways to Health study”
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that evaluates the value of intervention for smoking cessation) are computed
for various correction factors to illustrate that with an optimal choice of the
correction factor, the study could have maintained the same power with a
20% less sample size.
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1. Introduction

Cluster randomized trials (CRTs) are necessary in the evaluation of health
care interventions because of practical and ethical reasons. The units for ran-
domization (‘clusters’) for the evaluation of intervention in CRT are typically
communities, clinics, hospital wards, or medical practices. This design has
been used by investigators in the field of drug treated device for assessment
of disease control [1] [2], in the evaluation of interventions intended to im-
prove the delivery of health services and quality of care [3], in appraisal of
health education activities [4] and prevention models for sexually transmit-
ted diseases [5], to name a few. Donner and Klar (1994) provide an excellent
review of the reasons for conducting CRTs, related design issues, and sta-
tistical methods for data analysis [6]. CRTs are usually less efficient than
individually randomized trials (IRTs) because the responses of individuals
within a cluster tend to be more similar than responses of individuals in
different clusters [7]. This phenomenon is quantified by a statistics called
intraclass correlation coefficient (ICC). Proper design with adequate sample
size calculation is of utmost importance in trials utilizing CRT as they are
logistically very demanding. For comparison of binary outcomes in a CRT,
although there are few published formulations for sample size computation,
the most commonly used is the one developed by Donner, Birkett, and Buck
[8], probably due to its incorporation in the text book by Fleiss, Levin, and
Paik [9]. However, there is room for improvement, especially for trials with
binary endpoint with rare occurrence.

We begin with a motivating example from the field of surgery in section
2. Although leaving objects behind in the body cavity after surgery is rare
(1 in 5,500 surgeries) [10], it has the potential to be lethal for patients and
detrimental to hospitals and insurance companies. A new medical device

2



for detecting these objects by scanning has been marketed but a CRT for
evaluation of this device compared to manual sponge count is needed. In
our attempt to provide power calculation for this study, we briefly reviewed
the existing methods of sample size computation for binary endpoint for IRT
(Section 3.1) and their extensions to CRT (Section 3.2). We were unsure
about the applicability of the existing formulas for such low proportion of
events. Therefore we derived a new sample size formula using a general
correction factor (Section 3.3). All known formulations are shown to be
special cases at specific value of the general correction factor. In section
4, we present a simulation study for comparison of all methods identifying
correction factors that are optimal for rare event rates.

Sample size calculations for a published CRT (“Pathways to Health study”
that evaluates the value of intervention for smoking cessation [11]) are com-
puted for various correction factors to illustrate that with an optimal choice
of the correction factor, the study could have maintained the same power with
a 20% less sample size (Section 5). This points out the usefulness of our new
formulation which allows choosing a different correction factor depending on
the setting.

We present table of sample size recommendation for variety of rare event
rates and also provide related code in “R” language for easy computation
of sample size in other settings (Section 6). We return to our motivating
example in this section and through computation of sample size for this trial,
provide a guideline on how to approach designing of a CRT, specially in a
setting where ICCs are not available. In section 7, we offer some discussion
on issues related to varying cluster size, generation of correlated binary data,
and the need for exact formulation of sample size.

2. Motivating Example: Planning of CRT for Evaluation of a Newly
Developed Medical Device for Discovering Retained Surgical
Sponges

Inadvertently leaving sponges inside patients who undergo surgery con-
tinues to occur despite manual counting of sponges by operating room per-
sonnel. Retained sponges may cause no adverse effects in patients and may
remain undiscovered for decades. Alternatively, retained sponges may lead
to serious sequelae, including sepsis, intestinal obstruction, fistulization, and
death. Cima et al (2008) reviewed the incidence and characteristics of sur-
gical retained foreign objects (RFOs) at a tertiary care institution during

3



4 years and found the incidence rate to be quite small (approximately 1 in
5, 500 operations = 0.0002) [10].

A new device recently approved by FDA (RF Surgical detection system)
is currently poised for marketing and evaluation

(http://www.rfsurg.com/productoverview.htm). This system consists of
two features: 1) sponges, gauzes, and towels with a small unobtrusive em-
bedded chip (measuring at 3.5 mm by 11 mm) and 2) a Blair-Port wand
with a 9 foot connection cord that has the capability of scanning a patient
weighing up to 500 pounds. A CRT, in support of a comparative trial (Arm
1: Use of the new device for sponge detection versus Arm 2: Use of standard
practice of manual sponge counting) with the binary endpoint of detection
of a foreign object in body cavity after surgery, is being planned. Accuracy
of the existing sample size formulations for extremely low incidence like the
one in this study has been questioned in the field of IRT and adjustment to
the sample size formulation has been suggested [21]. Therefore we reviewed
the sample size formulations in CRT and concluded that some adjustment
to the sample size formulation is needed for the special case of rare events in
the context of CRT as well.

3. Methods

3.1. Review of Sample Size Formulations in IRT

Before discussing further the sample size formulas for CRTs, we offer
a brief review of the most commonly used formulation of sample sizes for
the IRTs. Sahai and Khurshid (1996) provides an excellent detailed review
[8]. Consider the setting of a two armed clinical trial with dichotomous
outcome (ie, event versus non-event). The null hypothesis under test is
H0 : π1 = π2 versus the alternative hypothesis of H1 : π1 > π2 where πi
is the proportion of events in the ith population. The overall context is to
estimate the sample size so that if in fact there is no difference between the
two underlying proportions, then the chance is approximately α of falsely
declaring the two proportions to differ, and if in fact the proportions are
unequal, then the chance is approximately 1 − β of correctly declaring the
two populations to differ, for α > 0, β < 1. Throughout this manuscript, we
assume equal sample sizes for the two groups.

“Exact” formulation for sample size, considered ‘gold standard’ in this set-
ting is derived [11] but the approximate methods are most commonly utilized
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due to their simplicity in computation [9-10,12-14]. One of the commonly
employed method is the “arcsine formula” [9],

n =
z1−α + zβ

2[(arcsine
√
π1 − arcsine

√
π2)2]

, (1)

where Φ(zγ) = γ and Φ is the cumulative normal distribution function.
Another commonly used approximation is the “uncorrected χ2 formula”

(UC),

n =
[z1−α

√
(2πµ) + zβ

√
π1µ1 + π2µ2]2

(π1 − π2)2
, (2)

where µi = 1− πi, i = 1, 2; π = π1+π2

2
, µ = µ1+µ2

2
[10].

It has been shown that the above two formulas, (1) and (2), give similar
output but are considered to be serious underestimation of the sample size
recommended by the “exact” method [11].

To rectify this, Kramer and Greenhouse (KG) developed a “corrected χ2

method” given by

n =
A
[
1 +

√
1 + 8(π1 − π2)/A

]2

[4(π1 − π2)2]
, (3)

where A = [z1−α
√

(2πµ) + zβ
√
π1µ1 + π2µ2]2 [12]. Later, Casagrande, Pike

and Smith (CPS) developed a χ2 approximation sample size formula with a
general correction factor, c′, given by

n =
A
[
1 +

√
1 + 4(1− 2c′)(π1 − π2)/A

]2

[4(π1 − π2)2]
[13]. (4)

The KG and UC formulation were shown to be special cases of the CP
formulation by setting c′ = −0.5 and c′ = 0.5 respectively. Casagrade and
Pike also demonstrated that the sample size recommended by the UC and
KG formulation are an underestimate and an overestimate of the sample size
obtained through the exact formulation [13]. They proposed a formula based
on c′ = 0 and established that the sample size obtained via this new formula
was satisfactorily close to that obtained by the exact method.
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3.2. Review of Sample Size Formulations in CRT

In the two-armed clinical trial with CRT design, the most widely used
sample size formula is the one given in the text book by Fleiss, Levin, and
Paik (FLP) [14] which was originally developed by Donner, Birkett, and Buck
(DBB) [15]. Assuming there are K clusters in each group, with clusters of
equal size n̄, the formulation is given by

K =
[zα/2
√

2πµf + zβ
√
f1π1µ1 + f2π2µ2]2

n̄(π1 − π2)2
, (5)

where f1 and f2 denote the variance inflation factors (VIFs) of the two
sets of K clusters; f = (f1 + f2)/2 = 1 + ρ(n̄− 1) is the VIF under the null
hypothesis of equality of proportions; and ρ being the intra-cluster co-efficient
assumed to be the same within each groups [14-15].

Since in the IRTs, f1 = f2 = 1, it is clear that (5) is an extension
of the uncorrected χ2 formula to the CRT setting. To be exact, the FLP
formula is actually an approximation of the DBB formula, by the fact that√
f1π1µ1 + f2π2µ2 ≈

√
2πµf .

Several other formulations of sample size computation are available for
related but somewhat different settings. For example, Liu and Liang [16]
proposed sample size formulation in the context of generalized linear models
which used unified tools for correlated continuous and discrete responses.
For the special case of the ‘two-sample problem with binary responses’, their
general formula reduces to the DBB formula under the assumption of equal
sample size in the two groups and an exchangeable correlation structure for
the working correlation matrix. Fleiss et al. [14] extends FLP/DBB formula
to the case where the ‘exposure’ varies across clusters. Hayes [18] present
a formula which takes into account the between cluster variability, but this
formula doesn’t take into account the intra-cluster correlation. Manatunga
et al. [19] and van Breukelen et al. [20] extends these sample size estimation
methods to account for variability in cluster size.

3.3. Derivation of a new sample size formula for CRTs

In this section, we derive our χ2 approximation formula for sample sizes
with a general continuity correction factor. Let Xij and Yij denote the
outcomes of the ith individual in the jth cluster in the intervention and
control groups respectively; i = 1, . . . n; j = 1, . . . K. We assume that
Xij ∼ Bernoulli(π1) and Yij ∼ Bernoulli(π2). Let us denote the intra-cluster
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correlations as ρ1 and ρ2 and the corresponding variance inflation factors
(VIFs) in each group as f1 and f2.

X̄ =
1

nK

n∑
i=1

K∑
j=1

Xij; Ȳ =
1

nK

n∑
i=1

K∑
j=1

Yij.

Define

d = X̄ − Ȳ and Z =
d− 1

nK√
2
nK

(
X̄+Ȳ

2

) [
1−

(
X̄+Ȳ

2

)]
f

.

Z is a test statistic (–χ2 test with Yates’ correction–) commonly used to test
the null hypothesis H0 : π1 = π2. Let d∗ be such that

z1−α =
d∗ − 1

nK√
2
nK

(
X̄+Ȳ

2

) [
1−

(
X̄+Ȳ

2

)]
f

under the null hypothesis. Here f = f1+f2
2

is the variance inflation factor

calculated under the null hypothesis. Replacing
(
X̄+Ȳ

2

)
by its expectation,

we get

z1−α ≈
d∗ − 1

nK√
2
nK
π̄µ̄f

.

Rearranging,

d∗ ≈ z1−α

√
2π̄µ̄f

nK
+

1

nK
. (6)

Also

Pr(d ≥ d∗) ≈ 1− Φ

d∗ − (π1 − π2)− c
nK√

π1µ1f1+π2µ2f2
nK


where Φ is the cumulative normal distribution function and c is a correction
factor to allow for the discreteness in the distribution of d. If this d∗ is to
lead to a test with power 1− β then it should satisfy

−zβ ≈
d∗ − (π1 − π2)− c

nK√
π1µ1f1+π2µ2f2

nK

.
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That is,

d∗ ≈ (π1 − π2) +
c

nK
− zβ

√
π1µ1f1 + π2µ2f2

nK
. (7)

Equating (6) and (7) and solving for K, we get,

K =

A

[
1 +

√
1 + 4(π1−π2)(1−c)

A

]2

4n(π1 − π2)2
, (8)

where

A =
[
z1−α

√
2π̄µ̄f + zβ

√
π1µ1f1 + π2µ2f2

]2

.

Note that when c = 1, the formula (8) is the same as the FLP formulation
reproduced in equation (5) of this document. c = 0 and c = −1 are extensions
of CGS and KG formulas respectively to the CRT setting. Also note that
the sample size formula for the alternate hypothesis, H1 : π1 < π2, may be
obtained by switching π1 and π2 in formula (8)

4. Statistical Simulations for comparison of χ2 approximations with
different correction factors

We compare the performance of the sample size formula given by (8)
with different choices of the continuity correction factor, c, via statistical
simulations. The primary endpoint for comparison is the number of clusters
recommended by different formulas maintaining the power closest to 80% to
the one corresponding to exactly 80%.

4.1. Simulation Parameters

We compare the choices of c = 1, 0,−1 for the following settings of the
parameters:

• (π1, π2) pairs of (0.0002, 0.0001), (0.01, 0.0005), (0.1, 0.05), (0.4, 0.25),
(0.60, 0.40);

• ρ1 = ρ2 = 0.25;

• n̄ = 30;

• α = 0.05;
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• 1− β = 0.8.

Because of symmetry, the sample sizes required for (π1, π2) is the same as that
for (1−π2, 1−π1). Therefore, we do not simulate cases where min(π1, π2) ≥
0.5.

4.2. Data Generation and parameter estimation Methods

We generated 500 correlated binary data within each cluster for the above
parameters, using a Monte Carlo simulation method proposed by Lunn and
Davies [17]. For each j, X ′ijs were generated using the formula (given in
[17]),

Xij = (1− Uij)Vij + UijZj,

where Vij, Zj are independent with Bernoulli(π1) distribution, and Uij are
independent with Bernoulli(

√
ρ1) distribution. Yij’s were obtained similarly

with π1 and ρ1 replaced by π2 and ρ2. ρ̂’s were estimated using the FLP
formula. Empirical power was calculated by the proportion of times the χ2

test statistic with Yates’ correction exceeds the critical value.

4.3. Format of Tables Presenting Simulation Results

Simulation results are presented in Tables 1 with 8 columns. For each
(π1, π2)-pair listed in column 1 and for each choice of c(= 1, 0,−1) listed in
column 2, the required number of clusters via the formula (8) is computed
at 80% power and 0.05 significance level with specification of ρ1=ρ2 = 0.25.
These number of clusters are shown at the top of each cell in column 3 (-the
numbers without parenthesis-). Using the generated data, the mean esti-
mated ρ1, ρ2, π1, π2 along with their standard deviations are presented in
columns 4-7. Using the estimated ρ’s, the number of clusters are estimated
again and are presented in column 3 (-the numbers with parenthesis-). Em-
pirical power is listed column 8.

Note the row labeled “*” corresponding to each (π1, π2)-pair. The top
number in column n 3 corresponding to this row is obtained by trial and
error and is the number of clusters required to achieve as close to the power
of 80% as possible. The corresponding estimated ρ’s and π’s are presented in
the same row for the next four columns. Using these estimates, the choice of
c that provides the number of clusters closest to that corresponding to “*”
is listed Below “*”. This is the most “optimal” choice of c for each setting
of (π1, π2)-pair.
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4.4. Simulation Results and Explanation

Under the null hypothesis of equality of the rate of events, the nomi-
nal significance values were found, on average, to be around 0.05 (data not
shown). The numbers in Table 1 may be better explained using a particular
case of (π1, π2)-pair, say (0.01, 0.005), as an example (see the bolded numbers
in table 1).

The required number of clusters obtained via (8) for c = 1, 0 and -1, with
simulation parameters specified above are 1013, 1026 and 1036 respectively.
Respectively for c = 1, 0 and -1, the mean estimated ρ1 are 0.244, 0.243,
and 0.244 and the mean estimated ρ2’s are 0.244, 0.243 and 0.243. The
corresponding empirical power is 83.8%, 85.6% and 85.6%, respectively. Since
the ρ’s are somewhat underestimated which could be an artifact of the data
generation process, for true comparison of the number of clusters needed by
different values of c, we need to compute these numbers based on the mean
estimated ρ’s as opposed to the true value of ρ = 0.25. Using the estimates,
the corresponding number of clusters are 977, 990, and 1003 respectively for
c = 1, 0, and -1. The last row (“*”) gives the minimum number of clusters
required to achieve 80% power which in this particular case is estimated to
be 942.

The mean estimated ρ’s in this case are comparable to those for c = 1, 0
and -1, and hence the performance of the formula (8) with correction factors
c = 1, 0 and -1 may compared by assessing the deviances 35(= 977 − 942),
48(= 990 − 942), and 61(= 1003 − 942). The best choice of the correction
factor is c = 1 corresponding to the least deviance compared to c = 0 and c =
−1. Lastly, the number below “*” provides the choice of c that corresponds
to the required number of clusters closest to that given by “*”. In this
particular case, a choice of c = 3 gives the number of clusters, 948, closest
to that given by “*”, 942. Therefore c = 3 is considered the most optimal
choice of the correction factor for detecting a halving in proportion when
π1 = 0.01 and π2 = 0.005.

4.5. Conclusions from Simulation Results

Similarly assessing the results from all 10 scenarios presented in Table 1,
the following conclusions can be drawn:

• For (π1, π2) pairs with max(π1, π2) < 0.01, all three choices of c =
0,−1, 1 recommend higher sample size than optimal. Recommended
value for number of clusters using c = 3 is more optimal.
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• For all (π1, π2) pairs with 0.01 < max(π1, π2) ≤ 0.4, c = 1 is a better
choice than c = 0,−1.

• For all (π1, π2) pairs with 0.4 < max(π1, π2) ≤ 0.6, all three correction
factors specified (namely, c = 1, 0 and −1), provides underestimate for
the required number of cluster sizes. More extreme values of c is needed
to produce optimal sample size but the value varies for particular pairs.

An important cautionary note is that above conclusions are based on
power simulations which used a large ρ(= 0.25. The optimal choices for the
ranges of (π1, π2) may be different as seen in the illustrative example below.

Table 1: See Attached document

5. CRT for evaluation of nicotine gum and motivational interview-
ing for smoking cessation: An Illustrative Example

Although there has been significant decline in smoking prevalence among
adults in the United States in the past few decades, it has not been the
case in all the subpopulation of smokers. This is particularly true in smok-
ers below the poverty level. An intervention study for smoking cessation in
this subpopulation is of significance, especially since studies have shown high
prevalence and motivation to quit among residents of low-income housing.
Okuyemi et al.(2007) reported the results from a CRT that tested nicotine
gum plus motivational interviewing (MI) for smoking cessation in 20 low-
income housing developments (HDs), in which intervention participants (10
HDs) received educational materials addressing fruit and vegetable consump-
tion, 8 weeks of 4 mg nicotine gum, and 5 MI sessions on quitting smoking,
and comparison participants (10 HDs) received 5 MI sessions and educational
materials only [11]. The sample size (-no. of clusters-) calculation was based
on the assumptions that there would be 20 participants in each of the 20
HDs, a moderate intra-cluster correlation of 0.02, a 6-month quit rate of 6%
(π1) in the comparison arm, and a 18% (π2) quit rate in the cessation arm.
Power analysis based on the DBB formula showed that there would be 89%
power to detect a significant difference between the two arms.

We suspect that the DBB formula overestimated the required number of
clusters, and that formula (8) with a continuity correction factor of c = 3
will provide a better estimate of the required number of clusters. Indeed,
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a power simulation described in Table 2 provides support to our thinking.
The number of clusters required in each arm to detect a difference of 12% at
89% power (with all other assumptions kept same) is respectively, 11, 9 and
8 cluster per arm, for c = 1, 3, 4 in (8). We generated 100,000 Monte Carlo
two-samples of clusters, with 20 per cluster, for 4 different scenarios: 11, 10,
9, and 8 clusters in each arm (-note that, 10 clusters in each arm corresponds
to the DBB formula that was used for the study design in [22]). Since the
estimates of ρ1 and ρ2 are lower than the actual ρ1 and ρ2 used in Lunn and
Davis [17] method, we used ρ1 = ρ2 = 0.04 (which is more conservative than
0.02 used in [17]) for our power simulations.

From Table 2, we observe that even with 9 clusters per arm (corresponding
to c = 3), the empirical power is greater than 89% and with 8 clusters per arm
(corresponding to c = 4), the empirical power is 88.1%. But the estimated ρ2

is substantially higher than 0.02. So, with ρ1 = ρ2 = 0.02, there is reason to
believe that even 8 clusters per arm would have been sufficient for 89% power.
In other words, this example illustrates the point that formula (8) with c = 3
provides a more accurate estimate of the required number of clusters for
this choice of (π1, π2). The reduction (that is, the improvement) in number
of clusters is 10% (20 − 18/20 = 0.1) which amounts to a substantial gain
in terms of the cost of conducting the study. Incidentally, in this example,
the sample size based on c = 4 provides the best estimate, with a 20%
improvement.

Table 2: Sample size comparison for the illustrative example: Pathway to Health Study
Note: nominal power = 89%, α = 0.05, Number of Monte Carlo samples = 100,000

Comparison of various sample size estimates for the Pathways to the Health Study
Method used for

sample size
calculation

No. of clusters
in each arm

Estimated
Power

Mean ρ̂1
s.e

Mean ρ̂2
s.e

Mean π̂1

s.e
Mean π̂2

s.e

Formula (8)
with c = 1; (FLP)

11 94.9%
0.024
0.0002

0.030
0.0001

0.060
<0.0001

0.180
0.0001

DBB
Formula

10 92.9%
0.023
0.0002

0.029
0.0001

0.060
<0.0001

0.180
0.0001

Formula (8)
with c = 3

9 90.8%
0.021
0.0002

0.028
0.0001

0.060
<0.0001

0.180
0.0001

Formula (8)
with c = 4

8 88.1%
0.019
0.0002

0.027
0.0001

0.060
<0.0001

0.180
0.0001
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6. Sample Size Table, Codes, and Guidelines for Designing CRT

We present Table 3 with some sample size tabulations for assistance with
future trial design and show empirically the settings where c = 3 recommend
lower sample size. This table provide the required number of clusters ob-
tained via (8) using c = 1, 0, and −1 for various small values π’s (< 0.01),
ρ = 0.01, and average cluster size of 30, 5% level of significance, and 80%
power. We also provide the number of clusters required based on c = 3. ’R’
code for the sample size computation is provided below for easy implemen-
tation in any other setting.

6.1. Code for Sample Size Computation

ss.crt ← function(power, alpha, pi1, pi2, n, rho1, rho2, c){
## c is the continuity correction factor,

## n is the cluster size

## the function ss.crt returns the required number of clusters

VIF ← function(n, rho){
rslt ← 1 + ((n -1)*rho)

return(rslt) }

f.beta ← function(z, level){
rslt ← pnorm(z) - level}

f.z ← function(level){
rslt ← uniroot(f.beta, c(-10, 10), level = level)$root
return(rslt)}

A ← function(power, alpha, pi1, pi2, vif1, vif2){

pi ← (pi1 + pi2)/2

mu ← 1 - pi

mu1 ← 1 - pi1

mu2 ← 1 - pi2

13



vif ← (vif1 + vif2)/2

# beta ← 1 - power

zbeta ← f.z(power)

zalpha ← f.z(1-alpha)

rslt← (zbeta*sqrt(pi1*mu1*vif1 + pi2*mu2*vif2)) + (zalpha*sqrt(2*pi*mu*vif))

rslt ← rslt∧2

return(rslt)}

ss ← function(a, pi1, pi2, c){

term1 ← (4*(pi1 - pi2)*(1 - c))

term2 ← 1 + sqrt(1 + (term1/a))

numer ← (a∗(term2)∧2)
denom ← (4∗(pi1-pi2)∧2)
rslt ← numer/denom

return(rslt) }

vif1 ← VIF(n, rho1)

vif2 ← VIF(n, rho2)

a ← A(power, alpha, pi1, pi2, vif1, vif2)

rslt ← ss(a, pi1, pi2, c)

rslt ← rslt/n

return(rslt) }

6.2. Connecting to the Motivating Example

Getting back to our motivating example, where we needed sample size
computation for the (π1, π2)-pair of (0.0002, 0.0001) the number of clusters
needed are 7975, 8629, 9260, 6574 respectively for the value of the correction
factors taking different values, with the last one being most optimal. This
will mean that 6574 hospitals with 30 surgery each will be needed to detect
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a halving of the incidence rate of leaving foreign objects inside the patient
during surgery. Since for practical purpose, it will be easier if we can recruit
higher number of patients in each hospital (say 100 patients from each hos-
pitals) and reduce our need for convincing a big number of hospitals to join
the trial, we compute the number of clusters in that setting and find that
xxx hospital will suffice.

7. Discussions

The effect of an intervention (therapeutic device or drug administration,
lifestyle change, or health care delivery system change etc.) is often evalu-
ated by a cluster randomized trial. This implies that organizational units
such as hospitals, communities, or clinics are randomly allocated to treat-
ment conditions and all persons sampled from such cluster receive the same
treatment assigned to the cluster. Instead of randomizing clusters, one may
randomize persons within each cluster which is statistically more efficient but
not always more convenient. We provide a formulation for assessing number
of clusters needed for trials like this and show few existing formulations to
be special cases.

Assumption of equal cluster size has been made in our formulation. This
is not a practical assumption. It has been shown that sampling 25% more
clusters when the sample sizes within cluster are extremely variable com-
pensates for all weaknesses arising from this increase in variability [24]. We
expect this results to be applicable for our setting.

There has been various approaches for generating correlated binary data.
Park (1996) provides a comprehensive review of related issues [25]. Lunn’s
procedure, although straight and simple to implement, gave slightly biased
estimates of ρ for our simulation. Another algorithm presented in [25], al-
though not as simple as Lunn and Davis’s method to implement, but that still
requires no complicated procedures might have yielded unbiased estimates of
ρ’s.

Relying on approximate formulas is not ideal in the setting of CRT unlike
the IRT setting where there is a particular choice of the optimal correction
factor for all situation. This fact emphasizes the need for deriving a formula
based on exact methods for CRTs with dichotomous outcome.
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