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Multiple imputation (MI) has become one of leading approaches in dealing with missing data in survey 

research. However, existing software packages and procedures typically do not incorporate complex 

sample design features in the imputation process. Researcher has demonstrated that implementation of 

MI based on simple random sampling (SRS) assumption can cause severe bias in estimation and hence 

invalid inferences, especially when the design features are highly related to survey variables of interest 

(Reiter et al. 2006). Recent work to accommodate complex sample designs in imputation has focused 

on model-based methods which directly model the complex design features in the formulation of the 

imputation model. In this paper, we propose a semi-parametric procedure as an alternative approach to 

incorporate complex sample designs in MI. Specifically, we divide the imputation process into two 

stages: the complex feature of the survey design (including weights and clusters) is fully accounted for 

at the first stage, which is accomplished by applying a nonparametric method to generate a series of 

synthetic datasets; we then perform conventional parametric MI for missing data at the second stage 

using readily available imputation software designed for an SRS sample. A new combining rule for the 

point and variance estimates is derived to make valid inferences based on the two-stage procedure. 

Using health survey data from the Behavior Risk Factor Surveillance System, we evaluate the proposed 

method with a simulation study and compare it with the model-based method with respect to complete 

data analysis. Results show that the proposed method yields smaller bias and is more efficient than the 

model-based method. 

 

Keywords:  missing data, complex sample design, multiple imputation, Bayesian Bootstrap, synthetic 

data 

 

1. Introduction and Research Question 

Multiple imputation (MI) is a principled method in dealing with missing data in survey research 

and has been adopted by federal statistical agencies in recent years. A very important point 

underlying the MI theory is that the method was designed for complex sample surveys hence requires 

the imputation to be made conditional on sample designs. The purpose is to make the missing data 

mechanism ignorable: since design features are usually related to survey variables of interest in real 

survey data, severe bias on the estimates can be avoided when they are properly accounted for in the 

process (Reiter et al. 2006). However, survey practitioners usually assume simple random sampling 

(SRS) when they’re performing MI, largely due to the inadequacy of standard software packages in 

handling complex sample designs. A typical example is the Sequential Regression Multivariate 
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Imputation procedure (SRMI) using IVEware (Raghunathan et al.2001), which has been gaining 

increasing popularity in handling multivariate missing data in large scale surveys. Applications such as 

MI for missing income data in NHIS (Schenker et al. 2006) focused on the strategies of modeling 

complicated data structure and failed to recognize the importance of incorporating complex 

sample design features, reflecting an inconsistency between theory and practice.  

 

The question is then: how do we fully incorporate the sample designs in MI to achieve valid statistical 

inferences? Reiter et al. (2006) proposed a fixed effect modeling method in addressing the problem 

where they included design variables as predictors in the imputation model and it outperforms SRS 

scenario in terms of correcting the bias. Their conclusion thus supports the general advice of including 

complex sample designs in MI procedure. However, they did not look at survey weight as another 

important design variable. Treating weight as scalar summary of the design information in the 

imputation model may not work well for inference beyond means or totals, since interactions 

between the probabilities of selection and the population parameters of interest will not be 

accounted for (Elliott 2007). Besides, their results for real data application did not show significant 

gains of incorporating designs over ignoring designs as in their simulation study. Little following work 

has been done to replicate their results with real survey datasets or to investigate other potential 

methods in this regard, say, is there a way to incorporate design information within the MI framework 

other than including them as covariates in the imputation model? The goal of this paper is to propose a 

semi-parametric two-step method as an alternative to the existing fully model-based methods. 

Specifically, we divide the imputation process into two steps: the complex feature of the survey design 

(including weights and clusters) is fully accounted for at the first step, which is accomplished by 

applying a nonparametric method to generate a series of synthetic datasets; we then perform 

conventional parametric MI for missing data at the second step using readily available imputation 

software designed for an SRS sample. A new combining rule for the point and variance estimates is 

derived to make valid inferences based on the two-step procedure.  

 

The rest of this paper is structured as follows: Section 2 describes the proposed method in detail. We 

first lay out the conceptual idea and then demonstrate the theoretical results. Section 3 provides the 

results from a simulation study in a PPS sampling design setting to empirically evaluate the new 

method. Section 4 concludes with discussion and directions for future research. 

 

2. Two-step MI Procedure 

In this section, we propose a two-step procedure to perform multiple imputation with which accounting 

for complex designs and multiply imputing missing data are divided into two separate steps. The basic 

idea is to “uncomplex” the complex designs before implementing standard MI procedure. By 

“uncomplex”, we mean a statistical procedure which makes the design features irrelevant at the 

analysis stage, i.e. turning a dataset into one that is self-weighting, so that we can treat the 

uncomplexed populations as if they were simple random samples from a superpopulation or the true 

population. Thus, simple estimation formulae for self-weighting samples directly apply. Specifically in 

our case, this is achieved by generating synthetic populations through a nonparametric resampling 

procedure adapted from Bayesian Bootstrap (Rubin 1981) i.e. the Finite Population Bayesian Bootstrap 

(FPBB) which will be introduced in section 2.2, such that complication of modeling those designs in 

the imputation can be avoided. The standard practice of MI assuming SRS can then apply directly to 
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the generated populations which are free of sampling designs.  

 

Two major assumptions are made for implementing the proposed method: 1) The method is proposed 

to treat item nonresponse problem under MI framework, rather than unit nonresponse. Therefore all 

input weights are assumed to be final weights after unit nonresponse adjustment and calibration. 2) 

Missing at random (MAR) as a more practical missing data mechanism is assumed for all types of 

analysis under study. We do not consider MCAR (Missing Completely At Random) which is too ideal 

for real world surveys, neither do we consider NMAR (Not Missing At Random) which is another 

scope of research topic. 

 

2.1. Conceptual Idea 

Figure 1 and Figure 2 together illustrate the conceptual idea of the procedure.  

 

Figure 1 shows the proposed procedure to account for complex designs in MI. Denote Q as the 

population parameter we are interested in. Denote the actual sample survey data as ( , ),mis obsD Y Y  

where misY  represents the portion of item missing data and obsY  represents the portion of observed 

data. The first step of the synthetic data generation approach creates B FPBB synthetic populations 

(1) (2) ( ){ , ,..., },B BD D D D  where 
( ) ( ) ( )( , ),b b b

mis obsD Y Y  1,2,..., .b B  The second step of 

multiple imputation creates M imputed datasets for each of the FPBB synthetic population generated 

from the first step, 
( ) ( ) ( ) ( )

1 2{ , ,..., },b b b b

M MD D D D for 1,2,..., .b B  Thus we end up with

(1) (1) (1) (2) (2) (2) ( ) ( ) ( )

1 2 1 2 1 2{ , ,..., , , ,..., ,..., , ,..., }B B B B

M M M MD D D D D D D D D D  which contains all the 

imputed synthetic population datasets generated by the two-step procedure.  

 

Figure 2 (a)-(c) shows the evolution of data structure in the proposed procedure. Suppose we have three 

survey variables of interest, Y1, Y2 and Y3, and a survey sample of size n was drawn from of a target 

population of size N through some type of complex sampling design. The character ‘m’ in pink square 

denotes the missing part for each survey variable in both sample data and synthetic population data. At 

the first step, we can think of the unobserved elements of the population as missing by design and we 

treat missing values as a separate category for each variable. By applying the adapted FPBB method, a 

synthetic population is created, ideally a plausible reflection of the target population. Note that in this 

process, the missing data are also brought up to the population level. At the second step, conventional 

SRMI assuming SRS is applied to fill in those item missing data and we end up with a complete dataset 

which we call imputed synthetic population. The whole process will be replicated for B by M times. 
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Figure1. Proposed Procedure to Account for Complex Designs in MI 
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Figure2. Data Structure Evolution 
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2.2. Methods 

Now we demonstrate how the adapted-FPBB method for unequal probability sampling (Cohen 1997) 

can be applied to uncomplex weight as one design feature and how this method can be adapted to 

uncomplex cluster as another, hence more complicated designs such as stratified multistage cluster 

sampling can be handled. SRMI is illustrated as one option to perform the conventional MI once the 

complex designs have been appropriately accounted for in the first place.  

 

2.2.1. First step---Nonparametric approach to Uncomplex Designs 

Per the limitations of fully model-based methods stated in section1, we propose using a nonparametric 

method, i.e. the adapted-FPBB by Cohen (1997) to account for complex sample designs in MI. 

Specifically, the adapted-FPBB serves as a procedure to restore the existing complex survey sample 

back to some SRS-type/self-weighting data structure. This will be realized by generating populations 

from the complex sample repeatedly in a spirit similar to synthetic population generation method in the 

context of MI for disclosure risk limitation (Raghunathan et al. 2003). Resampling technique is used in 

order to fully capture the uncertainty in the original sample. The nonparametric approach has minimum 

assumption of the distributional form of random effects and is robust to model misspecification that 

usually poses problems to the model-based methods. Additional to that, FPBB is a method developed 

from the conventional bootstrap whose Bayesian nature makes it fit to the MI framework well. 

 

2.2.1.1. Finite population Bayesian Bootstrap: 

Pólya’s Urn Scheme: 

Denote an urn containing finite number of balls as {          }. A ball is randomly drawn from the 

urn and a same ball from outside of the urn is added back to the urn along with the originally picked 

one. Repeat such selection process until m balls have been selected as a sample, call this sample ‘Pólya 

sample of size m’. Figure 3 is a flow chart of how a Pólya Sample of size m=N-n is drawn. 

 

Figure3. A Flow Chart of Drawing a Pólya Sample of size m=N-n. 

        

1
st
 draw            2

nd
 draw               (N-n)th draw   …… 

         

Original Urn                                                               Final Urn 

 

Adapted-FPBB method: 

Based on the Pólya’s urn scheme described above, the adapted-FPBB populations can be generated 

following the three-step procedure: 

Step1: Take a Pólya sample of size N-n, denoted by 
* * *

1 2 ( ), ,..., N ny y y 
 from the urn 1 2{ , ,..., }ny y y . 

In this process, each iy  in the urn is selected with probability:  

 

i i,k 1

N n
w 1 l

n
,      (1)

N n
N n k 1

n



 
   

 

 
    

   

n n+1 n+2 n+(N-n) 
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where 
iw  is the case weight for the ith unit and 

, 1i kl 
 is the number of bootstrap selections of 

unit i up to (k-1)
th

 selection, setting 
,0 0il  .  

Step2:  Form the FPBB population 
* * *

1 2 n 1 2, , , , , , , N ny y y y y y    so that the FPBB population 

has exact size N. 

Step3:  Repeat the previous steps a large number of times, say B times, to obtain B FPBB populations. 

 

2.2.1.2. Relating FPBB to Multiple Imputation for Item Missing Data: 

If we think of the sampling process and responding process as one combined process, in other words, 

treating the responding process as another level of sampling of responding units given the original 

sampled units, then it’s easy to see the connection between FPBB and standard MI. FPBB tries to 

bootstrap the sample to the entire population while MI tries to ‘bootstrap’ the responding pool to the 

complete sample. A typical example is the approximate Bayesian bootstrap (ABB) suggested by Rubin 

& Schenker (1986) as a way of generating MI when the original sample can be regarded as IID and the 

response mechanism is ignorable. Now that Cohen’s FPBB extends to unequal probability selection, we 

may well think of the unsampled part of population as missing and multiply impute this part using the 

adapted-FPBB procedure described above. Hence the essential of our approach---to carry out two 

levels of multiple imputation: 1) MI for unit nonresponse by Pólyaing up a complex sample onto a 

population where missing values are treated as a separate category for each variable with missing data, 

and 2) MI for item nonresponse by SRMI for the entire population.  

 

2.2.1.3. Uncomplex Weights: 

The adapted-FPBB can be applied directly to weights in a sampling design such as probability 

proportional to size (PPS) sampling. Note that in practice, the input weight in Formula (1) should be 

the final weight or poststratified weight after all types of adjustment including unit nonresponse 

adjustment and calibration for undercoverage, etc. The reason is obvious: if we use the base/design 

weight instead in applying the adapted FPBB for generating synthetic populations, the potential 

problems of undercoverage or unit nonresponse existing in the original complex sample would be 

brought up to the population level without being adjusted at all. Since ultimate analyses are based on 

such imputed synthetic populations, a direct consequence would be biased inference even if the 

procedure by itself is efficient. 

 

Intuitive interpretation by assuming an SRS sample design:  

Formula (1)  for adjusting bootstrap selection probability based on case weight is interpreted as 

follows: Let 1,2,..., 1,k N n    1,2,..., ,i n  before making any bootstrap selection of 

unobserved units in the population from the observed original complex sample 1 2 n, , ,y y y , i.e. 

when 1k    and , 1 ,0 0i k il l   , the probability of selecting unit i with sampling weight iw  is 

( 1) / ( )iw N n  . To make it simpler to understand, suppose we have a simple random sampling of n 
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units in the first place, then /iw N n  for all sampled units, each representing /N n
 

units in the 

population, then the probability of that any one unit from the SRS sample is selected before any 

bootstrap selection is ( 1) / ( )
N

N n
n
  , which is the selection probability of any units among all the 

rest N n  units in the population, and this exactly equals 1/ n . As we proceed with the bootstrap 

selection, we adjust this selection probability according to the number of times each unit among 

1 2 n, , ,y y y  was selected during the FPBB procedure, each unit now represents ( ) /N n n  

among the N n  units to be selected during one bootstrap whenever it is selected once. After each 

selection, the denominator of the prior probability function needs to be inflated to reflect the total units 

being represented during all the bootstrap selections so far, while the numerator also needs to be 

inflated to reflect the total units represented by unit i in the process. Therefore we obtain the probability 

as in formula (1) .  

 

2.2.1.4. Uncomplex Sampling Error Codes (i.e. stratum and clusters):  

Now we will show how the adapted FPBB also works when clusters are involved in the sample design. 

Suppose we have a stratified two-stage clustering design, with the probability of selection for each 

primary sampling unit (PSU)/cluster being proportional to its population size (PPS) within strata. As 

usual we treat each stratum independently and apply the method separately within each. Now we have 

two layers of bootstrap selection---one at the cluster level and the other at the element level. Suppose 

there are hC  clusters in 
thh  stratum in the population, among which hc  were sampled, denote 

them as hjz  where 1,2,..., hj c . Treating each cluster as the sampling unit, we can apply the same 

procedure as in previous section where only elements are involved. That is, we want to bootstrap 

selecting h hC c  clusters out of 1 2, ,...,
hh h hcz z z  to form a population of clusters: 

* * *

1 2 1 2 ( ), ,..., , , ,...,
h h hh h hc h h h C cz z z z z z 

. Accordingly, we need to change the corresponding terms in 

formula (1)  to make it a cluster-level selection probability. Let , 1,2,...,hj hw j c  be the sampling 

weight for 
thj  cluster, formula (1) thus can be adapted as formulae (2) and (2)' , corresponding 

to the cluster-level selection and element-level selection, respectively.  

   

i,k 1 i,k 1w 1 l w 1 l

,  (2)   and   ,  (2)'

k 1 k 1

h h ch ch

ch

h h ch ch
h h h

hj ci

h

h

c ch

ch

C c N n

n

C c N n
C c

c
N n

n

c
 

    
        

   

    
          

   

    

 

Once the clusters have been selected by adapted FPBB procedure using formula (2) , we can further 
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select elements using the same method within each selected cluster using formula (2)' . Notice that at 

the element level of selection, each selected cluster should now be treated as a population therefore the 

sampling weight for elements in the original sample cannot be used anymore, instead we need to derive 

a new set of weights for elements conditional on cluster being selected. First, we need to obtain the 

conditional probability of selection for element given cluster (formula (3) ), then inverse it to get the 

corresponding weight wci  in formula (2)' . 

 

   Pr(  element selected|  cluster selected)

Pr(  element selected &  cluster selected)
=

Pr(  cluster selected)

Pr(  element selected in the original sample)

Pr(  cluster selected)

hji

hj

ith jth

ith jth

jth

pith

jth p
  ,   (3)

 

 

Where     is the selection probability of cluster j among all clusters in stratum h,      is the selection 

probability of unit i among all units in stratum h. 

 

2.2.2. Second Step---MI for Missing Data Using SRMI: 

Now that we have uncomplexed the sampling designs, we are in a good position to proceed with 

performing conventional multiple imputation. SRMI as a popular technique for complex survey data 

structure is one option. Without the need to include design variables in the imputation model due to a 

self-weighting FPBB population generated from previous step, our task should now be concentrated on 

correctly modeling the covariate variables as well as interactions among them whenever necessary. 

 

2.3. Theoretical Results 

Rubin (1987)’s standard MI rule for combining point and variance estimation does not fit the two-step 

MI procedure. A new combining rule is developed accordingly, which accommodates two sources of 

variability due to synthesizing populations by a nonparametric method at the first step and multiply 

imputing missing data by SRMI at the second step. The validity of the new combining rule is to be 

justified both from a Bayesian perspective and from a repeated sampling perspective.  

 

 

Combining rule for the point estimate: 

( ) ( )

1 1 1 1

1 1 1
,    (4)

B M B M
b b

m m

b m b m

q q q
B M BM   

   
 

 

 

 



 9 / 18 
 

Combining rule for the variance: 

( ) 2 ( )

1 1

( ) ( ) 2 ( ) ( ) 2

1 1 1 1 1 1

( ) ( ) 2 ( )

1 1 1 1

1 1 1
(1 ) ( )

1

1 1 1 1 1 1 1 1
(1 ) ( ) (1 ) ( )

1 1

1 1 1 1 1 1 1 1 1
(1 ) ( ) (1 ) (

1 1

B B
b B b

b b

B M B M B M
b b b b

m m m M

b m b m b m

B M B M
b b b

m m m

b m b m

T q q U
B B B

q q q q
B B M B M B M M

q q q
B B M B M B M M M

 

     

   

   


     
 

     
 

 

     

    ( ) 2

1 1 1

1

)

1 1 1
(1 ) (1 )

1
,                                                                             (5)

B M M
b

m

b m m

B
B

M

b

B M

q

V V
B B M

T T
B

  



   

 

  



 

When n, M and B are large, the inference can be approximated by normal distribution, thus the 95% 

confidence interval can be computed as 
0.975 0.975[ , ]q z T q z T  . (See Appendix A for detailed 

derivation and notation) 

 

Bayesian Proof of the New Combining Rules for Inference: 

With     imputed FPBB synthetic datasets generated from the proposed two-step procedure, we 

need to find a way to combine inferences from both steps. Now we show how the combining rules for 

normal approximation is derived, assuming large samples. 

 

Let the complete data be ( , )obs misD D D , where ( , , , ),obs obs incD X Y R I  X  is covariate 

matrix, Yobs  is the observed part of survey variable with missing data, R inc  is the response 

indicator for all sampled units, and I  is the sampling indicator.  

Let the FPBB synthetic population be 
( ) ( ) ( )( , ),  b=1,2,...,B.b b b

obs misD D D  

Let the imputed synthetic population be 
( ) ( ) ( )

( ) ( )( , ),  m=1,2,...,M and b=1,2,...,B.b b b

m obs mis mD D D  

The posterior mean and variance of Q are immediate using the rules for finding unconditional moments 

from conditional moments (according to Result 3.2 of Rubin 1987). In our case, we shall condition on 

two layers of observed data due to the two-step MI procedure: 

( ) ( )

( )

 

Posterior Mean: ( | )

{ [ ( | ) | ] | }

{ | }

,                                       (10)

obs

b b

m obs obs

obsb

E Q D

E E E Q D D D

E Q D

Q











 

Where 

( )
( )

 

1

ˆ
ˆlim ( | ),

bM
bm

B obsb
M

m

Q
Q E Q D

M





   note that ˆ
BQ  is the complete data statistic for the 
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synthetic population and 
( ) ( ) ( )

1
ˆ ˆ ˆ{ ,..., }b b b

m MQ Q Q   is M repeated values of the posterior distribution 

of ˆ
BQ . 

1 1

ˆ
ˆlim lim ( | ),

bB M
m

obs
B M

b m

Q
Q E Q D

BM


 
 

   note that Q̂  is the complete data statistic 

for the original population and 
1 1

1 1
ˆ ˆ ˆ ˆ ˆ{ ,..., ,..., ,..., }b B B

m M MQ Q Q Q Q . 

( ) ( ) ( ) ( )

( ) ( )

 

 Variance: ( | )

{ [ ( | ) | ] | } { [ ( | ) | ] | }

{ | } { | }

1
,                                                                         

obs

b b b b

m obs obs m obs obs

obs M obsb

B M

Posterior V Q D

V E E Q D D D E V E Q D D D

V Q D E T D

T T
B



 

 

  (11)

 

Where 

2 ( ) 2

  

1 1

1 1 1 1 ˆlim(1 ) ( ) , lim (1 ) ( ) .
1 1

B M
b

B M mb b
B M

b m

T Q Q T Q Q
B B M M

  
 

 

       
 
   

 

3. Simulation Study 

A simulation study was designed to investigate the properties of inference based on the proposed 

method. In particular, we are interested to see how the two-step MI procedure performs in comparison 

with the existing alternative methods including: (1) complete case analysis, (2) ignore designs in the 

imputation model, and (3) include designs as fixed effect in the imputation model.  

 

3.1. Data: 

Data from real surveys were manipulated to serve as our population. Specifically, BRFSS 2009 in the 

state of Michigan used a disproportionate stratified sampling design (DSS) with no PSU (cluster level) 

involved therefore is suitable for our purpose of looking at weight as a single design variable in 

multiple imputation. There are four strata in Michigan and for simplicity we only chose one stratum as 

the basis of our simulation study. Eight categorical variables were selected which we thought would be 

potentially correlated with survey weight. Table 1 shows the recoded variables we’ve chosen for 

analysis. After some data cleaning, we ended up with a complete dataset of N=1323 cases which will 

be serving as our population.  
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Table1. Survey Variable under Analysis 

Survey Variable Coding 

Race 1: Whites 2: Non-Whites  

Whether or Not Have Health Plan 1: Yes 2: No 
 

Income Level 1: Low 2: Medium 3: High 

Employment Status 1: Employed 2: Unemployed 3: Other 

Marital Status 1: Married 2: Unmarried 

Education 1: Lower Than High School 2: High School and Higher 

Whether or Not Have Diabete 1: Yes 2: No 
 

Whether or Not Have Asthma 1: Yes 2: No   

 

3.2. Design: 

Our strategies of evaluating the performance of proposed method in comparison with alternative 

methods consist of the following steps: 

Step1: Make design variable related to survey variables: 

Since we want to examine the new method assuming the designs are relevant to missingness on survey 

variables, we achieved the assumption by regressing weights as the dependent variable on all other 

survey variables as predictors and obtained the predicted values of weight to be used for simulation. 

The purpose is to make sure that weight as a design variable is at least moderately related to survey 

variables.  

 

Step2: Draw 100 samples/replicates with probability proportionate to the inverse of predicted weights, 

each of size 200 (we will call it before-deletion samples): 

In this way, we obtained the probability proportional to size (PPS) sampling weights (    ) which are 

directly related to the predicted weights (    ) from the previous step, since we were implicitly treating 

the predicted weights as kind of a measure of size. Now      becomes our target design variable to be 

examined with the new method.  

 

Step3: Impose Missingness on the Complete Data under MAR Mechanism 

we used a deletion function taking the form                                           

    ,where    is a binary indicator for missingness,   represents ‘Race’,               represents 

unit’s values of other survey variables (except ‘marital status’ and ‘education’) of which we 

purposefully delete values. Thus we obtained 100 after-deletion samples. Table 2 shows the fractions of 

missing by race for each survey variable of interest. The fractions of missingness by race are in a range 

of 15%~40%, where the missingness for income was made to be generally higher than all other 

variables.  

 

Table2. Fractions of Missingness on Survey Variables of Interest by Race 

 Race 
Employment 

Status 

Health 

Plan 
Diabete Asthma Income 

Whites 15% 15% 15% 15% 20% 

Non-Whites 25% 25% 25% 25% 40% 
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Step4: Generate B=100 FPBB synthetic populations for each replicate sample, with the PPS sampling 

weights as input weights, using Cohen (1997)’s adapted FPBB method. In the process, we made the 

population size five multiples of the original PPS sample size thus each FPBB population is of size 

1000. 

 

Step5: Create M=5 multiply imputed datasets by SRMI procedure for each FPBB population with each 

replicate sample, thus I obtained 5*100*100=50000 imputed datasets each of size 1000. 

 

Step6: Obtain multiply imputed synthetic population estimates for the mean of each survey variable of 

interest. For each replicate sample, we use formulae (4) and (5) as our new combining rules to combine 

the estimated means and variances from 500 imputed synthetic datasets. 

 

3.3. Results: 

Three critical statistics were examined for comparison across the four methods. They are absolute 

relative bias, root mean square error, and empirical nominal 95% confidence interval coverage rate. All 

are calculated based on 100 replicate samples. Also note that except for the new method all estimates 

under the other three methods as well as the actual samples before deletion are design-based.  

 

Figure4 displays the Q-Q plot matrix of 100 pairs of estimated proportions from the actual samples 

before deletion versus that from the corresponding imputed synthetic populations under proposed 

method, for each survey variable by level. The plots demonstrate a nearly perfect 45-degree straight 

line for all the variable levels. This indicates that the distributions of the imputed synthetic populations 

practically match the actual samples before deletion.  

 

Table3 gives the detailed results from the simulation study. For simplicity, we only display the results 

for three variables, employment status and health plan, which has higher correlations with the design 

variable weight, and income, whose fraction of missingness is highest among all. According to table3, 

the new method has much smaller bias than all its competitors. In terms of RMSE, although the gain is 

not as substantial as that in the case of absolute relative bias, the new method performs generally the 

best. Nominal 95% CI coverage of the point estimate under the proposed method is in a range of 

86%-96%, considering categorical nature of all the survey variables, this is a reasonable result. We can 

see that except for complete case analysis which has lowest CI coverage in general, there seems no 

much difference between the new method and the other two model-based MI methods.  
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Figure4. Q-Q Plot Matrix for Estimated Proportions: Actual Sample Before Deletion versus FPBB+SRMI  
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Table3. Absolute Relative Bias, RMSE and 95% CI Coverage Rates Compared across Four Methods 

                          

Variables FPBB+SRMI 
Include Weights in the 

Imputation Model 

Do Not Include Weights in the 

Imputation Model 
Complete Case Analysis 

EMPLOY_M Relbias RMSE 
95% CI 

cov. 
Relbias RMSE 

95% CI 

cov. 
Relbias RMSE 

95% CI 

cov. 
Relbias RMSE 

95% CI 

cov. 

1 0.30% 3.99E-02 96% 1.03% 3.59E-02 95% 2.10% 3.93E-02 96% 3.23% 7.34E-02 95% 

2 0.17% 5.41E-02 87% 19.15% 5.76E-02 86% 8.73% 5.67E-02 86% 5.98% 5.97E-02 79% 

3 0.17% 7.69E-02 90% 3.66% 6.80E-02 90% 3.58% 7.69E-02 90% 1.02% 8.43E-02 92% 

INCOME_M                         

1 0.84% 5.54E-02 88% 1.38% 5.27E-02 91% 1.22% 5.63E-02 89% 6.77% 8.94E-02 88% 

2 0.33% 6.16E-02 88% 0.25% 5.99E-02 85% 0.63% 6.20E-02 87% 3.17% 8.39E-02 93% 

3 1.91% 3.02E-02 96% 5.93% 3.33E-02 95% 6.68% 3.35E-02 94% 13.53% 5.48E-02 90% 

HLTHPLAN_M                         

1 0.03% 6.68E-02 86% 4.59% 7.88E-02 87% 1.51% 6.96E-02 85% 0.80% 7.11E-02 80% 

2 0.19% 6.68E-02 86% 32.70% 7.88E-02 87% 10.80% 6.96E-02 85% 2.40% 1.12E-01 80% 
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4. Discussions 

Our primary goal was to propose a new method to account for complex sample design features in 

multiple imputation for item missing data and to evaluate the performance of the new method in a PPS 

sample setting. There are several advantages of the proposed two-step MI procedure: first, it relaxes the 

usually strong distributional assumptions of random effects in parametric models; second, it potentially 

protects against model misspecification, for example, wrongly inclusion or exclusion of interactions 

between design variables and other covariates in the imputation model. Meanwhile, it retains the nice 

features of SRMI in handling complex data structure and various types of missing variable. Another 

advantage is that both steps of the procedure are of a Bayesian flavor and implies a proper imputation 

method. This fits into the standard MI paradigm which requires Bayesian derived imputation method to 

attain randomization validity. A further advantage lies in that unlike the fully model-based methods 

which include designs in the imputation model and still require complex survey packages to analyze 

the imputed datasets, the new method fully accounts for the designs by uncomplexing them and 

restoring a population in a separate step, therefore only simple, unweighted complete-data analysis 

techniques are needed for inferences with the newly developed combining rules. This reduces a lot 

burden on data users. Our findings in the simulation study suggest that the new method can bring about 

significant gains in bias relative to the existing model-based methods without losing any efficiency. 

Therefore, even for categorical variables, the nominal 95% confidence interval coverage rates under the 

new method are quite reasonable.  

 

A direct application of the proposed approach is in the context of MI for disclosure risk limitation 

context. The approach of using MI framework to generate synthetic populations has become popular in 

protecting the confidentiality of respondents in the survey world, yet most are model-based or based on 

nonparametric method alone (i.e. Bayesian Bootstrap not accounting for designs), the semi-parametric 

approach as a combining use of the two serves as a good alternative, especially for complex survey 

designs.  

 

Our current work focuses on more comprehensive simulation studies to assess the general performance 

of the proposed method, including its robustness to different degrees of model misspecification. We 

also aim to extend the application of our method in more complex sample design settings where both 

unequal probabilities of selection and clustering are involved.  
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Appendix A. Direct Derivation for the Two-step Combining Rules 

This is achieved by constructing an approximate posterior distribution of Q  given 
B

MD  in analogy 

with the standard theory of multiple imputation for missing data. The conceptual framework of the 

proposed procedure suggests that we have the following decomposition: 

( | ) ( | , , , ) ( , | , ) ( | )

( | , ) ( , | , ) ( | )

B B B B B B B

M M M M

B B B B B

M M

f Q D f Q D D V V f D V D V f V D dD dV dV

f Q D V f D V D V f V D dD dV dV

  

  







  

Where V
 is variance of the posterior mean 

( )bq  for each 
( )bD  obtained when B  , let 

( )bV  be the variance of the 
( )b

mq   obtained when M  . Then V  is the average of the 
( )bV   

obtained when B  . 

 

Step1: Combining rule from Synthesizing data by adapted FPBB: ( | , )Bf Q D V  

Let ( )Q f Y   be a scalar population quantity we are interested in. For example, it can be the 

population mean of survey variable Y, or it can also be a regression coefficient. Let q and u be the point 

and variance estimates for Q based on the actual sample data, 
( ) (1) (2) ( ){ , ,..., }b Bq q q q  denotes the 

point estimates from all B FPBB populations. Adapted from the combining rules developed by 

Raghunathan et al.(2003) for fully synthetic data, the posterior mean and variance can be estimated as: 

( )

1

1
         (6)

B
B b

b

q q
B 

   

BT Between synthetic variance + Within synthetic variance 

( ) ( ) 2 ( )

1 1 1

1 1 1 1 1
(1 ) (1 ) ( )      (7)

1

B B B
B b b B b

b b b

V U q q U
B B B B B  

      


    

Where 
( ) ( )b b

MU T  which is the between imputation variance for FPBB population b, and will be 

defined later in step 2. 

 

Step2: Combining rules from Multiply imputing missing data:  ( , | , ) ( | )B B B

M Mf D V D V f V D   

or 
( )( | )b

Mf Q D  

Let 
( ) ( ) ( ) ( )

1 2{ , ,..., }b b b b

M Mq q q q   denote the point estimates from all multiple imputed datasets for 

FPBB b. Adapted from Rubin (1987)’s conventional combining rules for multiple imputation, the 

posterior mean and variance estimates can be written as: 
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( ) ( )

1

1
        (8)

M
b b

M m

m

q q
M 

   

( ) ( )

( ) ( ) 2

1 1

 Between imputation variance  Within imputation variance

1 1 1 1 1
(1 ) (1 ) (1 ) ( )             (9)

1

b b

M

M M
b b

M m M m M

m m

T U

V U V q q
M M M M M 

  

       


 
  

The within imputation variance disappears because at this step we are actually multiply imputing 

missing data for a population (FPBB is treated as a population) therefore no sampling variance is 

involved here, i.e. 0mU  . 

 

Two-step combining rules for inference:  ( | )B

Mf Q D  

When we were deriving ( | )Bf Q D  at the first step,  
( )bq   was viewed as the sufficient 

summaries of FPBB b, after constructing the unbiased estimator 
( )b

Mq  for each 
( )bq   from 

generating M multiply imputed datasets nested within each FPBB population, we need to approximate 

( | )Bf Q D  with ( | )B

Mf Q D   by substituting 
( )bq   with their estimators 

( )b

Mq  to obtain the 

posterior mean and variance for the two-step procedure as in formulae (4) and (5). Where 
BV  and 

MV  represents the between synthetic population variance and between multiple imputation variance, 

respectively. Notice that the within variance component at the first step is actually represented by the 

between variance from the second step. 
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