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Abstract 
 
The Bureau of Transportation Statistics (BTS) has conducted the National Census of Ferry Operators (NCFO) 
biennially since 2006.  Data are collected from approximately 260 ferry operators currently operating in the 
United States.  This data are used to maintain the national ferry database containing information regarding 
routes, vessels, passengers and vehicles carried, funding sources, etc.  As with many surveys or censuses of 
businesses, ferry operators have shown a reluctance to provide information.  More specifically, some operators 
consider passenger boarding data to be business sensitive information.  While a significant number of operators 
simply don’t provide the information, others may ask that it not be made public.  This presents BTS with 
challenges in regards to producing accurate population parameters for ferry passenger boardings. 
 
In an effort to generate a more useful picture of the true number of passenger boardings for the 2006 NCFO, a 
SAS macro for multiple imputation (MI) was employed (Giesbrecht, 2008).  The current paper discusses some 
of the difficulties in trying to reproduce that effort within the 2008 NCFO dataset.  An initial discussion of the 
preliminary analyses and resulting data edits is followed by a description of various MI models fit in an attempt 
to overcome problems associated with relatively large amounts of missing data.   The missing data patterns for 
both years were non-monotone; therefore a Markov chain Monte Carlo method was used to estimate missing 
data.  Initial models produced many error messages as a result of multicolinearity among regressors, implausibly 
imputed values as a result of lack of specification in the model itself and finally empty imputation cells as a 
result of missing data among regressors.  In the end, a clean MI model was developed that provided properly 
imputed estimates of passenger boardings for all cases. 
 
Background 
 
Although ferries have a long history of moving passengers and freight in America, less is known about this mode of 
transportation than any of the other modes. Regularly surveyed, routine statistics like the number of ferry operators and 
the number of passengers carried were undocumented prior to the establishment of the National Census of Ferry 
Operators (NCFO).  Part of this knowledge gap was due to the industry’s structure.  State and local public 
transportation agencies operate some ferry systems, but others are privately owned and operated.  Another complication 
is that many operators provide ferry services as well as dinner and sightseeing cruises, whale watching and other types 
of excursions.  As such, it is often difficult to separate these activities.  Finally, variability in the size of ferry operations 
gives rise to dramatic differences in how they run their operations and maintain their records.  These issues, coupled 
with the fact that the total population of operators is quite small, creates many challenges with regards to collecting and 
reporting ferry data in the United States. 
 
The Transportation Equity Act for the 21st Century (TEA–21) (P.L. 105-178), section 1207(c), directed the Secretary 
of Transportation to conduct a study of ferry transportation in the United States and its possessions.  In 2000, the 
Federal Highway Administration (FHWA) Office of Intermodal and Statewide Planning conducted a survey of 
approximately 250 ferry operators to identify: (1) existing ferry operations including the location and routes served; (2) 
source and amount, if any, of funds derived from Federal, State, or local governments supporting ferry construction or 



operations; (3) potential domestic ferry routes in the United States and its possessions and to develop information on 
those routes; and (4) potential for use of high speed ferry services and alternative-fueled ferry services.  The Safe, 
Accountable, Flexible Efficient Transportation Equity Act—A Legacy for Users (SAFETEA-LU) Public Law 109-59, 
Section 1801(e) requires that the Secretary, acting through the Bureau of Transportation Statistics (BTS), shall establish 
and maintain (biennially) a national ferry database containing current information regarding routes, vessels, passengers 
and vehicles carried, funding sources and such other information as the Secretary considers useful. 
 
While the original data collection in 2000 was conducted by the Volpe National Transportation Center, a branch of the 
U.S. Department of Transportation (DOT) on behalf of FHWA, subsequent data collections have been conducted by 
BTS.  The geographic scope of the NCFO includes ferries operating within the United States and its possessions, 
encompassing the 50 states, Puerto Rico, the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana 
Islands. In addition to ferry operators providing domestic service within the United States and its possessions, operators 
providing services to or from at least one U.S. terminal are also included.  Ferry operations are defined as those 
providing itinerant, fixed route, common carrier passenger and/or vehicle ferry service.  Ferry operations that are 
exclusively nonitinerant (e.g., excursion services—whale watches, casino boats, day cruises, dinner cruises, etc.), 
passenger-only water-taxi services not operating on a fixed route, LoLo (Lift-on/Lift-off) freight/auto carrier services, 
or long-distance passenger-only cruise ship services are not included within the scope of this census. 
 
The NCFO database contains ferry operation data for calendar years 1999, 2005, 2007 and 2009.  Along with other 
sources of ferry data such as the U.S. Coast Guard and the Army Corps of Engineers, the database contains operator 
provided information about their season of operation, vessel fleet, modes of access to their terminals, and information 
about the route segments that they serve between terminals such as the route segment length, average trip time, and the 
number of passengers served.  BTS has made revisions to the census questionnaire at each occurrence of the NCFO to 
improve the nature of the data collected and maximize the usefulness of the NCFO database.  The NCFO database 
continues to be an important source of information for various industry agencies, and various federal and state funding 
agencies.  Still, there is reluctance on the part of many ferry operators to provide complete and accurate information 
with regards to various aspects of their operation, most notably passenger and vehicle boardings.  A multiple 
imputation model was used to impute the number of missing passenger boardings for the 2006 NCFO (Giesbrecht, 
2008).  The paper discusses the challenges in replicating that effort for the 2008 NCFO. 
 
Methods 
 
BTS identified a total of 240 valid ferry operations to be included in the 2007 NCFO.  A paper questionnaire was sent 
to each of these ferry operators to request information about their operation.  Those who did not respond to the paper 
questionnaire were called on the telephone to encourage their participation, and potentially take their information over 
the phone.  In the end, approximately 89 percent of the valid operations responded to the census questionnaire.  Among 
the completed questionnaires 355 individual operator segments (i.e., a ferry route between two terminals serviced by a 
unique operator) were identified as active being serviced in 2007.  Approximately 20 percent of these active ferry route 
segments had missing passenger boarding data in the 2007 NCFO.   
 
The sum of passengers for all nonmissing values was about 87 million in the 2007 database.1  The 2005 estimate for the 
number of annual passenger boardings was 108 million (Giesbrecht, 2008).  The goal of this effort was to produce a 
national estimate of the total annual passenger boardings for US ferry vessels that was, first of all accurate, and 
secondly, comparable in some way to the previous estimate. To the extent possible, the same methods were used for 
deriving the 2007 estimates that were used for the 2005 estimates. 
 
The previous effort to overcome the absence of passenger boarding data for all operator segments utilized multiple 
imputation approach.  A prior covariance matrix was derived from the 2005 NCFO data and covariates were imputed 
based on logical decisions prior to fitting the MI models for 2007.  For the current set of analyses, no prior covariance 
matrix was identified due to the time frame allowed to complete the project.  In addition, covariate imputation was only 
conducted on one variable at the very last step to overcome missing imputations.  In other words, attempts were made 
to fit models with the least amount of alteration to the existing database as possible.   
 

                                                            
1 For each NCFO (i.e., 2000, 2006. 2008, etc …), the data are collected within that calendar year, but the data are 
collected for the previous calendar year. 



Preliminary Analyses 
 
Prior to fitting any multiple imputation (MI) models, a series of summary statistics and scatter plots were produced 
using SPSS version 12.0.1.  The first step was to compute the bivariate correlations of the covariates to the dependent 
variable to be imputed (i.e., passenger boardings).  As you can see in table 1, very few of the covariates were 
significantly correlated to the dependent variable.  This seemed counter intuitive as one might expect the passenger 
capacity of the vessel and or other vessel characteristics to be related to the number of passenger boardings.  A ferry 
operator is not going to invest money into a vessel that cannot be recouped by passenger fares.  On the other hand, an 
operator will invest enough money into a vessel to be sure that passenger fares are not being lost at the dock.    The 
only covariates that appear to be correlated with passenger boardings based on the initial correlations were the annual 
total number of vehicle boardings (Vehbrdgs; r = .76, p < .001), and the average number of vehicle boardings during 
peak traffic periods (Pk1veh; r = .43, p = .002, Pk2veh; r = .34, p = .035). 
 
Table 1: Covariate Correlations with Passenger Boardings 
 

Covariate n r p-value  Covariate n r p-value  

Avtriptime 282 -.072 .225  Daysawk 215 .064 .353  

Paxseas 285 .089 .133  Pk1pax 102 -.077 .441  

Vehbrdgs 130 .763 <.001 ** Pk1veh 49 .425 .002 ** 

Vehseas 134 .120 .167  Pk2pax 82 -.071 .527  

Segleng 285 -.045 .447  Pk2veh 38 .344 .035 * 

Typspd 279 -.008 .889  Auto 285 .003 .960  

Paxcap 274 .001 .983  Parking 285 .009 .875  

Lanefeet 134 -.046 .595  Transbus 285 .006 .918  

Horsepower 240 -.015 .820  Interbus 285 .030 .608  

Selfprop 284 .028 .637  Litheavrail 285 .036 .547  

Breadth 275 .042 .483  Amtrak 285 .034 .567  

Length 274 .053 .380  Truck 285 .029 .624  

Captons 152 -.009 .909  Frghtrail 285 -.024 .684  

Nettons 220 -.034 .617  Metro 285 -.035 .552  

Caryveh 285 -.038 .524  Ratereg 285 .053 .368  

Caryfrt 52 .037 .794  Pbpown 285 .096 .104  

Tripsaday 210 -.046 .508  Pbprop 285 .122 .039 * 

* Significant at α = .05; ** Significant at α = .01. 
 
Given the unexpected pattern of correlations among the covariates, scatter plots were produced for each covariate 
against passenger boardings.  The goal of reviewing the scatter plots was to evaluate the data distributions for 
normality (when appropriate), and identification of outliers.  In figure 1, the scatter plot for vehicle and passenger 
boardings, five operator segments were flagged as potential outliers.  Great care must be taken in deciding whether 
a case is an outlier.  The fact that a data point does not group closely with the rest is not sufficient evidence to 
conclude that it should be removed from the analysis.  In this case however, there was a consistent pattern across 
covariate scatter plots that indicated that these operator segments may be fundamentally different from the rest.  
Further investigation into the individual cases revealed that these were all very large volume, state owned operator 
segments (i.e., Staten Island, Alaska Marine Highways, etc.).   
 
While vehicle boardings during peak periods was initially shown to be a significant predictor of annual passenger 
boardings, a closer look at the scatter plots indicated that their predictive value may be dramatically diminished once 
outliers were removed (see Figure 2).  The same was true for many other potential covariates (e.g., publicly operated 
ferries – see Figure 3).  After reviewing the scatter plots and investigating specific cases, a decision was made to 
remove the five operator segments identified as outliers.  Once removed, the correlations were rerun to evaluate the 
impact their removal had on the individual covariates relationship to passenger boardings.  



 
Figure 1: Scatter Plot of Passenger and Vehicle Boardings 
 

 
 
Figure 2: Scatter Plot of Passenger and Peak Vehicle Boardings 
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Figure 3: Scatter Plot of Passenger Boardings and Public/Private Operation 
 

 
 
With the outliers removed, a more predictable pattern of correlations emerged among the covariates (see Table 2).  The 
average trip time for a segment was negatively related to the total number of passenger boardings (Avtriptime; r = -151, 
p = .012).  This makes sense as the longer it takes to make a trip between two ports, the fewer number of trips you can 
make.  Another expected pattern that emerges is that the length of the season for ferrying passengers is positively 
related to the total number of passenger boardings (Paxseas; r = .186, p = .002).  While the relationship between vehicle 
boardings and passenger totals is slightly decreased after removing the outliers (Vehbrdgs; r = -.703, p = <.001), the 
length of the season for carrying vessels is now a significant predictor (Vehseas; r = .198, p = .023). 
 
Table 2: Covariate Correlations with Passenger Boardings (Outliers Removed) 
 

Covariate n r p-value  Covariate n r p-value  

Avtriptime 278 -.151 .012 * Daysawk 211 .062 .372  

Paxseas 281 .186 .002 ** Pk1pax 101 -.071 .480  

Vehbrdgs 128 .703 <.001 ** Pk1veh 48 .604 <.001 **

Vehseas 132 .198 .023 * Pk2pax 81 -.062 .582  

Segleng 281 -.041 .495  Pk2veh 37 .506 .001 **

Typspd 276 .046 .499  Auto 281 -.005 .939  

Paxcap 270 .130 .033 * Parking 281 .001 .983  

Lanefeet 131 -.028 .747  Transbus 281 .024 .691  

Horsepower 237 .005 .938  Interbus 281 .056 .350  

Selfprop 280 .049 .417  Litheavrail 281 .038 .528  

Breadth 272 .008 .897  Amtrak 281 .030 .618  

Length 271 .038 .538  Truck 281 .064 .289  

Captons 151 .006 .943  Frghtrail 281 -.029 .627  

Nettons 217 -.031 .652  Metro 281 -.046 .441  
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Caryveh 281 .062 .297  Ratereg 281 .015 .807  

Caryfrt 51 .025 .863  Pbpown 281 .069 .475  

Tripsaday 207 -.054 .443  Pbprop 281 .040 .247  

* Significant at α = .05; ** Significant at α = .01. 
 
Considered individually, peak vehicle boardings still appear to be correlated with total passenger boardings.  Individual 
bivariate correlations however, may be deceptive when not taken in context with covariates of which they may be a 
derivative. In an attempt to get a better feel for the true structure of the relationships between the covariates and the 
outcome, a series of linear regression models were fit so that the relationships between the covariates and outcome 
could be considered simultaneously.  In the initial model, passenger boardings were regressed on the covariates shown 
to be significant in the previous set of bivariate correlations.   In this model (see Table 3), only the length of the 
passenger season (Paxseas; beta = .292, p = .045), and the total number of vehicle boardings (Vehbrdgs; beta = .581, p 
< .001) appear to be significant predictors of total passenger boardings.  In this case, beta is the standardized slope 
coefficient, showing the relative impact of each covariate. 
 
Table 3: Linear Regression Models Predicting Passenger Boardings 
 
Model 1 R-Squared = .540 R-Squared Adj. = .530

Covariate β SE Beta t-value p-value

Avtriptime -142.038 85.963 -.067 -1.652 .099  

Paxseas 10,825.660 5482.507 .292 1.975 .045* 

Vehbrdgs .797 .065 .581 12.275 <.001** 

Vehseas -1292.027 5896.484 -.034 -.219 .827  

Paxcap -3.802 40.373 -.004 -.094 .925  

Pk1veh 9.094 15.685 .102 .580 .562  

Pk2veh -7.036 12.899 -.100 -.545 .586  

* Significant at α = .05; ** Significant at α = .01.  
 
In an attempt to further tease out the unique effects of the various covariates in predicting the number of annual 
passenger boardings for each operator segment, forward step-wise regression was used with the same covariates to see 
if a different solution would be produced (see Table 4).  In this model, the length of the passenger season does not 
remain a significant predictor.  The length of the vehicle season enters the model based on a p <.1 but does not appear 
to be significant.   
 
Table 4: Forward Step-wise Regression Models Predicting Passenger Boardings 
 
Model 2 R-Squared = .835 R-Squared Adj. = .817

Covariate β SE Beta t-value p-value

Vehbrdgs .790 .100 .823 7.906 <.001** 

Vehseas 9042.960 5026.378 .187 1.799 .089  

* Significant at α = .05; ** Significant at α = .01.  Probability to enter = .1. 
 
After running the stepwise regression model, additional scatter plots were produced among vehicle boardings, vehicle 
season, passenger capacity and passenger season against passenger boardings as an additional inspection for outliers.  
This led to the identification of 6 more operator segments that were removed from the data file. From the original 355 
operator segments, a total of 11 were removed leaving 344 operator segments to be used for the multiple imputation 
procedures.  All of the operator segments removed was from large scale, state owned ferry operations.  One critical 
thing to keep in mind here is that only cases were passenger boarding data exists are being removed from the data set.  
We cannot remove cases where this data are missing because we would not get an imputed value from the multiple 
imputation procedure if they weren’t present in the final data file being used at that step.  Fortunately, the fact that cases 
with missing passenger data are not represented in the scatter plots insulates us from making the mistake of removing 



these cases based on the preliminary analysis.  
 
Once these cases were removed, the stepwise regression model was rerun resulting in two significant predictors of 
passenger boardings (see Table 5).  While the overall amount of explained variability appears to be reduced in this 
model (Adj. R-squared = .744 vs. .835), this reduction may due to the reduction in sample size and the fact that there is 
less variability to be predicted (i.e., removing extreme values truncates the variability of the dependent variable).  The 
more important factor here is that we have a cleaner model for predicting the outcomes to be imputed. 
 
Table 5: Linear Regression Models Predicting Passenger Boardings 
 
Model 3 R-Squared = .749 R-Squared Adj. = .744

Covariate β SE Beta t-value p-value

Vehbrdgs 1.032 .068 .764 15.091 <.001** 

Vehseas 9840.588 2393.562 .208 4.111 <.001** 

* Significant at α = .05; ** Significant at α = .01.  Probability to enter = .1. 
 
A final look at the individual correlations based on the reduced sample reveals four significantly correlated covariates 
(see Table 6).  As one might expect, the passenger capacity of the vessel most often used and the length of the 
passenger season for the operator segment also appear to be significantly related to the number of annual passenger 
boardings.  It is important to keep in mind however that none of the covariates evaluated thus far are free of missing 
data.  While some covariates may have less missing data than others, the multiple imputation procedure requires at least 
one of the covariates (preferably all) to have no missing data.  This issue will be addressed further in the next section. 
 
Table 6: Covariate Correlations with Passenger Boardings (Final) 
 

Covariate n r p-value  

Vehbrdgs 123 .811 <.001 **

Vehseas 127 .189 .033 * 

Paxcap 264 .281 .001 **

Paxseas 274 .246 <.001 **

* Significant at α = .05; ** Significant at α = .01. 
 
Multiple Imputation Models 
 
Once the preliminary analyses were complete, the data file (n = 344) was imported into SAS (version 9.3) to run a 
series of multiple imputation models.  In order to establish a rough baseline for comparison; the initial model included 
all covariates without specification (i.e., min or max values and rounding) for the covariates or dependent variable.  
Given the changes to the census questionnaire from previous years, and the short window of time for imputing the 
missing passenger data, no prior covariance matrix was used.  As such, all models used the expectation-maximization 
(EM) method for estimating the prior covariance matrix.  The Markov Chain Monte Carlo (MCMC) method was used 
for estimating missing values in all models due to fact that the pattern of missingness was non-monotonic.  All other 
settings were also left to SAS defaults.  Ten imputations were made for every missing operator segment. 
 
The results of the initial model were less than stellar (see Table 7).  The model failed to converge on an acceptable 
solution for either the covariance matrix or the imputed data set after the default of 200 iterations.   Furthermore, the 
covariance matrices for both were also singular.  A covariance matrix is singular when there is zero variability within a 
covariate or perfect correlation exists between two or more covariates.  A second model was run with iterations 
increased to 500 and the criterion for resolution was relaxed to p = .05. The algorithm for the prior covariance matrix 
converged after 109 iterations.  It was still singular and the covariance matrix for the imputed data failed to converge 
and was singular.  The lack of specification for the dependent variable also resulted in negative passenger imputation 
values (see Min, Table 7).  Unless scores of ferry passengers fall overboard on a regular basis, this result is implausible.   
 
Table 7: Model 1 – All Covariates No Specification. 



 
SAS Code 
PROC MI data = work.ncfo SEED = 37851 NIMPUTE = 10 OUT = ncfomipass; 
   MCMC CHAIN = multiple DIPLAYINIT INITIAL = em; 
   VAR paxbrdgs amtrak auto avtriptime breadth captons caryfrt caryveh daysawk frghtrail horsepower 
   interbus laneft length litheavrail metro nettons parking paxcap paxseas pbprop pbprown pk1pax pk1ve 
   Pk2pax pk2veh ratereg segleng selfprop transbus tripsaday truck typspd vehbrdgs vehseas; 
RUN; 

Log 
WARNING: The EM algorithm (MLE) fails to converge after 200 iterations.  
WARNING: A covariance matrix computed in the EM process is singular.  
WARNING: The EM algorithm (posterior mode) fails to converge after 200 iterations 
WARNING: The initial covariance matrix for MCMC is singular.  
WARNING: The posterior covariance matrix is singular. 

Multiple Imputations of Passenger Boardings 

Imputation N Mean SE Min Max Sum 

1 344 185,356.10 18,135.65 -533791 2,000,000 63,762,497
2 344 186,752.59 19,323.98 -1204754 2,000,000 64,242,892
3 344 181,470.55 18,925.46 -1021384 2,000,000 62,425,869
4 344 173,706.94 19,028.62 -849604 2,000,000 59,755,187
5 344 186,524.70 19,227.07 -1049541 2,000,000 64,164,497
6 344 194,723.65 18,126.15 -678041 2,000,000 66,984,934
7 344 184,224.60 18,721.17 -728645 2,000,000 63,373,264
8 344 178,793.03 18,063.15 -728539 2,000,000 61,504,803
9 344 192,083.91 18,608.46 -583127 2,000,000 66,076,864
10 344 187,283.80 18,762.99 -822624 2,000,000 64,425,627

Total 3,440 185,091.99 5,905.69 -1,204,754 2,000,000 636,716,434
 
In an attempt to reduce the complexity of the model and thus reduce the problems associated with multicolinearity 
among covariates (and hence avoid singular covariance matrices), A third model was fit using only the regressors 
shown to be significant predictors under simultaneous inference in the preliminary analyses (i.e., annual vehicle 
boardings and vehicle boarding season length).  This simplified model’s prior covariance matrix converged after 20 
iterations, and the imputed data matrix converged after 11 iterations (see Table 8).  While there was little difference in 
the standard errors associated with the average of the imputations, but we still observed negative imputed passenger 
values.  Given that we are ultimately interested in estimating the total number of passenger boardings for the calendar 
year 2007, imputing negative boarding values is again implausible and will have a major impact on these estimates. 
 
Table 8: Model 3 – Two Covariates (no specification). 
 

SAS Code 
PROC MI data = work.ncfo SEED = 37851 NIMPUTE = 10 OUT = ncfomipass; 
   MCMC CHAIN = multiple DISPLAYINIT INITIAL = em; 
   VAR paxbrdgs vehbrdgs vehseas; 
RUN; 

Log 
NOTE: The EM algorithm (MLE) converges in 20 iterations. 
NOTE: The EM algorithm (posterior mode) converges in 11 iterations. 

Multiple Imputations of Passenger Boardings 

Imputation N Mean SE Min Max Sum 

1 303 179,375.71 18,982.08 -434,514.99 2,000,000 54,350,839.25
2 303 187,891.91 19,211.47 -412,683.83 2,000,000 56,931,248.34



3 303 189,517.50 19,343.72 -417,116.35 2,000,000 57,423,803.23
4 303 186,929.41 19,315.83 -544,696.47 2,000,000 56,639,611.41
5 303 179,309.55 18,946.19 -301,384.48 2,000,000 54,330,792.19
6 303 183,571.12 19,238.67 -390,095.94 2,000,000 55,622,047.99
7 303 186,445.08 19,117.84 -447,116.73 2,000,000 56,492,858.27
8 303 185,150.75 19,048.60 -337,908.23 2,000,000 56,100,677.32
9 303 188,086.29 19,455.47 -694,845.60 2,000,000 56,990,144.70
10 303 185,071.72 19,183.31 -286,927.88 2,000,000 56,076,730.74

Total 3,030 185,134.90 6,058.09 -694,845.60 2,000,000 560,958,753.44
 
To further refine the imputation model, we added specifications for all variables included in the estimation.  For 
passenger and vehicle boarding, the minimum value was set to 0, while there was no limit set to the maximum value.  
For the length of the vehicle boarding season the minimum was set to 1 month while the maximum was set to 12.  With 
these changes to the model, we see that the matrices again converged after 20 and 11 iterations respectively with no 
errors (see Table 9).  We also see that the minimum values among the imputed data appear within range, and that the 
mean and total passenger boardings for each set of imputations appear to be raised.  Even though we have removed a 
number of the operator segments with the largest volume of passenger boardings, these totals still appear to be too low 
(see Giesbrecht, 2008). 
 
Upon further inspection, it becomes clear that not all 344 operator segments are included in the imputed datasets.  Each 
set only includes 303 observations.  As previously mentioned, the multiple imputation procedure assumes at least one 
of the covariates has no missing data.  With the MCMC method, the model attempts to estimate all missing values 
simultaneously.  When all variables in the model are missing data for a given observation, there are no knowns by 
which to estimate the other missing values for that observation.  In this instance there were 41 cases where all variables 
were missing data.  This will result in reduced estimates of passenger boardings and increased standard errors due to 
the reduced sample size. 
 
Table 9: Model 4 – Two Covariates (with specification). 
 

SAS Code 
PROC MI data = work.ncfo SEED = 37851 NIMPUTE = 10 OUT = ncfomipass 
   MINIMUM = 0 0 1 
   MAXIMUM = . . 12 
   ROUND = 1; 
   MCMC CHAIN = multiple DISPLAYINIT INITIAL = em; 
   VAR paxbrdgs vehbrdgs vehseas; 
RUN; 

Log 
NOTE: The EM algorithm (MLE)   converges in 20 iterations. 
NOTE: The EM algorithm (posterior mode) converges in 11 iterations. 

Multiple Imputations of Passenger Boardings 

Imputation N Mean SE Min Max Sum 

1 303 191,889.51 18,763.09 2 2,000,000 58,142,521
2 303 197,284.32 18,908.17 2 2,000,000 59,777,148
3 303 191,827.54 18,750.88 2 2,000,000 58,123,745
4 303 194,358.26 18,914.09 2 2,000,000 58,890,553
5 303 199,018.72 18,930.59 2 2,000,000 60,302,673
6 303 192,588.82 18,764.24 2 2,000,000 58,354,413
7 303 196,819.93 18,795.78 2 2,000,000 59,636,439
8 303 195,099.49 18,869.86 2 2,000,000 59,115,147
9 303 195,373.09 18,937.17 2 2,000,000 59,198,045



10 303 196,235.86 18,972.01 2 2,000,000 59,459,465

Total 3,030 195,049.55 5,955.57 2 2,000,000 591,000,149
 
In a final effort to refine the model and overcome the problems associated with missing data among the covariates, the 
passenger capacity of the vessel was included into the imputation model.  While passenger capacity was not shown to 
be a significant predictor of passenger boardings in the final linear model in the preliminary analyses, it did have a 
significant correlation with the number of annual passenger boardings within the data set currently being analyzed.  It 
also had far less missing data than either of the two covariates currently included in the imputation model. 
 
Before it could be included to resolve the issue of missing data among covariates, efforts were taken to generate data 
for missing values within the passenger capacity variable.  When vessel characteristics where known, the length and 
breadth of the vessel were compared to other vessels of the same size to impute the passenger capacity of the vessel for 
a given operator segment.  When the vessel characteristics were not known, the average passenger capacity of all 
vessels among operator segments with missing passenger boarding data was imputed.  The final model included 
imputed missing values for all 344 observations (see Table 10), with increased passenger boarding estimates and 
reduced standard errors. 
 
Table 10: Model 5 - Three Covariates (with specification). 
 

SAS Code 
PROC MI data = work.ncfo SEED = 37851 NIMPUTE = 10 OUT = ncfomipass 
   MINIMUM = 0 0 1 0 
   MAXIMUM = . . 12 . 
   ROUND = 1; 
   MCMC CHAIN = multiple DISPLAYINIT INITIAL = em; 
   VAR paxbrdgs vehbrdgs vehseas paxcap; 
RUN; 

Log 
NOTE: The EM algorithm (MLE) converges in 23 iterations. 
NOTE: The EM algorithm (posterior mode) converges in 13 iterations. 
NOTE: The data set WORK.NCFOMIPASS has 3440 observations and 37 variables. 

Multiple Imputations of Passenger Boardings 

Imputation N Mean SE Min Max Sum 

1 344 212,565.42 17,324.04 2 2,000,000 73,122,503
2 344 216,702.85 17,621.49 2 2,000,000 74,545,780
3 344 217,445.39 17,437.51 2 2,000,000 7,4801,214
4 344 211,235.08 17,312.78 2 2,000,000 72,664,869
5 344 219,078.48 17,608.24 2 2,000,000 75,362,996
6 344 218,727.08 17,542.07 2 2,000,000 75,242,117
7 344 223,729.66 17,627.63 2 2,000,000 76,963,004
8 344 227,624.69 17,988.91 2 2,000,000 78,302,892
9 344 212,053.76 17,234.49 2 2,000,000 72,946,492
10 344 215,787.36 17,571.97 2 2,000,000 74,230,852

Total 3,440 217,494.98 5,536.26 2 2,000,000 748,182,719
 
As a test of the idea that blindly increasing the number of covariates in a multiple imputation model improves the fit of 
the model, one last attempt was made to fit a model with all covariates.  In this model, the range and scale of each 
variable was specified with increased iterations and relaxed criteria for convergence (see Table 11).  Again it appears 
that we have surpassed the methods ability to overcome issues associated with missing values and multicolinearity.  
Not only are the covariance matrices singular and the model fails to converge, but the procedure is halted because not 
all of the imputed values are within the specified range.   
 



Table 11: Model 6 – All Covariates (with specification). 
 

SAS Code 
PROC MI data = work.ncfo SEED = 37851 NIMPUTE = 10 OUT = ncfomipass 
   MINIMUM = 0 0 0 1 0 0 0 0 1 0 0 0 0 10 0 0 1 0 0 1 0 0 0 0 0 0 0 . 0 0 1 0 1 0 1 
   MAXIMUM = . 1 1 . . . 1 1 7 1 . 1 . . 1 1 . 1 . 12 1 1 . . . . 1 . 1 1 . 1 60 . 12 
   ROUND = 1 1 1 . . . 1 1 1 1 . 1 . . 1 1 . 1 . 1 1 1 . . . . 1 . 1 1 1 1 . . 1; 
   MCMC CHAIN = multiple DISPLAYINIT INITIAL = em; 
   EM MAXITER = 500; 
   EM CONVERGE = .05; 
   VAR paxbrdgs amtrak auto avtriptime breadth captons caryfrt caryveh daysawk frghtrail horsepower 
   interbus laneft length litheavrail metro nettons parking paxcap paxseas pbprop pbprown pk1pax pk1ve 
   Pk2pax pk2veh ratereg segleng selfprop transbus tripsaday truck typspd vehbrdgs vehseas; 
RUN; 

Log 
NOTE: The EM algorithm (MLE) converges in 109 iterations. 
WARNING: A covariance matrix computed in the EM process is singular.  
WARNING: The EM algorithm (posterior mode) fails to converge after 200 iterations.  
WARNING: The initial covariance matrix for MCMC is singular.  
ERROR: An imputed variable value is not in the specified range after 100 tries. 
WARNING: The data set WORK.NCFOMIPASS may be incomplete.  0 observations and 37 variables. 
WARNING: Data set WORK.NCFOMIPASS was not replaced because this step was stopped. 

 
Conclusions 
 
For any modeling effort, multiple imputation or otherwise, a thorough preliminary analysis is key to getting a better 
understanding of the dataset you are working with and gives clues as to how to overcome issues when trying to fit the 
model.  Failing to become familiar with the dataset prior to conducting more complex analyses is like flying an airplane 
while blindfolded.  If an analyst is not familiar with the characteristics of each variable in the dataset and their 
relationships to each other, he/she has no way of making informed decisions as to how to change a model that does not 
fit or does not prove useful in predicting outcomes. 
 
That having been said, great care must be taken at each step in the preliminary analysis so as not to create an “alternate 
reality”.  Just because an observed data point does not cluster with the rest, does not mean it is bad data.  Any decision 
to remove a data point from an analysis should only be made with careful consideration of the ultimate goal of the 
analyses to be conducted and the other characteristics associated with that data point.  Ultimately the analyst must be 
able to defend every decision to include or omit an observation.  As can be seen in the analyses and decisions made 
above, that may be more easier said than done as modeling data are as much art as it is science.  Often time, the 
analysts familiarity with the population of interest (i.e., his/her gut), plays as big a role in decisions along the way as do 
hard, cold calculations. 
 
Within this set of analyses several decisions were made that gave rise to other analyses and subsequent decisions.  At 
any step along the way, arguments can be made that other decisions should have been made or different analyses 
conducted.  In reality, if deadlines didn’t have to be met, the authors would have continued to chase down loose ends in 
an attempt to better understand the data before producing a final product.  Unfortunately, or maybe fortunately, the 
deadline for this project forced the authors to make hard decisions on how to handle the data.  With more time, several 
other avenues would have been exhausted. 
 
Although not every avenue explored within this project was presented in this paper, the authors understand that those 
explored were not entirely exhaustive.  Efforts were made to transform the non-normal distribution of passenger 
capacity but the transformed variable was not extensively modeled within the preliminary analyses and multiple 
imputation procedures.  There may have been other non-normal variables that, once transformed, proved to be more 
accurate and more reliable predictors of annual passenger boardings.  We also did not fully vet the extent and nature of 
multicolinearity among covariates.  Ideally, a more exhaustive investigation of correlations among covariates would be 
used to remove redundant regressors.  Finally, we did not explore the use of informative prior covariance matrices as a 



means to reducing the standard errors associated with imputations.  Doing so would have required efforts similar those 
of which we’ve touched the surface of here on the 2005 database. 
 
With the enough time and resources a complete set of preliminary analyses would be conducted on the 2005 data to 
develop an informative prior covariance matrix rather than using EM estimations.  Ideally we would be able to evaluate 
the differences in estimations as a result of having an informative prior.  Additionally, more care would be taken to 
investigate every loose strand underlying the decisions made along the way toward proclaiming the final number of 
annual passenger boardings among ferry operations in calendar year 2007.  For example, it may be that the removal of 
individual observations may have been avoided by fitting more complex models during the preliminary analyses. 
Hindsight aside, it is important to note that any cases omitted from the imputation model would need to be reintroduced 
to each imputed dataset prior to performing further statistical analysis.   
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