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Abstract: Multiple imputation has become one of the most popular and successful methods for 
dealing with missing data in statistical analyses.  Multiple imputation allows one to use observed 
data to model relationships among variables, represent uncertainty in missing values through 
multiple draws from conditional distributions, and produce both point estimates and variance 
estimates for estimated parameters.  Variance estimates incorporate contributions to variance from 
both within and between completed data set analyses.  Advances have been made on 
computational issues for highly multivariate data sets and for variables exhibiting complex 
patterns and relationships.  Despite the advantages of multiple imputation for missing data in 
public use release of data from sample surveys and other studies, it has been noted that multiple 
imputation variance estimators can be biased to some degree.  Bias has been found to be possible 
when key subpopulations are ignored in the imputation model, survey weights are not used in the 
imputation model, and in the case of linear estimators prior distributions for model parameters 
other than single observation unbiased priors (SOUPs) are used in the imputation model.  
Calibration weighting and its familiar forms, including raking and post-stratification, are often 
used in sample surveys to adjust sample estimates to match control total values.  We explore 
possibilities for using calibration weighting in combination with multiple imputation when there 
are missing data in a survey from a finite population.  In particular, we examine the potential for 
calibration to remove or reduce bias in multiple imputation variance estimation when a SOUP is 
not used.  Methods could apply to both sample survey and more general study design contexts.  
 
Key words and phrases:  Calibration weighting; Single observation unbiased priors; Missing data; 
Sample survey; Variance estimation. 
 

1.  Introduction 
 
Multiple imputation (MI; Rubin 1978, 1987, 1996) has become one of the most popular and successful methods 
for dealing with missing data in statistical analyses (e.g., Barnard and Meng 1999, Klebanoff and Cole 2008, 
and Reiter and Raghunathan 2007).  MI allows one to use observed data to model relationships among 
variables, represent uncertainty in missing values through multiple draws from conditional distributions, and 
produce both point estimates and variance estimates for estimated parameters.  Variance estimates incorporate 
contributions to variance from both within and between completed data set analyses.  Advances have been made 
on computational issues for highly multivariate data sets and for variables exhibiting complex patterns and 
relationship (e.g., Raghunathan et al. 2001, Burgette and Reiter 2010, Azur et al. 2011, and Ofer and Zhou 
2007) 
 
Despite the advantages of MI for missing data in public use release of data from sample surveys and other 
studies, it has been noted that MI variance estimators can be biased to some degree.  Bias has been found to be 
possible when key subpopulations are ignored in the imputation model, survey weights are not used in the 
imputation model, and in the case of linear estimators prior distributions for model parameters other than single 
observation unbiased priors (SOUPs) are used in the imputation model.   

                                                 
1 Disclaimer:  Any views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 
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An instance of biased variance estimation that appears in the literature concerns estimating a domain (or 
subgroup) mean and total when the domain is ignored by the imputation model (Fay 1992; see also Fay 1993 
and 1994).   Ignoring key aspects of the data generally causes bias in any analysis or approach to handling 
missing data.  When a domain is ignored, imputations can have too much variability, because the variability in 
imputations can reflect both observed variability within the group plus variability due to group differences.  If 
the imputer (the person doing the imputations) and the analyst use models that both incorporate domain effects, 
then this criticism has much less strength.  In a large-scale complex survey, however, imputation might be 
implemented by a statistical agency before data are released.  Subsequently, analysts conduct many analyses 
without intimate knowledge of the imputation model, including which domains have been modeled.  Response 
to this issue can be found in Meng (1994), Rubin (1996), and, briefly, in Kott (1995).  
 
The second example occurs when survey weights are not used in the imputation model under informative 
sampling (Kott 1995).  Specifically, Kott (1995) considers a situation in which there is interest on a domain that 
crosses strata and sampling and/or response rates vary by strata.   If a model is posited for the missing data that 
gives equal weight to each respondent in the domain, then there is a disconnection between sampling/response 
rates and the use of individual units when estimating the model.  If the weights, which reflect the 
sampling/response rates, had been used to develop the imputation model, then Kott’s scenario would not be a 
concern.   Ignoring key aspects of the sampling design and response mechanisms for an analysis and approach 
to missing data can lead to bias in general (Rubin 1983).  Kott and Folsom (2010) comment further on the 
interaction of MI models and survey weights for a multi-item survey.  See also Reiter et al. (2006) in this 
context.  
 
These two conditions (domains and survey weights) were explored later by Kim et al. (2006).  The study in 
Kim et al. (2006) extends the work of Kott (1995) on weighting and Fay (1992, 1993) on domains.  The paper 
examines estimators that are linear combinations of the sampled data.  The authors consider a joint distribution 
for superpopulation, sampling, response, and imputation models.  The MI estimator (𝜃�𝑀) of a parameter θ is 
decomposed into three pieces: the complete data point estimator (𝜃�𝑛), the difference between the infinite 
replicate MI estimator and the complete data point estimator (𝜃�𝑛 −  𝜃�∞), and the difference between the finite 
replicate and the infinite replicate MI estimators (𝜃�∞ −  𝜃�𝑀), where n is the planned sample size and M is the 
number of imputations per missing value. The bias of Rubin’s MI variance estimator (V(𝜃�𝑀)) is shown to occur 
due to covariance between the complete data point estimator and the finite replicate MI estimator.  Special cases 
of their presentation apply to domain estimation and linear regression models with fully observed independent 
variables.    
 
The third situation in which the MI variance estimator can have bias is when certain prior distribution 
assumptions are made.  Kim (2004) demonstrated bias in a finite population context for Rubin’s MI variance 
estimator for an estimator that is a linear combination of sample values.  In order to implement Bayesian 
multiple imputation, one specifies a prior distribution on unknown parameters.  Under the model, which 
includes a data distribution and a prior distribution, one generates random values as imputations for missing 
data. Under Kim’s (2004) scenario, when a prior distribution other than a single observation unbiased prior 
(SOUP; Meng and Zaslavsky 2002) is used in the imputation model, Rubin’s MI variance estimator is biased.  
The bias is larger when there is a small sample size in the study.  
 
One of the major limitations of the prior work on bias in Rubin’s MI variance estimator is that the correlation 
between imputation and weighting as it often occurs in practice is not considered.  In many large-scale 
government surveys some form of calibration weighting, such as raking and post-stratification, is performed 
after imputation has been completed.  The calibration then is dependent on the imputed values.  This raises the 
question, if these weighting steps are preformed after imputation and can take into account information external 
to the survey, not available for imputation, can these weighting steps reduce the bias in Rubin’s MI variance 
estimator?  In the proposed research we set out to explore this question for each of the three conditions in which 
biased variance estimation has been noted to occur.   In this paper we will focuses on the selection of priors.   
 
Section 2 reviews the theoretical background used in this paper.  Section 3 describes the design of the 
simulations used to study the question under consideration.  Section 4 presents the results of the simulations for 
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one of the questions under study.  Finally, Section 5 provides some concluding remarks and some topics that 
could be considered in future research.   
 
2.  Background 
 
Let θ be a population parameter.   Let 𝜃� be the estimator of θ.   Let 𝑉(𝜃�) be the variance of 𝜃�, and 𝑉�(𝜃�)  be the 
estimator of this variance.  When some data that one intended to observe are missing, then one must decide 
what to do about the missing data when estimating θ and the variance of the estimator.    

 
2.1 Multiple Imputation Variance Estimation 
 
In multiple imputation (MI; Rubin 1978, 1987, 1996), one fills in the missing data from random imputations 
under a (Bayesian) model.   The data are completed multiple times, yielding multiple completed data sets.  For 
filled-in data set m, let the estimate of θ be θ�𝑚.  Suppose there are M imputed data sets and estimates.  The MI 
estimator of θ is the average of the M estimates:  �1

𝑀� �∑ θ�𝑚.𝑀
𝑚=1   The variance of this estimator can be 

estimated by 𝑉� = 𝑈 + �1 + 1
𝑀� �𝐵, where U is the average within analysis variance and B is the variance 

between estimates (Rubin 1987).  In formulas, 𝑈 =  �1
𝑀� �∑ 𝑉�(θ�𝑚)𝑀

𝑚=1  , where 𝑉�(θ�𝑚) is the estimated 

variance for the analysis using the m-th data set, and, for a scalar parameter, 𝐵 = �1
(𝑀 − 1)� �∑ (θ�𝑚 −𝑀

𝑚=1

�1
𝑀� �∑ θ�𝑚)𝑀

𝑚=1
2

. 
 
If the model for the data is 𝑌𝑖 = 𝑥𝑖′𝛽 + 𝑒𝑖 , 𝑒𝑖~𝑖𝑖𝑑𝑁(0,𝜎2) and an r subscript indicates respondents and an m 
subscript indicates missing values, then a typical multiple imputation scheme (see, e.g., Kim 2004, Schenker 
and Welsh 1988, Rubin and Schenker 1986, Rubin 1987) is as follows.  We assume a non-informative, flat prior 
distribution on β (𝑝(𝛽) ∝ 1) and that only some values of y are missing.  
 

1. For each replication, m=1, …, M, draw the error variance as 𝜎𝑚2 |𝑦𝑟  ~𝑖𝑖𝑑𝑆𝑆𝐸/𝜒𝑑𝑓2  where SSE is the sum 
of squared errors from the regression of y on x for the cases with y observed and df is a degrees of 
freedom. The degrees of freedom is influenced by the choice of the prior distribution on 𝜎2.  
 

2. For each replication, m=1, …, M, draw regression coefficients as 𝛽𝑚|𝑦𝑟 ,𝜎𝑚2  ~𝑖𝑖𝑑𝑁(𝛽̂𝑟 , (𝑋𝑟′𝑋𝑟)−1𝜎𝑚2 ) 
where 𝛽̂𝑟 =  (𝑋𝑟′𝑋𝑟)−1𝑋𝑟′𝑦𝑟 is the least-squares estimate of the regression coefficients using the cases 
with y observed and  𝑋𝑟 and 𝑦𝑟 are the design matrix and response vector, respectively, for 
respondents.  

 
3. For each replication, m=1, …, M, and unit with missing yi, draw imputations independently of one 

another:  𝑦𝑖𝑚~ 𝑁(𝑥𝑖𝛽𝑚,𝜎𝑚2  ) .  
 
If the prior distribution is uniform on the (β, log σ) scale (Gelman et al. 2004, chapter 14; 𝑝(𝛽,𝜎2) ∝ 𝜎−2) , 
then df = r-p, where p is the dimension of X.  If the prior distribution on σ2 is proportional to (𝜎2)−2 (Kim 2004, 
Meng and Zaslavsky 2002), then df=r-p+2.  
 
2.2 Calibration 
 
Calibration estimation, or calibration weighting, is a method used to incorporate axillary information based on 
known marginal totals into analysis of survey data from a finite population.  It is used with the aim of achieving 
two goals. The first goal is to increase the efficiency of estimators, which can be done when the axillary 
information is highly predictive of the variable of interest.  The second is to ensure that the estimates meet 
control totals, such as known population totals, and thus produce estimates that have the same value across 
surveys and for known population quantities.  Calibration encompasses many familiar weighting adjustments 
and estimators such as raking, poststratification, and generalized regression estimators.  The basic theory of 
calibration can be found in Deville & Särndal (1992) and Deville et al. (1993).  The basic framework for 
calibration estimation is to minimize the change in the weights while meeting the control totals under a selected 
distance function.  The choice of distance function and specification of control totals (i.e., the margins of which 
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variables and interactions among variables) are what make the methods different versions of calibration 
estimation. 

 
2.3 Multiple Imputation with Calibration and Choice of Prior Distribution 
 
Kim (2004) and Schenker and Welsh (1988) considered MI for missing data in the outcome variable y in a 
homoscedastic regression model with independent errors.   Schenker and Welsh (1988) showed that, as the 
sample size increases, the MI point and variance estimator are consistent for their desired quantities.   Kim 
(2004) showed that in the finite population setting that the MI variance estimator can have bias.  This occurs in 
the case of simple regression when df=r-2, which corresponds to a prior distribution uniform on the (β, log σ) 
scale (Gelman et al., 2004).  If the sample size is large, then the bias gets small.  The bias goes away in the 
simple regression scenario when df = r, corresponding to a prior distribution on σ2  proportional to (𝜎2)−2.   
Meng and Zaslavsky (2002) called this a single observation unbiased prior (SOUP) distribution. It should be 
noted that even if a sample survey has a large total sample size, one often desires to make inferences within 
strata or groups of strata and for small domain groups. Thus, one cannot always rely on large sample sizes to 
address bias in Rubin’s multiple imputation variance estimator.  
 
The bias in the Rubin’s multiple imputation variance estimator, when using the SW prior, is a function of both 
the within (W) and the between (B) variance (Kim 2004).  Calibration, if the axillary variable is significantly 
correlated with the variable of interest, reduces W by incorporating axillary information and reduces B by 
pulling the estimates in each imputed data set closer together. 

 
3.  Simulation 
 
Three separate simulations are being run to evaluate each of the sources of potential bias in the multiple 
imputation variance estimators described earlier in this paper.  Here results are reported for the issue of the 
choice of the prior distribution.  These simulations were all run in R (R Development Core Team, 2008) and are 
similar in nature to but different in detail from those presented in Kim (2004).  All of the simulations are based 
on a common finite population with N = 100,000 members.   The simulation design used was a 2 x 3 x 4 
factorial design with the following three factors:  
 

1. factor A, method of imputation - SW or SOUP 
2. factor B, response rate – 0.8, 0.6, 0.4  
3. factor C, sample size – 20, 40, 200, 400 

 
For each factor combination, 50,000 simulations (L) were performed.  
 
3.1 Finite Population 
 
A common finite population was used for all three simulations.  The finite population was generated by taking 
100,000 independent draws out of a normal distribution with µ = 10 and variance of σ2 = 25/3 (X).  
 

𝑌𝑖 = 2 + 4𝑋𝑖 + 𝑒𝑖  
 

where 𝑒𝑖  are drawn independently from a standard normal distribution.  This model specification causes X and 
Y to be highly correlated (i.e ρ ≈ 0.99). This follows the basic setup of (Kim 2004).  
 
Additionally, two variables were generated to be used for raking as follows: 
 

𝑈𝑖
𝜌 = 𝑌𝑖 + 𝜖𝑖 

 
where 𝜖𝑖 was drawn independently from a normal distribution with µ = 10 and σ2 in a manner such that 
correlation(Y, 𝑈𝑖

𝜌) = ρ for ρ = (0.6, 0.9).  Specifically the variance of Y is v= 16(25/3)+1, the variance of U is v+ 
σ2, and the covariance of Y and U is also v.  The correlation of Y and U then is 𝑣 �𝑣(𝑣 + 𝜎2)⁄ , and one can 
solve for ρ.  
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3.2 Missing Data Mechanisms 
 
Missing values of Y for each sample are generated by taking a simple random sample of size nonresponse rate 
times the sample size.  This is a uniform response mechanism that ensures constant sample size for each 
simulate.  This response mechanism is the missing completely at random (MCAR) missingness mechanism, 
which also was used by Kim (2004).   
 
3.3 Choice of Prior Distribution and Imputation Algorithm  
 
For this simulation two imputation models are compared: the standard linear-model framework studied by 
Schenker and Welsh (1988) and the single observation unbiased priors (SOUPs) modification to this model 
which appears in Kim (2004) and is based on Meng (1994) and Meng and Zalavsky (2004).   
 
For this simulation, sampling is performed using a simple random without replacement sample to ensure that 
the sampling is non-informative.  Imputation is performed assuming a classic linear model framework:  
 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 
   

𝑒𝑖  ~ 𝑁(0,𝜎2) 
 
The standard Bayesian approach to a classical linear model based only on the respondents is to assume that:   
          

 
𝛽𝑟|(𝑦,𝜎2) ~ 𝑁(𝛽̂𝑟 ,𝑉�𝛽𝑟𝜎

2) 
where, 

 
𝛽̂𝑟 = (𝑋𝑟′𝑋𝑟)−1𝑋𝑟′𝑦𝑟
𝑉�𝛽𝑟 = (𝑋𝑟′𝑋𝑟)−1.

 

 
Additionally, 
 

𝜎2|𝑦𝑟 ~ 𝐼𝑛𝑣𝜒2(𝑑𝑓, 𝑠𝑟2) 
   

𝑠𝑟2 = (𝑟 − 2)−1𝑦𝑟′[𝐼 − 𝑋𝑟(𝑋𝑟′𝑋𝑟)−1𝑋𝑟′]𝑦𝑟 . 
 
For more details on the Bayesian approach to classical linear models see chapter 14 of Gelman et al.  (2004).   
 
To make this model and procedure operational in a multiple imputation context the following algorithm is used 
independently for each replicate k = 1,…, M: 
 

1. Draw   
 

𝜎(𝑘)
2 |𝑦𝑟  ~ 𝐼𝑛𝑣𝜒2(𝑑𝑓, 𝑠𝑟2) 

 
2. Draw 

  
𝛽(𝑘)|�𝑦,𝜎(𝑘)

2 � ~ 𝑁(𝛽̂𝑟 ,𝑉�𝛽𝑟𝜎(𝑘)
2 ) 

 
3. Then for each missing yj draw   

 
𝑒𝑗(𝑘)|�𝛽(𝑘),𝜎(𝑘)

2 � ~ 𝑁(0,𝜎(𝑘)
2 ) 
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4. Finally impute for  yj for the kth implicate as 
 

𝑦𝑗(𝑘) = 𝛽0(𝑘) + 𝛽1(𝑘)𝑥𝑗 + 𝑒𝑗(𝑘). 
 

 
The difference between the method proposed by Schenker and Welsh (1988) and Kim (2004), from now on 
called the SW method and the SOUP method, respectively, lies in the choice the degrees of freedom used in the 
prior distribution on 𝜎2.  The SW method uses df = r-p where r is the number of respondents and p is the 
number of parameters that are being estimated in the model, in this case p = 2.  The SOUP method uses df = r-
p-2.   

 
3.4 Raking  
 
The weights where all adjusted by raking to evaluate the effect of post-imputation weighting adjustments on the 
bias and coverage properties of multiple imputation variance estimators.  Raking was performed using the calib 
function from the sampling package in R (Tillé & Matei 2008).  Raking was performed by using the 𝑈𝑖

𝜌 variable 
and the marginal total ∑𝑈𝑖

𝜌.   
 

3.5 Variances and Degrees of Freedom 
 

Within variance for each imputed data set was calculated using a traditional jackknife method.  The between 
variance estimate and the combined variance estimate were calculated using the method laid out in Section 2.1.  
For calculation of confidence intervals, a t-distribution was assumed with degrees of freedom, calculated using 
the method proposed by Barnard and Rubin (1999), which is a method of calculating degrees of freedom for 
multiple imputation analyses that is more robust for small sample sizes.   
 
3.5 Evaluation Criterion  
 
Two evaluation criterion where used to evaluate the bias of the variance estimator and coverage properties of 
each variance estimator.  The first is the relative bias 
 

𝐸𝐿�𝑉�� − 𝑉𝑎𝑟𝐿(𝜃�)
𝑉𝑎𝑟𝐿(𝜃�)

 

 
where 𝐸𝐿�𝑉�� is the mean of the variance estimator for 𝜃� over L simulations and 𝑉𝑎𝑟𝐿(𝜃�) is the estimated Monte 
Carlo variance over L simulations. Values of 𝐸𝐿�𝑉��  and 𝑉𝑎𝑟𝐿(𝜃�)  are found in the appendix.  The second 
evaluation criterion is the coverage of the finite population value of 𝜃 for the 95% t-distribution based 
confidence interval over the L simulations.  

 
4.  Results 

 
There is not much variation in coverage rates or relative biases of variance estimators between the multiple 
imputation methods with the SOUP prior distributions and the multiple imputation methods with the three 
versions using the SW prior distribution.  Since 50,000 simulations were performed, the Monte Carlo simulation 
variance of these estimates are on the order of O(n-1).  Each draw was taken from the same finite population and 
the four methods applied to each sample data set.  There should be a positive correlation between results that is 
induced by using the same sample to produce four estimates.  As a result, when considering the difference 
between coverage rate or bias estimates for two different methods, the standard error of the difference should be 
smaller than the Monte Carlo standard error for the individual estimation methods.   Thus, the variance of the 
difference between Monte Carlo estimates might be slightly lower than the variance of individual Monte Carlo 
simulation estimates.  Overall, this means that small differences like those found in coverage and relative bias 
are likely not due to simulation error alone. 
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Table 1: Actual Coverage Rates of Nominal 95% Confidence Intervals and Relative Bias 
of Variance Estimators based on L=50,000 replicates.  n is the sample size, r/n is the 
response rate, SOUP is single observation unbiased prior and SW is the Schenker-Welsh 
prior distribution.  In the SW scenario, the three options are no calibration (No-Cal) or 
calibration (raking) with an auxiliary variable with correlation 0.45 or 0.90. 

 

n r/n 
95 % Coverage Relative Bias 

SOUP SW SOUP SW 
No-Cal 0.45 0.90 No-Cal 0.45 0.90 

20 0.8 95.1 95.2 95.2 95.4 -0.0013 0.0056 0.0341 0.0158 
  0.6 95.0 95.1 95.2 95.7 -0.0056 0.0020 0.0310 0.0299 
  0.4 95.1 95.0 95.3 96.2 -0.0005 0.0059 0.0291 0.0563 

40 0.8 95.1 95.0 94.8 95.2 -0.0069 -0.0070 -0.0005 0.0088 
  0.6 95.1 94.9 95.1 95.2 0.0018 -0.0055 0.0085 0.0093 
  0.4 95.1 95.1 95.0 95.6 -0.0090 -0.0009 0.0094 0.0284 

200 0.8 95.0 95.0 95.1 95.1 0.0053 0.0082 0.0073 0.0101 
  0.6 95.0 94.9 95.1 95.3 -0.0046 -0.0123 0.0053 0.0163 
  0.4 94.8 94.8 95.1 95.4 -0.0179 -0.0137 0.0051 0.0370 

400 0.8 95.1 94.9 95.0 95.3 0.0046 -0.0013 -0.0016 0.0241 
  0.6 95.0 94.9 95.0 95.2 0.0064 0.0025 0.0065 0.0154 
  0.4 95.1 94.9 95.1 95.5 -0.0063 -0.0069 -0.0021 0.0362 

 
For larger values of n the SW with no calibration tends to cover well.  There is only slight over coverage in 
some cases.  This does not seem to be a problem for the SOUP model or either of the calibrated SW coverage 
rates.  In coverage, the SW calibrated estimator seems in general to far better than the no calibration SW 
method but this comes at a steep cost.  The calibration to a variable with low correlation to the variable of 
interest considerably increases the variance, which can be seen in Table 2.  The calibrated SW to a variable with 
0.90 correlation always covers more than the nominal rate and always has a relative bias greater than zero, 
which is seen as preferable, although none of the methods has very large relative biases for the variance.  As 
expected, the benefit of calibrating to such a highly correlated variable is that the variance shrinks considerably 
which also can be found in Table 2.  Overall the simulation shows that the choice of prior does not seem to 
effect bias or coverage in Rubin’s variance estimator and that the addition of calibration does not change these 
results appreciably. 

 
5.  Discussion 
 
The framework used in Kim’s (2004) simulation is both the optimal and unrealistic.  That scenario assumes that  
X and Y are correlated almost perfectly and the missingness mechanism is MCAR, both of which are not seen in 
practice.  Additionally, having a variable that has 0.90 correlation with the outcome variable to rake to is not 
very likely unless the variable is a size measurement taken repeated over time in a longitudinal survey or from 
some high quality administrative source.  The other two sources of bias are most likely more interesting and 
need similar simulations to be done to truly understand bias and coverage issues in Rubin’s multiple imputation 
variance estimator.  It would also be useful to explore missing at random mechanisms, covariates that are not as 
correlated as X and Y are in this simulation and multiple covariates and control totals.     
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Table 2: Empirical Variances and Mean of Estimated Variances based on 
L=50,000 replicates.  n is the sample size, r/n is the response rate, SOUP is single 
observation unbiased prior and SW is the Schenker-Welsh prior distribution.  In 
the SW scenario, the three options are no calibration (No-Cal) or calibration 
(raking) with an auxiliary variable with correlation 0.45 or 0.90. 

 

n r/n 

Mean Estimated Variance Empirical Variance 

SOUP 
SW 

SOUP 
SW 

No-Cal 0.45 0.90 
No-
Cal 0.45 0.90 

20 0.8 6.71 6.74 17.54 1.58 6.72 6.71 16.96 1.56 
  0.6 6.76 6.76 17.58 1.64 6.80 6.75 17.06 1.60 
  0.4 6.82 6.85 17.71 1.75 6.83 6.81 17.21 1.66 

40 0.8 3.36 3.36 8.45 0.78 3.38 3.38 8.46 0.78 
  0.6 3.37 3.38 8.49 0.80 3.37 3.39 8.42 0.80 
  0.4 3.40 3.39 8.50 0.84 3.43 3.40 8.43 0.82 

200 0.8 0.67 0.67 1.65 0.16 0.67 0.67 1.64 0.15 
  0.6 0.67 0.67 1.66 0.16 0.68 0.68 1.65 0.16 
  0.4 0.68 0.68 1.66 0.16 0.69 0.69 1.66 0.16 

400 0.8 0.34 0.34 0.83 0.08 0.33 0.34 0.83 0.08 
  0.6 0.34 0.34 0.83 0.08 0.33 0.34 0.82 0.08 
  0.4 0.34 0.34 0.83 0.08 0.34 0.34 0.83 0.08 
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