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Abstract
Collinearities among explanatory variables in linear regression models affect estimates from survey data just as they do
in non-survey data. Undesirable effects are unnecessarily inflated standard errors, spuriously low or high t-statistics,
and parameter estimates with illogical signs. The available collinearity diagnostics are not generally appropriate for
survey data because the variance estimators they incorporate do not properly account for stratification, clustering,
and survey weights. In this article, we derive condition indexes and variance decompositions to diagnose collinearity
problems in complex survey data. The adapted diagnostics are illustrated with data based on a survey of health
characteristics.
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1 Introduction

When predictor variables in a regression model are correlated with each other, this condition is referred to as collinear-
ity. Undesirable side effects of collinearity are unnecessarily high standard errors, spuriously low or high t-statistics,
and parameter estimates with illogical signs or ones that are overly sensitive to small changes in data values. In ex-
perimental design, it may be possible to create situations where the explanatory variables are orthogonal to each other,
but this is not true with observational data. Belsley (1991) noted that: "... in nonexperimental sciences, ..., collinearity
is a natural law in the data set resulting from the uncontrollable operations of the data-generating mechanism and is
simply a painful and unavoidable fact of life." In many surveys, variables that are substantially correlated are col-
lected for analysis. Few analysts of survey data have escaped the problem of collinearity in regression estimation,
and the presence of this problem encumbers precise statistical explanation of the relationships between predictors and
responses.

Although many regression diagnostics have been developed for non-survey data, there are considerably fewer for
survey data. The few articles that are available concentrate on identifying influential points and influential groups with
abnormal data values or survey weights. Elliot (2007) developed Bayesian methods for weight trimming of linear and
generalized linear regression estimators in unequal probability-of-inclusion designs. Li (2007a,b) and Li & Valliant
(2011, 2009) extended a series of traditional diagnostic techniques to regression on complex survey data. Their papers
cover residuals and leverages, several diagnostics based on case-deletion (DFBETA, DFBETAS, DFFIT, DFFITS, and
Cook’s Distance), and the forward search approach. Although an extensive literature in applied statistics provides
valuable suggestions and guidelines for data analysts to diagnose the presence of collinearity (e.g., Belsley et al. 1980;
Belsley 1991; Farrar & Glauber 1967; Fox 1986; Theil 1971), almost none of this research touches upon diagnostics
for collinearity when fitting models with survey data. One prior, survey-related paper on collinearity problems is (Liao
& Valliant, 2010) which adapted variance inflation factors for linear models fitted with survey data.
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Suppose the underlying structural model in the superpopulation is Y = XTβ+e. The matrixX is an n×pmatrix of
predictors with n being the sample size; β is a p× 1 vector of parameters. The error terms in the model have a general
variance structure e ∼ (0, σ2R) where σ2 is an unknown constant and R is a unknown n × n covariance matrix.
DefineW to be the diagonal matrix of survey weights. We assume throughout that the survey weights are constructed
in such a way that they can be used for estimating finite population totals. The survey weighted least squares (SWLS)
estimator is

β̂SW = (XTWX)−1XTWY ≡ A−1XTWY ,

assuming A = XTW−1X is invertible. Fuller (2002) describes the properties of this estimator. The estimator
β̂SW is model unbiased for β under the model Y = XTβ + e regardless of whether V arM (e) = σ2R is specified
correctly or not, and is approximately design-unbiased for the census parameter BU = (XT

UXU )−1 XT
UY U , in

the finite population U of N units. The finite population values of the response vector and matrix of predictors are
Y U = (Y1, ..., YN )T , andXU = (X1, ...,Xp) withXk being the N × 1 vector of values for covariate k.

The remainder of the paper is organized as follows. Section 2 reviews results on condition numbers and variance
decompositions for ordinary least squares. These are extended to be appropriate for survey estimation in section 3.
The fourth section gives some numerical illustrations of the techniques. Section 5 is a conclusion. In most derivations,
we use model-based calculations since the forms of the model-variances are useful for understanding the effects of
collinearity. However, when presenting variance decompositions, we use estimators that have both model- and design-
based justifications.

2 Condition Indexes and Variance Decompositions in Ordinary Least Squares Estimation

In this section we briefly review techniques for diagnosing collinearity in ordinary least squares (OLS) estimation
based on condition indexes and variance decompositions. These methods will be extended in section 3 to cover
complex survey data.

2.1 Eigenvalues and Eigenvectors ofXTX

When there is an exact (perfect) collinear relation in the n × p data matrix X , we can find a set of values, v =
(v1, . . . , vp), not all zero, such that

v1X1 + · · ·+ vpXp = 0, orXv = 0. (1)

However, in practice, when there exists no exact collinearity but some near dependencies in the data matrix, it may be
possible to find one or more non-zero vectors v such thatXv = a with a 6= 0 but close to 0. Alternatively, we might
say that a near dependency exists if the length of vector a, ‖a‖, is small. To normalize the problem of finding the set
of v’s that makes ‖a‖ small, we consider only v with unit length, that is, with ‖v‖ = 1. Belsley (1991) discusses
the connection of the eigenvalues and eigenvectors of XTX with the normalized vector v and ‖a‖. The minimum
length ‖a‖ is simply the positive square root of the smallest eigenvalue of XTX . The v that produces the a with
minimum length must be the eigenvector of XTX that corresponds to the smallest eigenvalue. As discussed in the
next section, the eigenvalues and eigenvectors of X are related to those of XTX and have some advantages when
examining collinearity.

2.2 Singular-Value Decomposition, Condition Number and Condition Indexes

The singular-value decomposition (SVD) of matrix X is very closely allied to the eigensystem of XTX , but with
its own advantages. The n × p matrix X can be decomposed as X = UDV T , where UTU = V TV = Ip and
D = diag(µ1, . . . , µp) is the diagonal matrix of singular values (or eigenvalues) of X . Here, the three components
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in the decomposition are matrices with very special, highly exploitable properties: U is n × p (the same size as X)
and is column orthogonal; V is p × p and both row and column orthogonal; D is p × p, nonnegative and diagonal.
Belsley et al. (1980) felt that the SVD of X has several advantages over the eigen system of XTX , for the sake
of both statistical usages and computational complexity. For prediction, X is the focus not the cross-product matrix
XTX since Ŷ = Xβ̂. In addition, the lengths ‖a‖ of the linear combinations (1) of X that are relate to collinearity
are properly defined in terms of the square roots of the eigenvalues of XTX , which are the singular values of X .
A secondary consideration, given current computing power, is that the singular value decomposition of X avoids the
additional computational burden of forming XTX , an operation involving np2 unneeded sums and products, which
may lead to unnecessary truncation error.

The condition number of X is defined as κ(X) = µmax/µmin, where µmax and µmin are the maximum and min-
imum singular values of X . Condition indexes are defined as ηk = µmax/µk. The closer that µmin is to zero, the
nearer XTX is to being singular. Empirically, if a value of κ or η exceeds a cutoff value of, say, 10 to 30, two or
more columns of X have moderate or strong relations. The simultaneous occurrence of several large ηk’s is always
remarkable for the existence of more than one near dependency.

One issue with the SVD is whether the X’s should be centered around their means. Marquardt (1980) maintained
that the centering of observations removes nonessential ill conditioning. In contrast, Belsley (1984) argues that mean-
centering typically masks the role of the constant term in any underlying near-dependencies. A typical case is a
regression with dummy variables. For example, if gender is one of the independent variables in a regression and
most of the cases are male (or female), then the dummy for gender can be strongly collinear with the intercept. The
discussions following Belsley (1984) illustrate the differences of opinion that occur among practitioners (Wood, 1984;
Snee & Marquardt, 1984; Cook, 1984). Moreover, in linear regression analysis, Wissmann et al. (2007) found that
the degree of multicollinearity with dummy variables may be influenced by the choice of reference category. In this
article, we do not center theX’s but will illustrate the effect of the choice of reference category in Section 4.

Another problem with the condition number is that it is affected by the scale of the x measurements (Steward, 1987).
By scaling down any column of X , the condition number can be made arbitrarily large. This situation is known as
artificial ill-conditioning. Belsley (1991) suggests scaling each column of the design matrix X using the Euclidean
norm of each column before computing the condition number. This method is implemented in SAS and the package
perturb of the statistical software R (Hendrickx, 2010). Both use the root mean square of each column for scaling as its
standard procedure. The condition number and condition indexes of the scaled matrix X are referred to as the scaled
condition number and scaled condition indexes of the matrix X . Similarly, the variance decomposition proportions
relevant to the scaled X (which will be discussed in next section) will be called the scaled variance decomposition
proportions.

2.3 Variance Decomposition Method

To assess the extent to which near dependencies (i.e., having high condition indexes of X and XTX) degrade the
estimated variance of each regression coefficient, Belsley et al. (1980) reinterpreted and extended the work of Silvey
(1969) by decomposing a coefficient variance into a sum of terms each of which is associated with a singular value. In
the remainder of this section, we review the results of ordinary least squares (OLS) under the model EM (Y ) = Xβ
and V arM (Y ) = σ2In where In is the n×n identity matrix. These results will be extended to survey weighted least
squares in section 3. Recall that the model variance-covariance matrix of the OLS estimator β̂ = (XTX)−1XTY

under the model with V arM (Y ) = σ2In is V arM (β̂) = σ2(XTX)−1. Using the SVD, X = UDV T , V arM (β̂)
can be written as:

V arM (β̂) = σ2[(UDV T )T (UDV T )]−1 = σ2V D−2V T (2)

and the kth diagonal element in V arM (β̂) is the estimated variance for the kth coefficient, β̂k. Using (2), V arM (β̂k)
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can be expressed as:

V ar(β̂k) = σ2Σp
j=1

v2kj
µ2
j

(3)

where V = (vkj)p×p. Let φkj = v2kj/µ
2
j , φk = Σp

j=1φkj and Q = (φkj)p×p = (V D−1) · (V D−1), where ·
is the Hadamard (elementwise) product. The variance-decomposition proportions are πjk = φjk/φk, which is the
proportion of the variance of the kth regression coefficient associated with the jth component of its decomposition in
(3). Denote the variance decomposition proportion matrix as Π = (πjk)p×p = QT Q̄

−1, where Q̄ is the diagonal
matrix with the row sums ofQ on the main diagonal and 0 elsewhere.

If the model is EM (Y ) = Xβ, V arM (Y ) = σ2W−1 and weighted least squares is used, then
β̂WLS = (XTWX)−1XTWY and V arM (β̂WLS) = σ2(XTWX)−1. The decomposition in (3) holds with
X̃ = W 1/2X being decomposed as X̃ = UDV T . However, in survey applications, it will virtually never be the
case that the covariance matrix of Y is σ2W−1 if W is the matrix of survey weights. Section 3 covers the more
realistic case.

In the variance decomposition (3), other things being equal, a small singular value µj can lead to a large component
of V ar(β̂k). However, if vkj is small too, then V ar(β̂k) may not be affected by a small µj . One extreme case is when
vkj = 0. Suppose the kth and jth columns of X belong to separate orthogonal blocks. Let X ≡ [X1,X2] with
XT

1X2 = 0 and let the singular-value decompositions of X1 and X2 be given, respectively, as X1 = U1D11V
T
11

and X2 = U2D22V
T
22. Since U1 and U2 are the orthogonal bases for the space spanned by the columns of X1

and X2 respectively, XT
1X2 = 0 implies UT

1U2 = 0 and U ≡ [U1,U2] is column orthogonal. The singular value
decomposition ofX is simplyX = UDUT

2 , with:

D =

[
D11 0
0 D22

]
(4)

and

V =

[
V 11 0
0 V 22

]
. (5)

Thus V 12 = 0. An analogous result clearly applies to any number of mutually orthogonal subgroups. Hence, if all
the columns in X are orthogonal, all the vkj = 0 when k 6= j and πkj = 0 likewise. When vkj is nonzero, this is a
signal that predictors k and j are not orthogonal.

Since at least one vkj must be nonzero in (3), this implies that a high proportion of any variance can be associated with
a large singular value even when there is no collinearity. The standard approach is to check a high condition index
associated with a large proportion of the variance of two or more coefficients when diagnosing collinearity, since there
must be two or more columns of X involved to make a near dependency. Belsley et al. (1980) suggested showing the
matrix Π and condition indexes of X in a variance decomposition table as below. If two or more elements in the jth

row of matrix Π are relatively large and its associated condition index ηj is large too, it signals that near dependencies
are influencing regression estimates.

Condition Proportions of variance
Index V arM (β̂1) V arM (β̂2) · · · V arM (β̂p)
η1 π11 π12 · · · π1p
η2 π21 π22 · · · π2p
...

...
...

...
ηp πp1 πp2 · · · πpp
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3 Adaptation in Survey-Weighted Least Squares

3.1 Condition Indexes and Variance Decomposition Proportions

In survey-weighted least squares (SWLS), we are more interested in the collinear relations among the columns in the
matrix X̃ = W 1/2X instead ofX , since β̂SW = (X̃

T
X̃)−1X̃Ỹ . Define the singular value decomposition of X̃ to

be X̃ = UDV T , where U , V , andD are usually different from the ones ofX , due to the unequal survey weights.

The condition number of X̃ is defined as κ(X̃) = µmax/µmin, where µmax and µmin are maximum and minimum
singular values of X̃ . The condition number of X̃ is also usually different from the condition number of the data
matrixX due to unequal survey weights. Condition indexes are defined as

ηk = µmax/µk, k = 1, ..., p (6)

where µk is one of the singular values of X̃ . The scaled condition indexes and condition numbers are the condition
indexes and condition numbers of the scaled X̃ .

Based on the extrema of the ratio of quadratic forms (Lin, 1984), the condition number κ(X̃) is bounded in the range
of:

w
1/2
min

w
1/2
max

κ(X) ≤ κ(X̃) ≤ w
1/2
max

w
1/2
min

κ(X), (7)

where wmin and wmax are the minimum and maximum survey weights. This expression indicates that if the survey
weights do not vary too much, the condition number in SWLS resembles the one in OLS. However, in a sample with
a wide range of survey weights, the condition number can be very different between SWLS and OLS. When SWLS
has a large condition number, OLS might not. In the case of exact linear dependence among the columns of X , the
columns of X̃ will also be linearly dependent. In this extreme case at least one eigenvalue ofX will be zero, and both
κ(X) and κ(X̃) will be infinite. As in OLS, large values of κ or of the ηk’s of 10 or more may signal that two or more
columns ofX have moderate to strong dependencies.

The model variance of the SWLS parameter estimator under a model with V arM (e) = σ2R is:

V arM (β̂SW ) = σ2(XTWX)−1XTWRWX(XTWX)−1

= σ2(X̃
T
X̃)−1G,

(8)

where
G = (gij)p×p = XTWRWX(XTWX)−1 (9)

is the misspecification effect (MEFF) that represents the inflation factor needed to correct standard results for the effect
of intracluster correlation in clustered survey data and for the fact that V arM (e) = σ2R and not σ2W−1 (Scott &
Holt, 1982).

Using the SVD of X̃ , we can rewrite V arM (β̂SW ) as

V arM (β̂SW ) = σ2V D−2V TG. (10)

The kth diagonal element in V arM (β̂) is the estimated variance for the kth coefficient, β̂k. Using (10), V arM (β̂k)
can be expressed as:

V ar(β̂k) = σ2Σp
j=1

vkj
µ2
j

λkj (11)

where λkj = Σp
i=1vijgik. if R = W−1, then G = Ip, λkj = vkj , and (11) reduces to (3). However, the situation is

more complicated whenG is not the identity matrix, i.e., when the complex design affects the variance of an estimated
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regression coefficient. If predictors k and j are orthogonal, vkj = 0 for k 6= j and the variance in (11) depends only
on the kth singular value and is unaffected by gij’s that are non-zero. If predictor k and several j’s are not orthogonal,
then λkj has contributions from all of those eigenvectors and from the off-diagonal elements of the MEFF matrix G.
The term λkj then measures both non-orthogonality of x’s and effects of the complex design.

Consequently, we can define variance decomposition proportions and analogous to those for OLS but their interpre-
tation is less straightforward. Let φkj = vkjλkj/µ

2
j , φk = Σp

j=1φkj and Q = (φkj)p×p = (V D−2) · (V TG)T .
The variance-decomposition proportions are πjk = φjk/φk, which is the proportion of the variance of the kth regres-
sion coefficient associated with the jth component of its decomposition in (11). Denote the variance decomposition
proportion matrix as

Π = (πjk)p×p = QT Q̄
−1
, (12)

where Q̄ is the diagonal matrix with the row sums of Q on the main diagonal and 0 elsewhere. The interpretation of
the proportions in (12) is not as clear-cut as for OLS because the effect of the MEFF matrix. Section 3.2 discusses the
interpretation in more detail in the context of stratified cluster sampling.

Analogous to the method for OLS regression, a variance decomposition table can be formed like the one at the end of
section 2. When two or more independent variables are collinear (or “nearly dependent"), one singular value should
make a large contribution to the variance of the parameter estimates associated with those variables. For example, if
the proportions π31 and π32 for the variances of β̂SW1 and β̂SW2 are large, this would say that the third singular value
makes a large contribution to both variances and that the first and second predictors in the regression are, to some
extent, collinear. As shown in section 2.3, when the kth and jth columns in X are orthogonal, vkj = 0 and the jth
singular value’s decomposition proportion πjk on V ar(β̂k) will be 0.

Several special cases are worth noting. If R = W−1 as assumed in WLS, then G = I . The variance decomposition
in (11) has the same form as (2) in OLS. However, having R = W−1 in survey data would be unusual since survey
weights are not typically computed based on the variance structure of a model. Note that V is still different from the
one in OLS and is one component of the SVD of X̃ instead of X . Another special case here is when R = I and the
survey weights are equal, in which case the OLS results can be used. However, when the survey weights are unequal,
even when R = I , the variance decomposition in (11) is different from (2) in OLS since G 6= I . In the next section,
we will consider some special models that take the population features such as clusters and strata into account when
estimating this variance decomposition.

3.2 Variance Decomposition for A Model with Stratified Clustering

The model variance of β̂SW in (8) contains the unknown R that must be estimated. In this section, we present
an estimator for β̂SW that is appropriate for a model with stratified clustering. The variance estimator has both
model-based and design-based justification. Suppose that in a stratified multistage sampling design, there are strata
h = 1, ...,H in the population, clusters i = 1, ..., Nh in stratum h and units t = 1, ...,Mhi in cluster hi. We select
clusters i = 1, ..., nh in stratum h and units t = 1, ...,mhi in cluster hi. Denote the set of sample clusters in stratum h
by sh and the sample of units in cluster hi as shi. The total number of sample units in stratum h is mh =

∑
i∈sh mhi,

and the total in the sample is m =
∑H

h=1mh. Assume that clusters are selected with varying probabilities and with
replacement within strata and independently between strata. The model we consider is:

EM (Yhit) = xT
hitβ h = 1, . . . ,H, i = 1, . . . , Nh, t = 1, . . . ,Mhi

CovM (εhit, εhi′t′) = 0 where εhit = Yhit − xT
hitβ, i 6= i′

CovM (εhit, εh′i′t′) = 0 h 6= h′.

(13)
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Units within each cluster are assumed to be correlated but the particular form of the covariances does not have to be
specified for this analysis. The estimator β̂SW of the regression parameter can be written as:

β̂SW =

H∑
h=1

∑
i∈sh

(X̃
T
X̃)−1XT

hiW hiY hi (14)

where Xhi is the mhi × p matrix of covariates for sample units in cluster hi, W hi = diag(wt), t ∈ shi, is the
diagonal matrix of survey weights for units in cluster hi and Y hi is the mhi× 1 vector of response variables in cluster
hi. The model variance of β̂SW is:

V arM (β̂SW ) = (X̃
T
X̃)−1Gst (15)

where

Gst =

[
H∑

h=1

∑
i∈sh

XT
hiW hiRhiW hiXhi

]
(X̃

T
X̃)−1

=

[
H∑

h=1

XT
hW hRhW hXh

]
(X̃

T
X̃)−1

(16)

withRhi = V arM (Y hi),W h = diag(W hi), andRh = Blkdiag(Rhi),W h = diag(W hi),
XT

h = (XT
h1,X

T
h2, ...,X

T
h,nh

), i ∈ sh. Expression (16) is a special case of (9) with XT = (XT
1 ,X

T
2 , ...,X

T
H),

where Xh is the mh × p matrix of covariates for sample units in stratum h, W = diag(W hi), for h = 1, ...,H and
i ∈ sh andR = Blkdiag(Rh).

Based on the development in Scott & Holt (1982, sec. 4), the MEFF matrix Gst can be rewritten for a special case of
Rh in a way that will make the decomposition proportions in (12) more understandable. Consider the special case of
(13) with

CovM (ehi) = σ2(1− ρ)Imhi
+ σ2ρ1mhi

1T
mhi

where Imhi
is the mhi ×mhi identity matrix and 1mhi

is a vector of mhi 1’s. In that case,

XT
hW hRhW hXh = (1− ρ)XT

hW
2
hXh + ρ

∑
i∈sh

mhiX
T
BhiW

2
hiXBhi

where XBhi = m−1hi 1mhi
1T
mhi
Xhi. Suppose that the sample is self-weighting so that W hi = wImhi

. After some
simplification, it follows that

Gst = w[Ip + (M − Ip)ρ]

where Ip is the p × p identity matrix and M = (
∑H

h=1

∑
i∈sh mhiX

T
BhiXBhi)(X

TWX)−1. Thus, if the sample
is self-weighting and ρ is very small, then Gst ≈ wIp and V arM (β̂SW ) in (15) will be approximately the same
as the OLS variance. If so, the SWLS variance decomposition proportions will be similar to the OLS proportions.
In regression problems, ρ often is small since it is the correlation of the errors, εhit = Yhit − xT

hitβ, for different
units rather than for Y hit’s. This is related to the phenomenon that design effects for regression coefficients are often
smaller than for means-a fact first noted by Kish & Frankel (1974). In applications where ρ is larger, the variance
decomposition proportions in (12) will still be useful in identifying collinearity although they will be affected by
departures of the model errors from independence.

Denote the cluster-level residuals as a vector, ehi = Y hi −Xhiβ̂SW . The estimator of (15) that we consider was
originally derived from design-based considerations. A linearization estimator, appropriate when clusters are selected
with replacement, is:

varL(β̂SW ) = (X̃
T
X̃)−1ĜL (17)
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with the estimated misspecification effect as

ĜL = (ĝij)p×p =

[
H∑

h=1

nh
nh − 1

∑
i∈sh

(z∗hi − z̄∗h)(z∗hi − z̄∗h)T

]
(X̃

T
X̃)−1, (18)

where z̄∗h = 1
nh

∑
i∈s z

∗
hi and z∗hi = XT

hiW hiehi with ehi = Y hi −Xhiβ̂SW , and the variance-covariance matrix

R can be estimated by R̂ =
∑H

h=1
nh

nh−1

[
Blkdiag(ehie

T
hi)− 1

nh
ehe

T
h

]
.

Expression (17) is used by the Stata and SUDAAN packages, among others. The estimator varL(β̂SW ) is consistent
and approximately design-unbiased under a design where clusters are selected with replacement (Fuller, 2002). The
estimator in (17) is also an approximately model-unbiased estimator of (15) (see Liao, 2010). Since the estimator
varL(β̂SW ) is also currently available in software packages, we will use it in the empirical work in section 4.

Using (12) derived in section 2, the variance decomposition proportion matrix Π for varL(β̂SW ) can then be written
as

Π = (πjk)p×p = QT
LQ̄
−1
L (19)

withQL = (φkj)p×p = (U2D
−2) · (UT

2 ĜL)T and Q̄L is the diagonal matrix with the row sums ofQL on the main
diagonal and 0 elsewhere.

4 Numerical Illustrations

In this section, we will illustrate the collinearity measures described in section 3 and investigate their behaviors using
the dietary intake data from 2007-2008 National Health and Nutrition Examination Survey (NHANES).

4.1 Description of the Data

The dietary intake data are used to estimate the types and amounts of foods and beverages consumed during the 24-
hour period prior to the interview (midnight to midnight), and to estimate intakes of energy, nutrients, and other food
components from those foods and beverages. NHANES uses a complex, multistage, probability sampling design;
oversampling of certain population subgroups is done to increase the reliability and precision of health status indicator
estimates for these groups. Among the respondents who received the in-person interview in the mobile examination
center (MEC), around 94% provided complete dietary intakes. The survey weights were constructed by taking MEC
sample weights and further adjusting for the additional nonresponse and the differential allocation by day of the week
for the dietary intake data collection. These weights are more variable than the MEC weights. The data set used in
our study is a subset of 2007-2008 data composed of female respondents aged 26 to 40. Observations with missing
values in the selected variables are excluded from the sample which finally contains 672 complete respondents. The
final weights in our sample range from 6,028 to 330,067, with a ratio of 55:1. The U.S. National Center for Health
Statistics recommends that the design of the sample is approximated by the stratified selection with replacement of 32
PSUs from 16 strata, with 2 PSUs within each stratum.

4.2 Study One: Correlated Covariates

In the first empirical study, a linear regression model of respondent’s body mass index (BMI) was considered. The
explanatory variables considered included two demographic variables, respondent’s age and race (Black/Non-black),
four dummy variables for whether the respondent is on a special diet of any kind, on a low-calorie diet, on a low-fat
diet, and on a low-carbohydrate diet (when he/she is on diet, value equals 1, otherwise 0), and ten daily total nutrition
intake variables, consisting of total calories (100kcal), protein (100gm), carbohydrate (100gm), sugar (100gm), dietary

8



fiber (100gm), alcohol (100gm), total fat (100gm), total saturated fatty acids (100gm), total monounsaturated fatty
acids (100gm), and total polyunsaturated fatty acids (100gm). The correlation coefficients among these variables are
displayed in Table 2. Note that the correlations among the daily total nutrition intake variables are often high. For
example, the correlations of the total fat intakes with total saturated fatty acids, total monounsaturated fatty acids and
total polyunsaturated fatty acids are 0.85, 0.97 and 0.93.

Three types of regressions were fitted for the selected sample to demonstrate different diagnostics. More details about
these three regression types and their diagnostic statistics are displayed in Table 1.
TYPE1: OLS regression with estimated σ2; the diagnostic statistics are obtained using the standard methods reviewed
in section 2;
TYPE2: WLS regression with estimated σ2 and assuming R = W−1; the scaled condition indexes are estimated
using (6) and the scaled variance decomposition proportions are estimated using (12). With R = W−1, these are the
variance decompositions that will be produced by standard software using WLS and specifying the weights to be the
survey weights;
TYPE3: SWLS with estimated R̂, when σ2R is unknown; the scaled condition indexes are estimated using (6); the
scaled variance decomposition proportions are estimated using (12).

Table 1: Regression Models and their Collinearity Diagnostic Statistics used in this Experimental Study
Type Regression

Method
Weight
matrix
W a

var(β̂) var(β̂k) Matrix for
Condition
Indexes b

Variance Decomposition Proportion πjk

TYPE1 OLS I σ̂2(XTX)−1 σ2Σpj=1

u2
2kj

µ2
j

c XTX
u2
2kj

µ2
j
/Σpj=1

u2
2kj

µ2
j

TYPE2 WLS W σ̂2(XTWX)−1 σ2Σpj=1

u2
2kj

µ2
j

d XTWX
u2
2kj

µ2
j
/Σpj=1

u2
2kj

µ2
j

TYPE3 SWLS W σ̂2(XTWX)−1XTWR̂WX(XTWX)−1 σ2Σpj=1

u2kjΣ
p
i=1ĝiku2ij

µ2
j

e XTWX
u2kjΣ

p
i=1ĝiku2ij

µ2
j

/Σpj=1

u2kjΣ
p
i=1ĝiku2ij

µ2
j

R̂ =
∑H
h=1

nh
nh−1

[
Blkdiag(ehie

T
hi) − 1

nh
ehe

T
h

]
aIn all the regression models, the parameters are estimated by: β̂ = (XTWX)−1XTWY .
bThe eigenvalues of this matrix will be used to compute the Condition Indexes for the corresponding regression model.
cThe terms u2kj and µj are from the singular value decomposition of the data matrixX .
dThe terms u2kj and µj are from the singular value decomposition of the weighted data matrix X̃ =W 1/2X .
eThe terms u2kj and µj are from the singular value decomposition (SVD) of the weighted data matrix X̃ . The term ĝik is the unit

element of misspecification effect matrix Ĝ.

Their diagnostic statistics, including the scaled condition indexes and variance decomposition proportions are reported
in Tables 3, 4 and 5, respectively. To make the tables more readable, only the proportions that are larger than 0.3 are
shown. Proportions that are less than 0.3 are shown as dots. Note that some terms in decomposition (12) can be
negative. This leads to the possibility of some "proportions" being greater than 1. This occurs in five cases in Table
5. Belsley et al. (1980) suggest that a condition index of 10 signals that collinearity has a moderate effect on standard
errors; an index of 100 would indicate a serious effect. In this study, we consider a scaled condition index greater than
10 to be relatively large, and ones greater than 30 as large and remarkable. Furthermore, the large scaled variance-
decomposition proportions (greater than 0.3) associated with each large scaled condition index will be used to identify
those variates that are involved in a near dependency.

In Tables 3, 4 and 5, the weighted regression methods, WLS and SWLS, used the survey-weighted data matrix X̃
to obtain the condition indexes while the unweighted regression method, OLS, used the data matrix X . The largest
scaled condition index in WLS and SWLS is 566, which is slightly smaller than the one in OLS, 581. Both of these
values are much larger than 30 and, thus, signal a severe near-dependency among the predictors in all three regression
models. Such large condition numbers imply that the inverse of the design matrix, XTWX , may be numerically
unstable, i.e., small changes in the x data could make large changes in the elements of the inverse.

The values of the decomposition proportions for OLS and WLS are very similar and lead to the same predictors being
identified as potentially collinear. Results for SWLS are somewhat different as sketched below. In OLS and WLS,
six daily total nutrition intake variables–calorie, protein, carbohydrate, alcohol, dietary fiber and total fat–are involved
in the dominant near-dependency that is associated with the largest scaled condition index. Four daily fat intake
variables, total fat, total saturated fatty acids, total monounsaturated fatty acids and total polyunsaturated fatty acids,
are involved in the secondary near-dependency that is associated with the second largest scaled condition index. A

9



moderate near-dependency between intercept and age is also shown in all three tables. The associated scaled condition
index is equal to 38 in OLS and 37 in WLS and SWLS. However, when SWLS is used, sugar, total saturated fatty acids
and total polyunsaturated fatty acids also appear to be involved in the dominant near-dependency as shown in Table
5. While, only three daily fat intake variables, total saturated fatty acids, total monounsaturated fatty acids and total
polyunsaturated fatty acids, are involved in the secondary near-dependency that is associated with the second largest
scaled condition index. Thus, when OLS or WLS is used, the impact of near-dependency among sugar, total saturated
fatty acids, total polyunsaturated fatty acids and the six daily total nutrition intake variables is not as strong as the ones
in SWLS. If conventional OLS or WLS diagnostics are used for SWLS, this near-dependency might be overlooked.

Rather than using the scaled condition indexes and variance decomposition method (in Tables 3, 4 and 5), an ana-
lyst might attempt to identify collinearities by examining the unweighted correlation coefficient matrix in Table 2.
Although the correlation coefficient matrix shows that almost all the daily total nutrition intake variables are highly
or moderately pairwise correlated, it cannot be used to reliably identify the near-dependencies among these variables
when used in a regression. For example, the correlation coefficient between "on any diet" and "on low-calorie diet" is
relatively large (0.73). This near dependency is associated with a scaled condition index equal to 11 (larger than 10,
but less than the cutoff of 30) in OLS and WLS (shown in Table 3 and 4) and is associated with a scaled condition
index equal to 2 (less than 10) in SWLS (shown in Table 5). The impact of this near dependency appears to be not
very harmful not matter which regression method is used. On the other hand, alcohol is weakly correlated with all the
daily total nutrition intake variables but is highly involved in the dominant near-dependency shown in the last row of
Tables 3-5.
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After the collinearity patterns are diagnosed, the common corrective action would be to drop the correlated variables,
refit the model and reexamine standard errors, collinearity measures and other diagnostics. Omitting X’s one at a
time may be advisable because of the potentially complex interplay of explanatory variables. In this example, if the
total fat intake is one of the key variables that an analyst feels must be kept, sugar might be dropped first followed by
protein, calorie, alcohol, carbohydrate, total fat, dietary fiber, total monounsaturated fatty acids, total polyunsaturated
fatty acids and monounsaturated fatty acids. Other remedies for collinearity could be to transform the data or use some
specialized techniques such as ridge regression and mixed Bayesian modeling, which require extra (prior) information
beyond the scope of most research and evaluations.

To demonstrate how the collinearity diagnostics can improve the regression results in this example, Table 6 presents
the SWLS regression analysis output of the original models with all the explanatory variables and a reduced model
with fewer explanatory variables. In the reduced model, all of the dietary intake variables are eliminated except total
fat intake. After the number of correlated offending variables is reduced, the standard error of total fat intake is only the
one forty-sixth of its standard error in the original model. The total fat intake becomes significant in the reduced model.
The reduction of correlated variables appears to have substantially improved the accuracy of estimating the impact of
total fat intake on BMI. Note that the collinearity diagnostics do not provide a unique path toward a final model.
Different analysts may make different choices about whether particular predictors should be dropped or retained.

Table 6: Regression Analysis Output using TYPE3: SWLS
Original Model Reduced Model

Variable Coefficient SEa Coefficient SE
Intercept 24.14***b 2.77 24.20*** 2.69
Age 0.06 0.08 0.06 0.08
Black 3.19*** 1.04 3.67*** 0.98
on any Dietc 1.79 1.52 1.28 1.80
on Low-calorie Diet 4.09** 1.50 4.59** 1.69
on Low-fat Diet 3.67 2.86 3.87 3.76
on Low-carb Diet 0.46 3.51 0.87 3.86
Calorie -0.88 2.36
Protein 7.05 9.59
Carbohydrate 3.69 9.62
Sugar -0.31 1.11
Dietary Fiber -14.52* 5.89
Alcohol 2.09 16.47
Total Fat 29.34 31.37 1.47* 0.68
Total Saturated Fatty Acids -15.90 20.18
Total Monounsaturated Fatty Acids -22.40 23.01
Total Polyunsaturated Fatty Acids -27.69 21.10
Intracluster Coefficient ρ 0.0366 0.0396

astandard error
bp-value: *, 0.05; **, 0.01; ***, 0.005
cThe reference category is "not being on diet" for all the on-diet variables here.

4.3 Study Two: Reference Level for Categorical Variables

As noted earlier, using non-survey data, dummy variables can also play an important role as a possible source for
collinearity. The choice of reference level for a categorical variable may affect the degree of collinearity in the data.
To be more specific, choosing a category that has a low frequency as the reference and omitting that level in order to fit
the model may give rise to collinearity with the intercept term. This phenomenon carries over to survey data analysis
as we now illustrate.

We employed the four on-diet dummy variables used in the previous study, which we denote this section as “on
any diet" (DIET), “on low-calorie diet" (CALDIET), “on low-fat diet" (FATDIET) and “one low-carbohydrate diet"

15



(CARBDIET). The model considered here is:

BMIhit = β0 + βblack ∗ blackhit + βTOTAL.FAT ∗ TOTAL.FAThit + βDIET ∗DIEThit+

βCALDIET ∗ CALDIEThit + βFATDIET ∗ FATDIEThit+

βCARBDIET ∗ CARBDIEThit + εhit

(20)

where subscript hit stands for the tth unit in the selected PSU hi, black is the dummy variable of black (black=1 and
non-black=0), and TOTAL.FAT is the variable of daily total fat intake. According to the survey-weighted frequency
table, 15.04% of the respondents are “on any diet", 11.43% of them are “on low-calorie diet", 1.33% of them are
“on low-fat diet" and 0.47% of them are “on low-carbohydrate diet". Being on a diet is, then, relatively rare in this
example. If we choose the majority level, “not being on the diet", as the reference category for all the four on-diet
dummy variables, we expect no severe collinearity between dummy variables and the intercept, because most of values
in the dummy variables will be zero. However, when fitting model (20), assume that an analyst is interested to see
the impact of “not on any diet" on respondent’s BMI and reverses the reference level of variable DIET in model
(20) into “being on the diet". This change may cause a near dependency in the model because the column in X for
variable DIET will nearly equal the column of ones for the intercept. The following empirical study will illustrate the
impact of this change on the regression coefficient estimation and how we should diagnose the severity of the resulting
collinearity.

Table 7 and 8 present the regression analysis output of the model in (20) using the three regression types, OLS, WLS
and SWLS, listed in Table 1. Table 7 is modeling the effects of on-diet factors on BMI by treating “not being on the
diet" as the reference category for all the four on-diet variables. While Table 8 changes the reference level of variable
DIET from “not on any diet" into “On any diet" and models the effect of “not on any diet" on BMI. The choice of
reference level effects the sign of the estimated coefficient for variable DIET but not its absolute value or standard
error. The size of the estimated intercept and its SE are different in Tables 7 and 8, but the estimable functions, like
predictions, will of course, be the same with either set of reference levels. The SE of the intercept is about three times
larger when “on any diet" is the reference level for variable DIET (Table 8) than when it is not (Table 7).

Table 7: Regression Analysis Output: When “not on any diet" is the Reference Category for DIET variable
in the Model

Regression
Type

Intercept black total.fat on any diet on low-calorie diet on low-fat
diet

on low-carb diet

TYPE1 27.22***a 3.20*** 0.95 3.03 1.75 2.75 -1.48
OLS (0.61)b (0.70) (0.72) (1.94) (2.03) (2.72) (3.66)
TYPE2 26.13*** 3.65*** 1.44* 1.39 4.46* 3.86 0.94
WLS (0.58) (0.82) (0.67) (1.67) (1.79) (2.59) (4.22)
TYPE3 26.13*** 3.65*** 1.44* 1.39 4.46** 3.86 0.94
SWLS (0.64) (0.99) (0.63) (1.80) (1.70) (3.73) (3.87)

ap-value: *, 0.05; **, 0.01; ***, 0.005
bStandard errors are in parentheses under parameter estimates.

Table 8: Regression Analysis Output: When “on any diet" is the Reference Category for DIET variable in
the Model

Regression
Type

Intercept black total.fat not on any
diet

on low-calorie diet on low-fat
diet

on low-carb diet

TYPE1 30.25***a 3.20*** 0.95 -3.03 1.75 2.75 -1.48
OLS (2.00)b (0.70) (0.72) (1.94) (2.03) (2.72) (3.66)
TYPE2 27.52*** 3.65*** 1.44* -1.39 4.46* 3.86 0.94
WLS (1.71) (0.82) (0.67) (1.67) (1.79) (2.59) (4.22)
TYPE3 27.52*** 3.65*** 1.44* -1.39 4.46** 3.86 0.94
SWLS (1.75) (0.99) (0.63) (1.80) (1.70) (3.73) (3.87)

ap-value: *, 0.05; **, 0.01; ***, 0.005
bStandard errors are in parentheses under parameter estimates.

When choosing “not being on diet" as the reference category for all the four on-diet dummy variables in Table 9, the
scaled condition indexes are relatively small and do not signify any remarkable near-dependency regardless of the
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type of regression. Only the last row for the largest condition index is printed in Tables 9 and 10. Often, the reference
category for a categorical predictor will be chosen to be analytically meaningful. In this example, using “not being on
diet" for each of the four diet variables would be logical.

In Table 10, when “on any diet" is chosen as the reference category for variable DIET, the scaled condition indexes
are increased and show a moderate degree of collinearity (condition index larger than 10) between the on-diet dummy
variables and the intercept. Using the table of scaled variance decomposition proportions, in OLS and WLS, dummy
variable for “not on any diet"" and “on low-calorie diet" are involved in the dominant near-dependency with the inter-
cept; however, in SWLS, only the dummy variable for "not on any diet" is involved in the dominant near-dependency
with the intercept and the other three on-diet variables are much less worrisome.

Table 9: Largest Scaled Condition Indexes and Its Associated Variance Decomposition Proportions: When
“not on any diet" is the Reference Category for variable DIET in the Model

Scaled Scaled Proportion of the Variance of
Condition
Index

Intercept gender total.fat on any diet on low-calorie diet on low-fat diet on low-carb
diet

TYPE1: OLS
6 0.005 0.000 0.016 0.949 0.932 0.157 0.200
TYPE2: WLS
6 0.013 0.008 0.020 0.938 0.926 0.189 0.175
TYPE3: SWLS
6 0.006 0.007 0.013 0.686 0.741 0.027 0.061

Table 10: Largest Scaled Condition Indexes and Its Associated Variance Decomposition Proportions: When
“on any diet" is the Reference Category for variable DIET in the Model

Scaled Scaled Proportion of the Variance of
Condition
Index

Intercept gender total.fat not on any diet on low-calorie diet on low-fat diet on low-carb
diet

TYPE1: OLS
17 0.982 0.001 0.034 0.968 0.831 0.155 0.186
TYPE2: WLS
17 0.982 0.011 0.029 0.968 0.820 0.182 0.160
TYPE3: SWLS
17 0.897 0.018 -0.006 0.971 0.318 0.014 -0.019

5 Conclusion

Dependence between predictors in a linear regression model fitted with survey data affects the properties of parameter
estimators. The problems are the same as for non-survey data: standard errors of slope estimators can be inflated and
slope estimates can have illogical signs. In the extreme case when one column of the design matrix is exactly a linear
combination of others, the estimating equations cannot be solved. The more interesting cases are ones where predictors
are related but the dependence is not exact. The collinearity diagnostics that are available in standard software routines
are not entirely appropriate for survey data. Any diagnostic that involves variance estimation needs modification to
account for sample features like stratification, clustering, and unequal weighting. This paper adapts condition numbers
and variance decompositions, which can be used to identify cases of less than exact dependence, to be applicable for
survey analysis.

A condition number of a survey-weighted design matrixW 1/2X is the ratio of the maximum to the minimum eigen-
value of the matrix. The larger the condition number the more nearly singular is XTWX , the matrix which must
be inverted when fitting a linear model. Large condition numbers are a symptom of some of the numerical problems
associated with collinearity. The terms in the decomposition also involve "misspecification effects" if the model errors
are not independent as would be the case in a sample with clustering. The variance of an estimator of a regression
parameter can also be written as a sum of terms that involve the eigenvalues ofW 1/2X . The variance decompositions
for different parameter estimators can be used to identify predictors that are correlated with each other. After identify-
ing which predictors are collinear, an analyst can decide whether the collinearity has serious enough effects on a fitted
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model that action should be taken. The simplest step is to drop one or more predictors, refit the model, and observe
how estimates change. The tools we provide here allow this to be done in a way appropriate for survey-weighted
regression models.
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