
1 
 

Genuine Exact Two-Stage Methodologies for Producing Assigned 

Accuracy Estimators for a Gamma Mean 
 

Kevin P. Tolliver
1
 

U.S. Census Bureau 

Office of Statistical Methods and Research for Economic Programs 

Kevin.p.tolliver@census.gov 

 

Abstract 

 

When sampling from largely right-skewed populations it is better to assume the population is Gamma rather than 

Normal. The Gamma distribution is often assumed when modeling mean-time-to-failure in the biological field of 

Survival Analysis and the engineering field of Reliability Analysis. The paper often makes references to estimating 

times-to-events in clinical trials.  The sequential methods in this paper are used to determine what sample size is 

required to attain an accurate estimator assuming the data comes from a Gamma population. This paper proposes 

two methods for finding estimators with pre-assigned accuracy: (1) point estimator and (2) an interval estimator. It 

implements a genuine two-stage sampling procedure. The term genuine refers to the fact that, in contrast to previous 

methods, the procedures proposed herein are based on the combined samples from both stages, rather than ignoring 

the data from the first-stage sample. Theoretical results are exact, which means at no point was an asymptotic or 

large sampling approximation used and all the derivations assumed an underlying distribution of Gamma. These 

results are accompanied by more practical solutions.  Results are found for when shape is both known and unknown. 

 

I. Introduction 

 

The Gamma distribution is a flexible right skewed density that has a wealth of applications, and because of the 

flexibility of the family of Gamma distributions it is often assumed random  variables such as time-to-event has an 

underlying Gamma distribution.  It is not restrained to just time.  As a family of distributions the Gamma 

distribution can be assumed in any area where values have a positive support and have justifiably large values in the 

support.  For example, it is assumed as the underlying distribution for both precipitation rates and precipitation 

intensity, Maureil (2007), censor imaging, Chatelian (2007) and (2008), and often with general queues.  The Gamma 

mean is most widely used in statistically modeling time-to-events in Survival and Reliability Analysis seen in 

biomedical and engineering fields.  Perhaps, it is most commonly used in clinical trials.  For example, in a drug trial 

the time estimated until a drug goes into effect can be modeled with an underlying Gamma distribution.   Many 

clinical trials are subject to budgetary restraints and oversampling as described by Wald (1947) can lead to high 

costs, since each volunteer in the study is typically compensated.  To reduce spending sampling procedures like the 

two laid out in subsequent sections can be implemented and still ensure accuracy.  For this paper, references to mean 

time-to-event will be associated with the Gamma mean even though a Gamma mean is not exclusive to times.  In 

order to correctly describe the process it is pertinent to develop an accurate estimator of the mean with low bias and 

low variation. This paper assumes the estimator is unbiased and focuses on developing a sampling procedure that 

will ensure low variation 

 

Suppose there is a sequence of independent observations nXXX ,...,, 21 having a common Gamma distribution 

with the density function 
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discussion of work in progress.  Any views expressed on statistical, methodological, technical, or 
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with the mean θλ representing the average time needed till the event occurs.  Observing nXXX ,...,, 21  the mean 

time θλ can be estimated by the sample mean  


n

i in XnX
1

1
. The intent of this paper is to develop a sampling 

scheme that will produce a reliable estimator for the mean.  The variance of the mean of a Gamma population is 

well-documented to be θλ
2
n

-1
.   As is commonly seen in literature, a constant A is added to penalize the variance 

more or less as the user sees fit.  There are two specific goals in this paper: (1) to develop a sampling scheme 

estimator with variance below a preassigned value w 
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and (2) to produce an interval estimator C(X) with preassigned interval width and coverage probability 1-α.  
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When no prior knowledge of the distribution is known then there is no fixed sample size solution.  The problem 

requires drawing an initial sample size before determining the final sample size, making this a sequential problem.   

For this problem there are only two sets of data: the initial set and subsequent set.  This particular type of sequential 

sampling procedure is referred to as a two-stage design.   

 

Historically, when estimating times until event of random processes researchers have used sample designs based on 

incorrect assumptions about the underlying distribution.  For many years the underlying distribution was assumed to 

be Normal, even for estimates with positive support and distributions that are right skewed.  A two-stage bounded 

variance estimator for Normal populations that ensured an accurate mean estimator was given by Stein (1945).  As 

noted, assuming random time processes are Normal may be inaccurate.  It might be more appropriate to assume an 

Exponential underlying distribution.  This distribution is right-skewed and a relative of the Gamma distribution. An 

exact two-stage design described a terminal size that ensured the variance of the estimator falls below a preassigned 

variance assuming an Exponential population was given by Birnbaun and Healy (1960).  The term “exact” refers to 

the fact that this result does not assume anything asymptotically about the initial observations and it never 

approximates the underlying distribution.  This procedure does, however, use the initial sample size to determine the 

final sample size and ignores the initial sample size in the final estimate.  This was later improved by combining 

both the initial and secondary samples together to produce the estimate of Kubokowa (1989), making the solution a 

genuine two-stage sampling procedure.  The term “genuine” refers to the fact that, in contrast to previous methods, 

the procedures proposed are based on the combined samples from both the first and second stages, rather than 

ignoring the data from the first-stage sample.   Accordingly, the terminal sample size and the estimate are no longer 

independent, which complicates the theory development significantly.   With a relatively large number of initial 

observations this result did as well as the Birnbaun and Healy method.  A two-stage sampling procedure that is both 

genuine and exact assuming Exponential underlying distribution is given by Mukhopadhyay and Pepe (2006).  If 

mXXX ,...,, 21 are Exponential with mean , and  

                                                              (1.4)

 

then the terminal sample size  
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will ensure the variance is bounded below the predetermined variance w, where  is the integer value of  .  This 

procedure was extended to the Gamma distribution when shape is known by Tolliver and Carpenter (2008), given in 

section II. 

 

Much like the bounded variance problem, two-stage bounded interval estimators for Normal populations have been 

studied extensively, Stein (1949).   A solution for a general density was found, Chow and Robbins (1965), and a 

more specific solution for an Exponential density was found, Govindarajulu (1995).  However, both of these results 
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assume Normal approximation at some point in their work.  In fact, there is little research for fixed-width confidence 

intervals for asymmetric distributions.   Many papers on fixed-width confidence intervals provide intervals of the 

form , making the width of the interval estimator completely independent of 

the final sample mean itself.  This is a luxury asymmetric distributions such as the Gamma do not have.  However, 

there will be an explicit interval estimator of that form provided in this paper.  The difference is that since the 

Gamma is not symmetric, the upperbound and lowerbound will not be equidistant from the sample mean  The final 

interval estimator will be completely independent of the final sample mean much like the Normal case. That is, our 

confidence interval C(X) will be of the form 

 

 dkXkdXXC nn )2(|)(  
                               (1.6)

 

 
where k is an unknown nonnegative real number less than two.  This quantity signifies that the two lengths will not 

be the same.   

 

II. Bounded Variance Estimator 

 

The first goal of the paper is to develop bounded variance estimators when shape θ is known and scale λ is unknown 

and when both parameters are unknown.  This result will lead to the development of a bounded interval estimator, as 

the two concepts are related. When sampling from Normal populations with known variance, the methods used to 

bound variance and the methods used to bind the width of the interval estimator are the same.  This is seen in many 

undergraduate textbooks.  When sampling from Normal populations with unknown variance the two methodologies 

are similar, Stein (1945) and Stein (1949).  The idea is that if the variance can be bounded then consequently the 

interval estimator which is a function of the variance can also be bounded. 

 

As stated before, we desire bounding the variance under some predetermined bound, as in (1.2).  This means that the 

number of observations n* that will ensure the variance is within the bound is . Ignoring the fact that the 

quantity above may not be an integer, we allow the optimal sample size 

. 

Notice n* is dependent on the unknown parameters, so a sequential sampling procedure must be implemented so 

some knowledge can be gained on these parameters. A pilot sample of m observations, i.i.d variables 

will be taken following a Gamma distribution , with 3m .  At this point, one might note a theoretical 

dilemma.  Similarly to the optimal sample size being dependent on the unknown parameters, an assumption must be 

made using an unknown parameter.  However, in practice  is a fairly safe assumption since  is not usually 

miniscule. From this sample the maximum likelihood estimator of the mean is .  That estimate is used to 

determine the terminal sample size N.  To reemphasize, there is no fixed sample size solution to this problem.  In 

addition to that, this method may also decrease the expected sample size and this will be a key tool in the 

construction of the interval estimator.  After observing the first m observations, our first stage, a decision is needed 

to determine if the procedure can continue with the m observations, or if more need to be added, our second stage. 

This yields the two-stage procedure: 

Theorem 1. Let mXXX ,...,, 21  i.i.d.  Gamma(θ,λ)  initial observations be drawn, with 3m .  The terminal 

sample size  
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if λ unknown and θ known and  
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if both parameters are unknown, will ensure that  the variance over all N observations will be less than or equal to 

the predetermined variance w; that is, that  wXVarA N  )(  ,  

The proof is given in the appendix (A.1). 

 

The proof ensures the variance is beneath the bound. However after exploring the distribution of N, the sampling 

procedure still draws a large number of observations.  Recall n* = Aθλ
2
/w.   This is due to the fact that the ratio of B 

to A will always be larger than two, causing N to be larger than n*.  Instinctively it would appear necessary that 

reducing B 50% would reduce sample size and still maintain the variance bound.  Because of the skewness in the 

distribution of the variable
2X , simply dividing by two does not work.    

The terminal sample size can be reduced further along the lines of Mukhopadhyay and Zacks (2007). In that paper 

the authors conclude they can reduce B by investigating the distribution of the variance  under the sampling 

procedure.  This was done by looking at the variance as a function of λ and identifying what value of λ gives the 

maximal variance, and then empirically decreasing B so that maximal variance is just within the bound.  This 

yielded a new B as a ratio of the old B. The same was done for this study for different values for θ.  Varying λ from 

one to forty, θ from one to forty, and fixing everything extensive simulations were performed.  For each value of θ 

the value of λ that produced the highest value of variance.  Afterwards, each of these were repeated empirically 

decreasing B so that risk would increase but not exceed its bound.  Finally, a regression was implemented with B 

and θ to produce a new value for B   
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This new B will give a smaller expected value of N and should still give a variance less than w.  We can see there is 

a significant reduction in this ratio, which will result in a decreased sample size.   

To verify this result a simulation study was conducted using R software.  In the simulation, differing values for the 

optimal sample size were chosen: 25, 50, 100, and 500.  Each of these values will have a corresponding variance 

bound.  We fixed λ = 5 since the result is not dependent upon knowledge of this parameter and vary θ = {1, 2, 5, 

10}.  A is a constant expression that is chosen to be two. One thousand replications were used for each case.  The 

quantity N  is an expected value of N over 1,000 replications and r  is an estimate of the variance with the original 

terminal sample size.   The simulation is repeated using the bound coefficient when both parameters are 

unknown.   Tables 2.1 and 2.2 show how the expected value for N compares with the optimal sample size and how 

the expected value for variance compares with the variance bound. 

 

Table 2.1. Improved Variance Estimates (Shape Known) 

 n* w  N  
2se  N  

2se  N  
2se  

   m=10  m=20  m=30  

θ=1 25 2.000 51.12 1.576 40.13 1.603 38.48 1.175 

 50 1.000 99.63 0.975 77.97 0.930 71.07 0.853 

 100 0.500 195.44 0.472 152.96 0.441 140.31 0.431 

 200 0.250 403.03 0.195 311.61 0.223 284.67 0.221 

θ=2 25 4.000 38.73 4.038 33.80 3.695 34.14 2.378 

 50 2.000 74.12 1.732 65.31 1.885 63.03 1.831 

 100 1.000 147.23 0.964 132.26 0.856 126.16 0.925 

 200 0.500 293.12 0.426 265.22 0.442 248.10 0.453 
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θ=5 25 10.000 31.26 9.634 29.85 8.589 31.43 7.082 

 50 5.000 61.70 4.727 59.07 4.561 57.73 4.893 

 100 2.500 123.99 2.145 117.01 2.129 114.25 2.149 

 200 1.250 304.12 0.872 288.75 0.904 286.97 0.862 

θ=10 25 20.000 28.66 18.523 27.76 19.214 30.42 14.983 

 50 10.000 56.89 9.657 55.43 9.142 54.96 9.569 

 100 5.000 112.81 4.866 110.75 4.736 108.70 4.474 

 200 2.500 227.25 2.275 218.60 2.496 218.37 2.234 

 

Table 2.2. Improved Variance Estimates (Shape Unknown) 

 n* w N  
2se  N  

2se  N  
2se  

   m=10  m=20  m=30  

θ=1 25 2.000 63.92 1.395 50.96 1.409 47.17 1.216 

 50 1.000 130.05 0.688 100.38 0.672 91.97 0.705 

 100 0.500 258.59 0.348 195.71 0.338 184.77 0.334 

 200 0.250 506.92 0.161    384.24 0.163 378.55 0.163 

θ=2 25 4.000 118.21 1.060 95.35 1.224 90.02 1.311 

 50 2.000 232.64 0.583 190.80 0.638 180.93 0.614 

 100 1.000 470.88 0.263 387.76 0.280 359.00 0.278 

 200 0.500 931.85 0.130 737.12 0.147 723.75 0.159 

θ=5 25 10.000 291.32 0.939 238.50 1.133 220.97 1.130 

 50 5.000 587.52 0.475 471.27 0.537 443.80 0.538 

 100 2.500 1149.31 0.245 945.17 0.270 894.37 0.269 

 200 1.250 2920.06 0.091 2354.86 0.114 2215.37 0.126 

θ=10 25 20.000 577.71 0.903 471.60 1.080 443.44 1.211 

 50 10.000 1152.15 0.439 945.68 0.534 888.98 0.559 

 100 5.000 2301.34 0.230 1868.90 0.297 1769.56 0.290 

 200 2.500 4563.46 0.110 3747.98 0.131 3556.06 0.152 

 

The very first thing that should be noted is how in each case, the estimated value for the variance is below the 

variance bound w for every case except for m=10, θ = 2, w = 4.0 in Table 2.1.  These are only estimates but this is a 

good indication that mean variance falls below the variance bound.  This shows that the sampling procedure does a 

decent job of producing a variance estimate below the variance predetermined bound.  Furthermore, note in the 

shape known case how close the estimated variance value gets to w.  Because of the inverse relationship between 

sample size and variance, this means that the sampling procedure does its job of reducing sample size.  This is 

beneficial for any trial that is trying to reduce cost for experiments.  With that said the bound coefficient B is a 

function of the scale parameter, and decreases as the value for θ increases.  The sampling procedure continues to 

over sample when it lacks knowledge of shape.  Future research might entail using the initial sample size to find a 

bound for θ.   

 

 

III. Genuine Two-Stage Interval Estimator 

 

Many users feel that it is more useful to report interval estimators than other measures of variation because interval 

estimators give more interpretable results, Ramsey and Schafer (2002).  For example in manufacturing applications 

an interval estimator might be useful for warranty purposes.   

 

This is why interval estimators are beneficial.  However, while there is a plethora of research on fixed-width 

confidence intervals, there is little research on fixed-width confidence intervals for asymmetric distributions using 

exact methods.  Unlike the Normal distribution and other symmetric distributions the width of the Gamma interval 

estimator is dependent on the final sample mean, whereas the Normal populated sample will be completely 
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independent of the location of the final sample mean.  One can see below an example of how a Gamma estimator 

differs from a Normal estimator.   

 

The interval estimator for a Normal distributed population when the variance σ
2
 is known is 
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and a well-documented example (Casella and Berger pp. 429) of an interval estimator for a Gamma distributed 

population when the shape θ is known is 
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where 



 is the qth  quantile of a Chi-Square random variable with 



  degrees of freedom. 

 

Arriving at this term is done simply with inverting the statistic 



 and using the Chi-Square transformation.  For 

more information on this see Appendix A.2. Unlike the Normal case where the width of the interval estimate is only 

dependent on sample variation, the width of this interval estimator is completely dependent on the final sample 

mean.  If one were to create a two-stage sampling design with this type of interval estimator, then one can substitute 



 for the final sample mean 



 .   This produces a decent estimate of the sample size needed to fulfill properties 

given in (1.3) but mathematically lacks the rigor to ensure them. In fact, there is no way of bounding the interval 

estimator without finding a bound on the sample mean of all N observations when using an interval estimator of this 

form.  The proposed sampling methodology is unlike that of any interval estimator for skewed populations and will 

not resemble (3.1) above at all.  The interval estimator we propose will be similar to (1.6) making it independent of 

the final sample size.  Since the Gamma population is asymmetric the sample mean will not be in the center of the 

interval estimate.  The optimal sample size must be redefined to be the smallest n for which both criteria (1.3) are 

achieved, 

 )2)(,1)((|* dXCXCPnn  
                                    (3.2)

 

According to Ghosh (1991), terminal sample sizes for fixed-width confidence intervals should have the following 

properties: 

 

1.  N is non-decreasing in 2d>0. 

2.  N is finite with probability 1 for every 2d>0. 

3.  N/n* 



 1 as 2d 



0 in probability or almost surely 

4.  E(N)/n* 



1 as 2d



 0.  

5.    1))((lim 0 XCPd                                                                                                  

 

This section only provides a solution if shape is known.  There are a number of reasons why the shape known case is 

studied:  (1) there are particular instances where the shape parameter is either known or can be assumed as known 

similar to how variance can be assumed known with the Normal case, (2) studying the shape known case allows us 

to see how robust the Exponential assumption is, and (3) it gives ground work for methodologies where the shape 

parameter is unknown. 

 

Theorem 2. Let mXXX ,...,, 21  i.i.d.  Gamma  (θ,λ)  initial observations be drawn, with 3m .  For 

significance level α and predetermined width d, if N is defined in (2.1) and gq is the qth quantile of the 

Gamma(nθ,1/n) distribution.the terminal sample size  
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will yield an interval estimator 
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that has the properties given in (1.3) 

 

The proof is given in Appendix A.3. 

 

The proof validates the properties will hold, but the sampling procedure itself can be evaluated with simulations 

conducted in R software.  These simulations will show whether some of the properties given by Ghosh hold and 

affirm our belief that the coverage probability is larger than the predetermined coverage probability.  It is not 

necessary to test to see if the terminal sample size M will fall within the width bound; the terminal size by nature 

will always fall within the width bound since it utilizes a numeric procedure. 

 

The first simulation illustrates how the terminal sample size increases as the predetermined bound 2d decreases and 

also how initial sample size affects the terminal sample size. The shape parameter was varied θ= {1, 2, 5, 10} and 

w= {5, 10, 25, 50} so that the ratio between the two is the same throughout.  The variance bound was varied {10, 20, 

30}, and 2d= {4, 3, 2, 1}.  The risk bound is fixed to be three and the coverage probability is fixed to be 0.90.  This 

simulation used 1,000 replications from a Gamma population with scale equal to five. 

 

Table 3.1. Relationship between 2d, p, and Terminal Sample Size M 

    m=10  m=20    m=30  

  2d M  p M  p M  p 

θ=1, 4.0 35.8 0.921 35.7 0.988 50.5 0.998 

 w=5 3.0 63.4 0.941 64.8 0.985 90.0 0.994 

  2.0 140.1 0.951 143.5 0.988 202.7 0.994 

  1.0 573.8 0.960 575.1 0.977 812.6 0.969 

θ =2, 4.0 102.3 0.915 92.3 0.919 105.1 0.971 

 w=10 3.0 170.3 0.893 164.5 0.937 187.2 0.967 

  2.0 408.6 0.930 370.8 0.935 420.2 0.958 

  1.0 1649.5 0.933 1481.2 0.937 1682.1 0.958 

θ =5 4.0 527.2 0.905 490.3 0.910 490.6 0.894 

 w=25 3.0 910.6 0.936 879.6 0.921 867.6 0.921 

  2.0 2098.2 0.918 1974.2 0.914 1932.1 0.904 

  1.0 8421.1 0.920 7947.6 0.919 7797.5 0.931 

θ =10 4.0 1899.0 0.913 1856.3 0.898 1838.1 0.896 

 w=50 3.0 3382.0 0.900 3314.1 0.930 3279.2 0.915 

  2.0 7569.6 0.924 7419.7 0.915 7425.3 0.905 

  1.0 31893.1 0.920 29895.1 0.906 29560.7 0.898 

 

Table 3.1 illustrates that as 2d decreases the terminal sample size increases M at a very large rate.  This is a good 

indication that the terminal sample size is non-decreasing.  Since the sample size is calculated numerically the 

sample size would have to be finite.  Unlike the variance problem where there is a closed form of the optimal sample 

size, this sampling procedure does not have that so there are no comparisons made with M and n*.  It was expected 

that as 2d decreased that the estimated coverage probability would decrease to coverage probability bound.  The 

simulations do not indicate this.  This is probably due to the fact that there are simply too many factors to consider 

when implementing this process.   Finally, with more information given in the initial sample size a smaller expected 

number of total observations will be drawn provided the initial sample size does not eclipse expected value of N.   

 

The second simulation produces estimates for the coverage probability by calculating the percentage of times the 

mean fell within the confidence interval.  Much like variance problem, ideally the percentages p will be just above 
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the predetermined coverage probability 1-α.  The estimate of the coverage probability is the percentage of times the 

scale parameter is within our interval.  The shape parameter was varied θ={1,2,5,10}, w={10,5,2,1,0.5,0.1}, m fixed 

to be 30 and λ fixed to be five.  The percentage of times the parameter lies within the confidence interval is an 

estimate of the coverage probability of the scale parameter.  This is observed for predetermined 0.80, 0.85, 0.90, and 

0.95 coverage probabilities. 

 

Table 3.2. Coverage Percentages of Mean by Interval Estimate 

       θ=1         θ=2         θ=5         θ=10     

1-α   p p p p 

0.80 w=10     0.999 0.906 0.819 0.807 

 w=5.0    0.977 0.837 0.822 0.796 

 w=2.0     0.905 0.843 0.822 0.826 

 w=1.0     0.831 0.846 0.821 0.827 

 w=0.5 0.825 0.836 0.816 0.837 

 w=0.1 0.839 0.818 0.829 0.821 

0.85 w=10     1.000 0.946 0.879 0.846 

 w=5.0    0.990 0.868 0.860 0.877 

 w=2.0     0.936 0.885 0.861 0.861 

 w=1.0     0.886 0.874 0.877 0.868 

 w=0.5 0.855 0.889 0.870 0.862 

 w=0.1 0.898 0.875 0.857 0.869 

0.90 w=10     1.000 0.974 0.937 0.916 

 w=5.0    0.997 0.895 0.917 0.918 

 w=2.0     0.957 0.907 0.926 0.914 

 w=1.0     0.919 0.936 0.908 0.917 

 w=0.5 0.936 0.928 0.914 0.904 

 w=0.1 0.926 0.925 0.916 0.916 

0.95 w=10     1.000 1.000 0.994 0.959 

 w=5.0    0.999 0.999 0.938 0.955 

 w=2.0     0.978 0.989 0.960 0.950 

 w=1.0     0.945 0.939 0.960 0.949 

 w=0.5 0.955 0.957 0.964 0.957 

 w=0.1 0.966 0.951 0.966 0.962 

Table 3.2 shows with varying levels of shape, the estimated coverage probability consistently surpasses the 1-α 

mark.   The percentages are most notably affected by the value chosen for w.  As w is chosen to be smaller the 

percentages near the goal coverage probability.  However, one still runs the risk of producing a large N value if w is 

chosen to be too small.  To reiterate, the goal is to reduce the number of observations while simultaneously keeping 

the properties given in (1.3).   It was expected to see nearly 100% coverage as w=0.5 and w=0.1 was selected, but 

simulations showed otherwise.   Both of these tables show that w is probably the largest contributor affecting the 

coverage probability.  If w selected to be relatively small compared with θ the interval estimate will always near 

100% coverage.  The most important piece of information to take from these two simulations is that the percentage 

of times the mean fell within the confidence interval is consistently larger than the 1-α coverage probability. 

 

V. Discussion 

 

Two two-stage sampling procedures were proposed that ensured the sample mean will be accurate for a Gamma 

population.  Throughout the paper, many examples where Gamma is used to model data were given, specifically its 

use of estimating times in clinical trials.  There are two benefits to implementing these procedures: these methods 
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ensure accuracy without use of asymptotics or any other approximations as well as these methods reduce the sample 

size.  Though the Gamma is often assumed when estimating times, it is not exclusive to that and can be assumed for 

anything that is right-skewed and have a positive support.  

 

One of the major limitations with the interval estimator result is that it always assumed shape known.  This is a 

luxury that is not always present.  Section 3 gives three strong reasons why the shape known is relevant.   One way 

of getting around this is to select an initial sample large enough to estimate the shape parameter and insert it into the 

result (2.1), before finding the interval estimate.  This lacks the mathematical rigor given in the previous sections.  

At this point, it is unclear of how one is to go about developing an interval without knowing the shape parameter.  

 

Finally, there are a number of situations that happen in practice that alter the distribution; all of which lead to 

possible future research.  In many voluntary clinical trials the subjects drop from the trial midway through.   The 

knowledge of the subjects before dropping out of the trial can still be useful.  Modifying this procedure so that it 

includes censored values can be a worthwhile improvement.   In addition to that, if there is a minimum amount of 

time a subject has to be in a trial, the distribution laid out in (1.1) may not be appropriate.  Mukhopadyay and Zacks 

(2007), develop a two-stage bounded variance procedure for the Exponential distribution where the parameter of 

interest was a linear combination of location and scale.  Similarly, this can be done for the Gamma mean.  It is well 

documented that the ratio of two Gamma distributed variables are Beta.  Each of these results could be potentially 

extended to the Beta distribution. 
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Appendix. 

 

A.1.  

We can re-express the variance on all N observations as  2)(  NN XAEXVarA  as 
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Thus, using the two inequalities above with the re-expression fact we have 




























2

2

2

222
)(

mmm

N
XX

m

X

m
m

B

w
AEXVarA


 

Using the fact that mX ~ Gamma (mθ,λ/m), we can calculate the expectation easily, and using the fact that 
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If θ is known we can ensure the expected loss is less than our variance bound w by solving the righthand side of the 

inequality to equal w then solving for B accordingly to obtain equation (2.2). 

 

If θ is unknown we again use the assumption 3m . There is a very obvious flaw here: θ is assumed unknown 

yet we are assuming that 3m .  However, in practice even without knowledge of θ it is a pretty safe assumption 

unless one is working with a combination of extremely small sample sizes and extremely small skewed distributions.   

If there is a belief that the distribution might be skewed and θ will be much less than one then that can be corrected 

by taking a larger initial sample size.  Continuing on, since 3//1 m  
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Setting this to w and solving for B accordingly we obtain equation (2.3). 
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A.2. 

Suppose that nXXX ,...,, 21 are iid Exponential(λ).  Then T = ∑ Xi is a sufficient statistic for λ.  In the Gamma pdf t 

and λ appear together as t/λ and, in fact the Gamma(n, λ) pdf (Γ(n)λ
n
 )

-1
t
n-1

e
-t/λ 

 is a scale family.  Thus if Q(T, λ) = 

2T/λ, then  

 

Q(T,λ ) ~ Gamma(n,2), 

 

which does not depend on λ.  The quantity Q(T,λ) is a pivot with a Chi-Square distribution with 2n degrees of 

freedom, Casella and Berger (pp. 428). 

 

Similarly, if nXXX ,...,, 21 are iid Gamma(θ, λ), then Q(T,λ) = 2X/λ ~ Chi-Square (2nθ).  

 

A.3. 

The proof in A.1. ensures that wXAE N  22 ][   .  This means that 
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The width of this confidence interval is set to width 2d, and M is found accordingly. No close form solution exists, 

but the numeric solution yields the interval estimator given in (3.1). 
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