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1. Imtroduction

There is a continuing need to assess health status, practices and resources at both the national
level and subnational levels. Estimates of these health items help determine the demand for
quality health care and the access individuals have to it. Although NCHS survey data systems
can provide much of this information at the national level, little can be provided directly at the
subnational level, except for a few large states and metropolitan areas. The need for State and
substate health statistics exists, however, because health and health care characteristics are known
to vary geographically. Also, health care planning often takes place at the state and county level.

Using a hierarchical model, our focus is on the development of state estimators using data
from the National Health Interview Survey (NHIS). Information on health status, practices and
resources is collected annually in the NHIS and direct national estimates of these items are also
produced annually. The NHIS is a multistage, personal interview sample survey, The current
sample design uses 1,983 primary sampling units (PSU’s), each PSU consisting of a single
county or a group of contiguous counties {minor civil divisions are used instead of counties in
New England and Hawaii). The population of 1,983 PSU’s is stratified and approximately 200
are sampled with probability roughly proportional to their population sizes. Within each sampled
PSU clusters of households are formed and sampled. Areas within a PSU with a high
concentration of blacks are oversampled. The NHIS is a cross-sectional survey: each year, a
new sample containing approximately 50,000 households and 120,000 individuals is selected.
(For additional details about the design of the NHIS see Massey et al. 1989.) Although the total
sample size is large, the sample size in most states is too small to produce direct estimates that
are sufficiently precise.

Malec and Sedransk (1985) have described Bayesian methodology appropriate for the analysis
of some multi-stage sample surveys when the variables are normally distributed. We have
extended this methodology to accommodate binary random variables, the predominant variables
in the NHIS. Our model is similar to that of Wong and Mason (1985). However, the objective
in Wong and Mason (1985) is inference about parameters in the model rather than finite
population quantities. While Dempster and Tomberlin (1980) investigate small area estimation
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methods for binary random variables they, like Wong and Mason, provide an empirical Bayes
rather than a fully Bayes solution. Since empirical Bayes procedures often account for only a
fraction of the error correctly represented in a fully Bayes approach, we prefer the latter. Recent
advances in numerical methods (e.g., the Gibbs sampler) permit the employment of a full
Bayesian analysis; see, e.g., Gatsonis, et al. (1993), Malec and Sedransk (1993a), and Malec.
Sedransk, and Tompkins (1993).

The notation and model are described in Section 2 while the estimation methodology is
presented in Section 3. Section 4 describes the techniques for fitting the proposed models, and
displays the final model using data from the 1987 NHIS on utilization of physician care. There
is a comparison of alternative estimators in Section 5, and evaluation of the proposed
methodology is described in Section 6.

2. Model Specification

The model in (2.1), (2.2) and (2.3) below includes the most important features of the sample
design. Our objective is to produce accurate point estimates and appropriate measures of
variability by accounting for geographic variability of the response and using available covariale

information.

Let Yy denote a binary random variable for individual j in county i where 1=1,..., L and
j=1,...,N;. Within county i and conditional on the p;, the Y, are assumed to be independent
Bernoulli random wvariables: i.e..

Pr(¥;=yiy) =pif’ (1-py) ™74, y,5€(0,1}. (2.1)

Given the vector of M covariates corresponding to individual 7, X§, = (X, ... X5
and § , it is assumed that

ln{p”ffl—pij} b= ijﬁl (2.2)

To allow for the possibility of a linear regression between each element of B, and a set of
covariates, Zi=(Z;,..., Z;.), available at the county level, assume

B; ~ N(Ga.I') (2.3)
where, conditional onyand T, the B;"s are independent and G,=Diag(g} , 9%, . . ., g}, ) and g},
is a row vector of dimension c; containing a subset of covariates from Z!. Additionally. n'=
(Myze v oo sMageMaze v oo o Magr v oo s Myggs + + + 4 Ny ), conforming to the dimensions of G;,

and I is an MxM positive definite matrix. Finally, reference prior distributions are assigned to
gand I'; 1.e.,

p(n.I) o constant. (2.4)
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Taking I'=0 provides a specification that is consistent with the basic assumption of synthetic
estimation. In the following "synthetic estimation” refers to the use of (2.1), (2.2) with 8,=Gy,
and p(y) o« constant.

We include as variables in (2.2) those individual level characteristics that provide the best
prediction for p;;, and are reliably estimated at the county level in non-census years. Candidate
variables at the county level (i.e., G, in (2.3)) include the variables used to define the NHIS
strata (defined at the county level). By predicting for demographic groups within counties and
then weighting by postcensal population estimates, estimates are automatically weighted to fixed
population totals.

3. Estimation Methodology
3.1 Bayesian Predictive Inference

In this paper, our objective is to make inference about finite population means. By first
summing the Y,’s within a county and then within a state, the population mean within a state can
be expressed as

g u] Elrﬂfm. G.1)

)

Formula (3.1) can represent either a mean for the entire state or for a subpopulation. The first
sum is over the collection of counties within the state, while N, is the size of the population or
subpopulation in county i. Here, ¥ .N,=N.

In (2.2) we use the variables age, sex and race because these are the only variables for which
reliable estimates are available at the county level for non-Census years. In this case, (3.1) can
be simplified. Suppose that in the population there are K different values of the vector X;. Then
write X, = X(k) for all ij having pattern k (k=1,...K).

From (3.1),

¥ig N;{k} 'ﬂitk} —n
B=zifij]?5_jlfl +§£[ N ]}?J‘.:k ! (3‘2}
where Ni(k) and n,(k) are, respectively, the population and sample sizes in county i with X, =
X(k) and Y7 is the mean of the nonsampled individuals with demographic characteristic k in
county i.

Letting y, denote the vector of sample observations, we emphasize the first two moments of
6, E(f|y,) and Var(f|y,).
From (3.2),
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N, (k) -n, (k)
N

BBy, =S _41+};ﬁ(

Vs
(. es Ty T )E{pixl}:si (3.3)

where p;, = exp{X*(k)§ }/ [1+exp (X" (k) § 3]

and

var 8]z, ~TE (7, (k) ~n, (k) ) B{pyy (1-py) | } /N

(3.4)
3 k=1

+Va Eg {N,; (k) -n, (k) }Piﬂls] SN=.

3.2 Numerical Evaluation

Since the posterior moments of # are nonlinear functions of {B;:i=1,..., L}, and the posterior
distribution,

f({Bsi=1,..., L},n,T'|v), (3.5)

cannot be expressed in a simple form, numerical evaluation is needed. We generate from (3.5)
R sets of parameters, @ = {0™:r =1,... R}, where O = {{fi"i=1,..., L},z™,T}. Then we
evaluate the p{j using (2.2), and obtain estimates of E(#|y,) and Var(f|y,),

E'fzu,j}sJijf'rN*'R_lI%Lmu,jusP;;ﬁfN] (3.6)
and

o [£3] (£} L]
Vg=R Ié[):u,jzmpi;f (1=ps3 ) +{Xyy, 5 o7 12|/

(3.7)
(rEE,, . {n %,
{ I_I[E{JJJ:IESDJJ ‘”‘f]}
This numerical evaluation is accomplished using a Gibbs sampler; see Malec and Sedransk
{1993b) for details.

4, Variable Selection

Using data from the 1987 NHIS we select the variables to be included in (2.2) and (2.3) where
the binary variable Y has Y=1 if there has been at least one visit to a physician during the past
twelve months. We proceed in two steps by first fitting an individual-level model using (2.1)
and (2.2), and then considering the county-level model in (2.3).

Owur initial objective is to ascertain the general form of (2.2). We do this by ignoring county

variation and estimating B in the "national” model, (4.1). If X, = X(k), (2.1) and (2.2) are
replaced by
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PriY¥;=y;;) =pp ¥ (1-p) 74,y (0,1},
and

In {p./(1-pY} = X'(k)8. (4.1)

First, we obtain estimates based on the saturated model where the sample proportion of
individuals in class k, £, is used to estimate p,. Figure 1 shows the effect of age, race and sex
on lu{f,/ (1-£;}.

The variation in log odds in Figure 1 corresponds to an expected pattern. First, for a given
sex and age, the probability of a physician visit is generally larger for whites than for nonwhites.
Second, the general patterns are similar for both races for a given sex. For males, the
probability of a physician visit decreases steadily until about age 22.5, and then increases
steadily. (Recall that we are using five year age groups.) For females, physician visits decrease
steadily until age 12.5 and then increase to about age 27.5. Physician visits remain roughly
constant from 27.5 until 62.5 and then increase steadily.

Due to the complex form seen from Figure 1, various spline models, linear in age, were used.
A fixed knot spline can be defined as a linear model (Smith 1979) and, hence, used in (2.2).
We include the possibility of a knot at each five year age group. The general model investigated
included all possible splines that are linear in age, a race effect, a sex effect, a race by sex
interaction and, finally, all interactions between these categorical variables and the linear age
splines. The set of possible variables is

1) Categorical variables: Intercept, race (r), sex (s) and race by sex (rs)

2) Linear age splines: X,(k)=max(0, age(k)-a), a=0,5,10,...,85 and age(k) is the age for
individuals in class k.

3) Categorical by age-spline interactions: r by X,(k), s by X,(k), rs by X (k).

To determine a subset of terms to include in (4.1) the SAS forward stepwise logistic regression
procedure, PROC LOGISTIC, was used. This procedure selects variables for inclusion and
exclusion using a residual chi-squared test. Since the sample size is approximately 120,000
persons, variables possibly having only a small effect may be included in the model. To
determine the total number of variables to use in the model a quantity like R* was used. Define
the deviance D* for the model M, as (Dev(M,)-Dev(M,))/(Dev(M,)-Dev(M,)), where M, is the
null model {with only an intercept term) and M, is the saturated model (a parameter is fitted for
each age by race by sex group). Note that
0 < D* < 1, and equals R* for the linear model. The variables, intercept, sX;s,...,r, listed in
the table below were included in the model. Adding other variables does not increase the value
of D* appreciably (note the small contributions of the next best variables, rX, and sX,., to D?).

Variable Intercept X, X X, X, - X. r X, X,
Cumulative IF (.00 17.17 | 2209 | 58.88 T5.02 87.41 91.55 94 .41 95.37 | 95.70
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To check the fit of the model, partial residuals were plotted. Corresponding to each observation there
is the residual, r,, = (¥;; = £,;) /B;; (1-PB;;) , which is then averaged over subsets of interest.
A typical residual plot has, for a given domain (e.g., sex by race), r, averaged over all individuals of a
given age plotted against age. The particular form of the residual is used because it will estimate a
missing term in the logistic model (see Fienberg and Gong’s comment to Landwehr, Pregibon and
Shoemaker 1984). The residual plot in Figure 2 indicates that the eight variable model provides a good
fit to the data. The one large remaining residual (for Black males, aged 85 + ) corresponds to an estimate
based on a very small sample size.

The second step in the data analysis is to identify county-level covariates that affect an individual®s
probability of visiting a doctor, after having removed the effects due to the individual level covariates.
To do this, we combined the individual level and county level models in (2.2) and (2.3) but set I'=0.
Then

1ln {P_-L'j,-"f [l‘PijJ I =E;J.Gin . 4.2)

To reduce the scale of this investigation we consider only the eight individual level variables identified
earlier. As indicated by (4.2), we allow main effects of county-level variables and interactions of these
county covariates with the individual-level variables. The collection of county covariates that we
considered are ones included in the Area Resource File or county mortality file, and thought by subject-
matter specialists to be relevant, We have also included county variables related to the formation of the
NHIS strata. The procedure we used was to force the eight individual-level variables into the model, and
let the SAS stepwise logistic regression procedure add variables. (We have also used graphical methods
as described in Malec and Sedransk 1993a and Malec, Sedransk, and Tompkins 1993.) We found no
county-level covariates that increased D* appreciably. However, there is still considerable county-to-
county variation to be captured by (2.3) with G, = I. For other dependent variables (e.g., health status),
county-level covariates play a more significant role,

3. Comparison of Altcrnative Estimators

In this section we use data from the 1987 NHIS to compare the Baves estimates with the standard
alternatives, synthctic and design-based estimates.

For the largest states, the conventional design-based estimates should have relatively small variances,
and there should be good agreement between them and estimates based on (3.2). In Figure 3 we plot,
for each state and type of estimator (design-based, Bayes, synthetic), the estimated percent of the state
population who visited a physician against state sample size. The Bayes estimates (based on a normal
approximation to the posterior distribution) are close to the design-based estimates for the largest states,
as one would hope. For the same states, the synthetic estimates are always further from the design-based
estimates than are the Bayes estimates. As the state sample sizes become smaller the design-based
estimates become increasingly unreliable, and the Bayes cstimates look less like the design-based
estimates, and more like the synthetic estimates. We have also used this same model to produce state
estimates of the percent visiting a physician for subpopulations such as persons 65+, non-whites and
females. These estimates exhibit the versatility of Bayes estimates; the between county variability, based
on I', is different for these three cases, leading to different amounts of "gaining of strength”. See Malec
and Sedransk (1993b) for details and estimates.

Corresponding to Figure 3, Figure 4 is a plot for the 51 areas of posterior standard deviations vs. state
sample sizes where we consider both the hierarchical Bayes (formulas (2.1) - (2.4)) and "synthetic"
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estimates. For the states with smaller populations, the standard deviations based on the hierarchical Bayes
model more properly account for the uncertainty associated with inference about 6.

6. Ewvaluation

We have investigated whether the conventional sample weights are informative. Figure 5 is a partial
residual plot similar to Figure 2. (For this analysis,
Ii; = vy - Elpysly )Y E(pyyle,) {1-E(p;;|,) }]17.) Theordinate of eachpoint s the
average residnal for all individuale having a cample weight within the range centered at the corresponding
abscissa. There is no evidence that the model should include the sample weight as a covariate.

Since the frequency of persons who visit a physician is not available for the entire NHIS population,
it is not possible to compare the small area estimates with the true state values. However, by removing
a portion of the sample, cross-validation methods can be used to assess how well the model and estimation
procedure predict the part of the sample that has been deleted.

The cross-validation procedure that we plan to use is described below. Define the set of sampled

elements that are set aside as "A". Let v. denote the vector of observations that correspond to the
elements in A and y,,, the remaining sampled elements. Also, Y, is the random variable (with observed

value y,) that represents the removed elements. The predictive distribution, £(¥, s () » can be used
to make comparisons between the observed data, v,., and the values of ¥, predicted from the model.
Specific functions comparing Y, and v,, denoted g{fjlxﬁi . can be defined to evaluate features of the
predictions. (See Gelfand, Dey and Chang 1991 for a general review of Bayesian mode] assessment.)

We shall remove sets of sample elements in ways that permit us to see if our model captures the most
important features of the NHIS data. Our evaluation will be based on how well the model predicts the

deleted sample,

o

g = ieUk=1jeay

AL
T S, (k)

ielk=1

where the first sum is over all counties in state "U", A, denotes the set of deleted individuals in
demographic group k and county i, and n,(k) is the size of A;. Two choices for the error in prediction
are

GinlX,. ¥,) = {BM’_E{EAULE:M:I )
and
2

BAE_E{BAU]I[A} }
E(0yly,,,)

GaplX,, ¥,) =[

To evaluate how well the model can predict the error of the estimate one may use
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GiplX, ¥,) -Elg,(X,,¥,|¥,)
E(Gy\X,, %,) ¥, ) :

.g3U{XArIA.:I -

(Al

Numerical results from this cross-validation will appear in a forthcoming report.
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THE ROLE OF DESIGN BASED VARIANCES AND COVARIANCES
IN SMALL DOMATIN ESTIMATION

Robert E. Fay'
U.5. Bureau of the Census

l. Introduction

Two recent reviews provide the context for this paper. The
Subcommittee on Small Area Estimation, TFederal Committee on
Statistical Methodology (Schaible and Gonzalez 1993) surveyed
applications of indirect estimators in official U.S. government
use. The first chapter of their report noted the predominance of
direct estimators in federal statistics. In other words, official
estimates are almost always "direct,” through exclusive or almost
exclusive use of data from both the time and domain of interest.
Indirect estimators, relying heavily on data from either other
domains or times (or both), are the exception in federal
Btatisties. The report enumerates and discusses indirect
estimators in current federal use. (That is, the report considered
only those applications published as official estimates, not
inecluding methodological tests and discontinued series.
Generalizations of survey variance estimates, for example, theose
often included in source and reliability statements at the end of
Census Bureau reports, were also not included.)

Although infrequently employed in federal practice, indirect
estimation generally reflects an attempt to address a need for
estimates that cannot be reliably produced directly given
constraints on resources. The concluding chapter of the report
urged caution in the use of indirect methods and eschewed advocacy
of them as a general purpose and easily developed solution.

Ghosh and Rao (1994) reviewed the statistical methodology
underlying several types of indirect estimators. Their review
included demographic and other methods specific to postcensal
population estimation; synthetic, composite and related estimators
for domain characteristics; and empirical best linear unbiased
predictors (EBLUP), empirical Bayes (EB), and hierarchical Bayes
(HB). This paper employs their review as a point of departure for
comparisons of existing theory to practice.

Several small domain applications that have appeared in the
literature share enough common features to be studied as a group.
One class of applications, which represents the scope of this
paper, combines information from survey estimates at the domain

! This article represents results of research undertaken by a staff
member of the Census Bureau. The views expressed are attributable
to the author and do not necessarily reflect those of the U.S.
Bureau of the Census.
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level with domain-level characteristics available from independent
sources. Examples include estimates of 1970 census income for
small places (Fay and Herriot 1979), estimates of 1980 census
undercount (Ericksen and Kadane 1985, Cressie 1992), estimates of
1990 census undercount produced by the U.S. Census Bureau in 1991
(subsequently revised under a different methodology), and estimates
of median family income by state (Fay, Nelson, and Litow 1993).

In some of these applications, independent data provide a
basis for evaluating the methodology. For example, in estimating
median family income by state, the decennial census figures aserve
as a gold standard by which to judge the performance of the
resulting small domain estimates. Although this comparison is
available only every 10 years, the empirical results support the
application. As a second example, the relatively small number of
available special censuses taken after the 1970 census also
corroborated the application to 1970 census income for small
places. In other cases, however, including the analysis of census
undercount, there is no gold standard by which to evaluate the
resulting estimates. Consequently, the validity of the application
of the underlying theory for both the properties of the resulting
estimates and the measurement of their reliability is of
considerable importance.

Comparison of these and other applications to the available
theory generally shows that the explicit theoretical conditions are
not completely satisfied, although to wvarying degrees.
Consequently, each application implicitly requires that the
departures from the theory do not pose serious consequences. As
the title of this paper suggests, the theoretical results typically
assume that the sampling errors of the small domain estimates are
known, whereas in practice they are frequently estimated from the
data, either directly or through a model to generalize the
variances.

Section 2 reviews much of the existing theory for the class of
estimators under discussion. Section 3 then compares the
applications just mentioned to the requirements of the theoretical
formulations to note implicit extensions of the theory that, for
the most part, still lack a theoretical foundation. Section 4
reports the results of simple Monte Carlo studies to assess
evidence in some of these areas. Although mathematical proof is
preferable to computer demonstration, the empirical results present
useful evidence on the significance of various issues arising from
the practical application of these procedures and suggest
directions for new research.

2. Theoretical Results for a Class of Small Area Estimators

As noted in the previous section, Ghosh and Rao (1994)
reviewed several general small area approaches. The class of
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models of interest to this paper employs auxiliary data
( %43 ¢ ++«¢ x, ), which are assumed measured without sampling
error. In their notation, the parameters of interest, &, , are
assumed to be related to the x by

@y - =B vz, 1-1yenssm (2.1)

Frequently, the model takes the simpler form:
g, - x,B+v,, i R HRRIER s (2.2}

where B 1is a vector of regression parameters, and the v, are

independent, identically distributed (iid) random variables with:
E(v,) =0, V(v,) -0 (2.3)

In (2.1), the z, 's are known positive constants. Ghosh and Rao

(18994) develep the theory in the general form (2.1). Results
specific to the simpler model (2.2) are offered here because the
formulas are more accessible.

The & in (2.1) and (2.2) represent the parameters of

1

interest for the small areas, such as local area per capita income,
the ratio of correction population to census population, the number
of employed, etc. The model reflects a possible lack of fit

between the regression x,f and the actual value through random

effect terms, v, .
In this class of models, direct estimates, 6, are available
at the domain level with

6, - 8,+e,, (2.4)

where the e, represent sampling errors with

E(e,|8) -0, V(eB)-1,. (2.5)

571




(In this section, the sampling errors are also assumed independent,
but extensions have reflected correlated sampling errors.) In

other words, the é; are design-unbiased estimators. Ghosh and
Rao comment that these conditions may be quite restrictive. For
example, the estimators may not be unbiased, as in the case of
undercount adjustment. In addition, the sampling variances v,

may not be known.
The combined model, using (2.2) and (2.4), is
6, - XB+v, +e,. (2.6)

As Ghosh and Raoc note, (2.6), which is a linear combination of
fixed and random effects, is a special case of the general mixed
linear model.

Ghosh and Rao (1994) discuss the estimation of (2.6) from the
perspectives of EBLUP, EB, and HB; this paper will primarily focus
on the EBLUP formulation. They cite Henderson (1950) as the
originator of best linear unbiased predictors (BLUP) for models
such as (2.6), when the variance components are known. Ghosh and

Rao express the BLUP of e, as
6 - v.9, - (1) =6, (2.7)
where
B - (2Tvix)lxTvid (2.8)
is the BLUE of B , v is the diagonal matrix with elements
a2+, , and
o,
> i 2.9
Vi~ (2.9)

When the variance components are known, the mean square error
of (2.7) under model (2.6) is

E(6;-6,)% - g,(0%) + g,(0%) , (2.10)

where
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Tug = YV« {2.11)

and
g (os) = (l-y)? x, (xFvix)?xfF, (2.12)

Because o2 is typically unknown, a two-stage estimator, Qf,

arises by first estimating ¢! from the data and then using it to

obtain (2.7). Ghosh and Rao reference several options for
estimating ci i A simple moment estimator diui-nmxidﬁ“,,ﬂj ’
where

o2y - (m- pll'l[iﬂ-' - ZBT(0 - xpY) - Zi: v, {1 - xz(x'x}‘ixi’}]r (2.13)
and

B* - (x*x)lxT@

is the ordinary least squares estimator of B, has the advantage

of not requiring iteration.

The remaining methods to be considered here each reguire
iteration, unless the sampling errors W, are equal. For a given
trial estimate of o , B is estimated through (2.8) at each

cycle for each of the methaods.

Fay and Herriot (1979) used an estimator O, bDased on the

method of moments as the solution to the equation
(6, -xB)*v*(6,-XB) - m-p (2.14)

or 0 in the case that no solution exists. If the sampling errors v,

are egual, then (2.13) and (2.14) have the same solution.
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A third alternative, maximum likelihood, Oy, (3 # maximizes

L(B,0) - -1/21leg(|V]) -1/2(8-XB)'V*(8-XB), (2.15)
which is the log-likelihood up to a constant.

Cressie (1992) suggested the application of another

estimator, g, ,, . based on restricted maximum-likelihood (REML),

which maximizes the adjusted likelihood,

L'(B,0?) - -1/2log(|V]) - 1/2 (log(|x'v2x|)
(2.16)
-1/2 (B-xBY'Vvi(B-XB),

where terms not involving the parameters have been dropped.
Cressie (1992) further describes this procedure, which was
originally developed by Patterson and Thompson (1971, 1974). In
short, however, the procedure examines the likelihood of the

residuals from the regression. When all the sampling errore v,

are equal, then (2.13), (2.14), and (2.16) have the same solution,
while (2.15) yields a generally smaller estimate of o2.

Under normality of the error terms, Kackar and Harwville (1984)
showed that

E(67-6,)" - E(6;-6,)%. E(6] - €))%,

where, for large m, the second term may be approximated by

g, (6,) = V(e ¥ )3 V(eY),

where ¥(¢?) is the asymptotic variance of .

Prasad and Rao showed that an approximately unbiased estimator
of the mean square error of the EBLUP estimator is

mse (8Y) = g,(6) + g,,(62) + 2g,,(62) {3+17)

with bias of order lower than m.
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The MSE estimators studied in Section 4 share (2.17) but

differ in the approach to estimate F}dﬁ}. Section 4 describes

these differences.

3. DAssumptions Made by Some Previous Applications of EBLUD

Section 2, and the more complete review in cGhosh and Rao
{1994), detail the assumptions of the available theory for EBLUP.
This section briefly reviews potential discrepancies between the
theory and some previcusly published applications.

One feature is common to all of the applications discussed
here and can be assumed to occur almost universally for sample
surveys, namely, that the sampling variances, y,, are estimates
rather than known wvalues. The following discussion notes +the
conseguent adaptations, which range from direct use of estimated
variances to variance generalization.

Fay and Herriot (1979) described a large-scale implementation
of EBLUP/empirical Bayes estimation to estimate per capita income
in 1969 for small places and minor civil divisions with population
below 1000 persons. The sample estimates, 6,6, were based on the
long form sample of the 1980 census. Predictors included the
county average PCI, 100% data from the census on housing value, and
reported income from IRS returns. Because of computing constraints
at the time, the authors refrained from any recalculation of the
census sampling wvariances but instead employed the available
variance genaralization. The generalization was a simple national
model without any allowance for geographic variation. Since the
generalization yielded a linear relationship between y, and B, a
logarithmic transformation of 6, gave a closer fit of 'the
application to the theory. They employed (2.14) to estimate o, -
Generally, the compositing, (2.7), drew on both the sample
estimates and the regression in approximately equal amounts, rather
than relying almost exclusively on one of the two. The authors
employed (2.2) but observed some evidence of variation in o by
size of place. The evidence suggested (2.1) with z, decreasing
with increasing size, n,, although at a rate closer to n;** than
n;*?. The authors did not attempt MSE estimation, but presented
some limited empirical evidence from special censuses favoring the
EELUP approach.

Application of EBLUP to sample estimates of decennial census
undercounts has been controversial, and the review here will simply
focus on assumptions incorporated in the implementations rather
than systematically evaluating the merits of the work on this
subject. As Ghosh and Rao (1994) comment in passing, survey
estimates of undercount in both 1980 and 1990 have been subject to
substantial sources of bias, and the existing theory does not
provide a clear measure of how EBLUP behaves under such conditions.
Furthermore, gains from EBLUP and estimators of MSE have figured
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prominently in the undercount debate, since the 1980 PES estimates
at the state level and the 1990 PEP estimates based on the original
1392 strata have such high sampling variability as to preclude
adjustment without EBLUP or other smoothing. The estimators
placed high weight on the regression and little on the direct
estimates.

In both 1980 and 1930, estimates of Y, have appeared to depend
on 8,. The published 1980 analysis used the estimated variances
in spite of this departure from the model. The 1991 analysis of
the 1990 PES applied a variance generalization. Although opinions
have been offered on the subject, a systematic analysis of the
effect of the generalization on the 1991 estimates remains to be
done. Furthermore, the 1991 smoothing was multivariate and
employed large covariance matrices, formed from the generalized
variances and directly estimated correlations. Fay (1992) showed
through stratified bootstrap samples that this approach induced
substantial additional wvariability not reflected in the MSE's
computed by the Census Bureau.

The 1980 PES estimates werc subject to substantial amounts of
missing data, yet no estimates of missing data variance are
available, and the author is unaware of systematic analysis showing
what possible effect this factor might have had on the 1980
analysis.

Ericksen and Kadane (1985) and the 1991 EBLUP for the 1990 PES
both employed (2.2), whereas Cressie (1992) reanalyzed 1980
estimates with z, - n"¥2. Although Cressie argued for this choice
on intuitive grounds, empirical evidence on this question is
limited and wvirtually impossible to obtain from the undercount
estimates themselves. The 1990 application employed (2.2); yet the
sample estimates suggested that it failed to hold because o?
appears much larger in minority poststrata than elsewheras.

The U.S. Census Bureau has employed an EBLUP procedure to
estimate median family income for 4-person families by state from
the Current Population Survey (Fay, Nelson, and Litow 1993). The
model can be calibrated against census values every 10 years.
These calibrations have favored continued use of (2.2) at the state
level, distinctly rejecting proposals such as =z, -n'Y? (Cressie
1992) in this application. The authors accounf for different
approaches to estimating Y, and ¢’ over the evolution of the model.
Ovar time, more emphasis has been placed on direct estimates.

In short, 1) each of these applications has rested on implicit
extensions of the existing theory, 2) some empiriecal evidence
suggests that these procedures can be useful under some conditions,
but 3) a more systematic approach to assessing effects of
uncertainty for EBLUP is still needed. The next section does not
fully meet this need, but it does suggest the value of large scale
Monte Carle simulation as a productive approach to some of these
guestions.




I'e

4. Monte Carlo Evaluation
4.1 Basic Design of the Study

As noted earlier, the derivation of the estimators of mean
sguare error rest on expectations taken both over repetitions of
the sample and over the random effects. The more usual perspective
of finite population sampling considers the population as fixed but
unknown. In order to bridge the consequences of these two points
of view, this study generated several finite populations, 8, and
compared the properties of the mean square error estimates for each
resulting population. Although the expressions in Section 2
focused on errors for individual components, (2.17), this section
studies the accuracy of the estimated sum over domains of squared
errors, much as the literature on the James-Stein estimator. The
actual MSE's are compared to (2.17) summed over i.

Two values of m, 20 and 50, offer some indication of the

effect of number of domains on the estimators. The first offers an
approximate lower boundary on the range of usual application, while

the second illustrates the effect of somewhat larger m. The

primary emphasis will be on 50. Obviously, results for larger
numbers of domains, such as 200, would alsoc be desirable.

The section reports results that share the following common
elements:

1) A set of population values for the domains, ©, is drawn from
some distribution. For normal applications, for example, the
domain means are selected.

2) Samples, 6, are drawn from the domain population and sampling
variances estimated.

3) One or more EBLUP's, &%, are constructed.

4) Steps 2) and 3) are repeated for a total of 2000 samples from
the population defined at step 1).

5) The MSE's of the EBLUP's, estimated as the average value of
(67 -8,)?, calculated from the 2000 samples and summed over
the domains, i, become the standard for comparison to the
corresponding estimated MSE sums of (2.17) over i.

6) The bias and mean square error of the MSE estimators are then
derived, and also key frequencies, such as the percent of
samples in which the estimated MSE understates the actual MSE
by 25 percent.

Steps 1)-6) generate one point in the Monte Carlo study. 1In other
words, each point represents a specific population realized from
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the superpopulation, where the performance, over repeated sampling,
of each of the EBLUP estimators and MSE estimators is evaluated,

Obviously, the MSE's at step 5) are not entirely free from
sampling error themselves, but the relatively large number of
samples provides practical justification for this procedure. The
results presented in Figures 1-13 show that this procedure produces
stable values.

Thus, the perspective is similar to design-based £inite
population sampling, since the criteria assess the performance for
individual over repetitions of the sampling design.

4.2 Results for Normal Populations
For simplicity, four X variables were constructed:

1) The grand mean.

2) An indicator wvariable dividing the domains into halves
according to domain number, i = 1,... m. For example, for m
= 20, the variable distinguishes the first 10 from the second.

3) A linear term, increasing with the domain number.

4) A similar quadratic term.

The sample size, n, for each domain was fixed at either 10 or
20, and the observations were scaled by n'”? in order to give the
sample means unit variance. Because the analysis is invariant to
the true B, these coefficients were set to 0 in generating the
Monte Carlo samples.

Eight combinations were studied:

1) Use of known sampling variances, y, -1, in combination with

(2.14) and V(d?) from Prasad and Rao (1990, p. 167, (5.19)):

V(e2) - 2m?[ets 202 X ¥ /n« ¥ y¥/n] (4.1)

2) Use of generalized sampling variances assuming that the Y, are
equal to some unknown constant, which is then estimated as the
average of the sample estimates of . The remaining
estimation is done as in 1).

3) MLE using known sampling variances, y, -1, and:
vie:) - 2[X (2. uyy2|? (4.2)
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4) MLE using the estimated variances and the estimation approach
of 3).

5) REML using the estimated wvariances and F}ﬂi} from Cressie
(1992, p. 82, (3.22) and p. 85, (4.11)}).

6) REML using the estimated variances and the more approximate
expression (4.2).

7) The method of moments estimator, (2.14), and:
vier) - 2a[¥ (2. ) 1]? (4.3)

8) The simple moment estimator, (2.13), and (4.1).

Cressie's (1992) estimator studied included in 5) is the only
one of the group to explicitly incorporate the effect of the

regression in estimating F]dﬁj_ All others depend on m being

large compared to p. In fact, however, differences between 5) and
the simpler 6) were extremely modest. Potentially, similar
refinements could be incorporated into the other estimators of

v(¢?), but their impact is again likely to be small unless p is a
substantial proportion of m.

Figures 1-13 results for m = 50, n = 10, that is a
comparatively large number of domains with comparatively few
degrees of freedom in each domain to estimate the variance in each.
0f course, no one choice of these wvalues is appropriate to
represent the usual situation in most small domain estimation.
Comments will follow about the results obtained for m = 20 and for
n = 20.

A series of 28 populationz are represented: 4 drawn from
N(0,0}) with of = .125, and 8 each from o = .25, .5, and 1.0.
Figures 2, 4, 6, 8, 10, and 12 each omit the points for oz = .125,
which are generally far off the scale; further comments on this
point follow.

Figure 1 shows the actual MSE for 2) as a function of ) 6%,
which is called the "SS of true deviations” in the figures. Over
the entire range studied, the EBLUF improves on the direct sample
estimates, but the improvement is most dramatic at the leftmost
portion of the range, where ¢ = .125, and the true values & almost
fit the regression line. The pluses and x's distinguish between
different super population values of o} used to generate the 8,
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but guite clearly this distinction is unimportant once the results
are conditioned on ) 82,

Actual MSE of Estimator
35 -

30
+++ +

25 -

MSE
++
&

15 *

10 — ii‘

0 T I I | T i |
L] 10 20 30 40 50 60 T0
S5 of true deviations

Figure 1 Actual MSE for "unbiased methods," generalized equal
variances, m = 50, p = 4, 10 obs. per domain.

If the actual MSE's of any of the alternatives were
superimposed on Figure 1, there would be substantial overlap. The
MSE's and other performance characteristics of 1), with known
variances, are virtually identical to 2). The actual MSE's of 2),
MLE with known variances, are also almost identical to those in
Figure 1. When sampling errors are instead estimated, the actual
MSE's are a bit larger: by about 15-30% for REML and 8-20% for the
other alternatives when the actual MSE is below 20, and by lesser
amounts over the upper end of the range.

Since the MSE of the sample means is 50, Figure 1 includes a
broad range of outcomes. At MSE=30, EBLUP yields distinct gains
that, nonetheless, many practitioners might choose to forego in
favor of the greater simplicity and interpretability of the direct
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1} 4

sample estimates. At MSE=15, the gains from EBLUP may have a
substantial impact on the utility of the estimates.

Relative Bias in MSE Estimator
14 —
12 +

10 —

oo
|
+

Percent bias
L=
|
+

o

M oMM -

x ¥ = g
X + + +

-2 T T |

] 10 20 30 40 50 60 70
L8 of true deviations

Figure 2 Percent bias in Prasad-Rao MSE estimator,
generalized equal variances, "unbiased metheds," m = 50, p =

4, 10 obs. per domain. WNote: The first 4 points have been
cmitted.

Figure 2 reports the relative bias of the MSE estimator for 2)
over the range of EEE The leftmost 4 points have been omitted
from the graph because the bias increases dramatiecally, tec around
30-40%, in that region. As noted previously, the performance for
1), with known sampling variances, is virtually identical to Figure
2.

From the perspective of bias, the performance of the MSE
estimator is quite satisfactory over a large part of the range, but
it becomes upwardly biased under conditions where the EBLUP
estimator has the most pronounced effect, that is, in the leftmost
portion of the range, below MSE = 15 or so.
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Figure 3 evaluates the performance of the MSE estimator in a
different manner, by showing the proportion of times that the
estimated MSE falls below the actual MSE by 25% or more. For
example, when the actual MSE=20, the figure reports the percentage
of samples in which the estimated MSE is below 15.

Percent with 25% Understatement of MSE

30
&
E +
g 25 ++
by +
o ++
+ +
tn 4
1] 0 —
w
B 0%
2 x
. X
o =
o +
_ *
Ei 10 .
E} + ++
§ 5 o
& X *
0 ™ T T T T T |
0 10 20 30 40 50 60 70

85 of true deviations

Figure 3 Percent understatement of true MSE by 25 percent or
more, generalized equal variances, "unbiased methods," m = 50,
P =4, 10 obs. per domain.

The findings of Figure 3 are not easily predicted from Figure
2. In spite of the low level of bias in the MSE estimator over the
range of MSE=20 and above, the probability that the estimator will
substantially understate the actual MSE rises steadily as MSE
decreases. Even more striking, however, is the dramatic fall
towards 0% at the right of the figure. In fact, in this lower
range, the contributions of the more stable components of (2.17),
namely its second and third terms, are able to prevent a large
understatement regardless of t.he contribution of the far more
erratic first term.
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Figure 4 presents comparable results for 3), MLE with known

variances. Figure 4 reports a consistent downward bias in the
estimated MSE for MLE. This finding agrees with a comparison of
REMIL and MLE by Cressie (1992). Presumably, this downward bias

could be even more severe when the ratio of p to m, which is 4 to
50 in this case, is larger.

Relative Eias 1n MSE Estimator
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55 of true deviations

Figure 4 Percent bias in Prasad-Rac MSE estimator,
generalized equal variances, MLE, m = 50, p = 4, 10 obs. per
domain. HNote: The first 4 points have been omitted.

In spite of the general downward bias in the MSE estimate, the
bias changes sign and increases up to about 15-30% for the 4 lowest
points included in the study.

Figure 5 presents results for MLE analogous to those in Figure
3. Noting the change in scale between the two figures, Figure 5
shows even higher proportions of significant understatement of the
MSE over a large proportion of the range. This finding is
consistent with the general downward bias exhibited in Figure 4.
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As in Figure 3, however, the probability of significant
understatement falls off dramatically near 0.

Percent with 25% Understatement of MSE
40_
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Percent with 25% understatement

0 o T ] T I T |

0 10 20 30 40 50 60 70
88 of true deviations

Figure 5 Percent understatement of true MSE by 25 percent or
more, generalized egual variances, MLE, m = 50, p = 4, 10 obs.
per domain.

As noted earlier, shifting from known variances to estimated
variances for each of the domains increases the actual MSE of the
MLE by about 8-20% for actual MSE's below 20, and somewhat less for
larger actual MSE's. Fiqure 6 reports the performance of the MSE
estimator in this instance, as an estimator of the actual, and now
larger, MSE. Comparison of Pigures 4 and 6 indicates some common
features but considerable differences as well. On the right of
Figure 6, the downward bias is even more pronounced than in Figure
4. For decreasing MSE, however, the bias crosses (0 earlier than in
Figure 4. The bias for the omitted points rises to approximately
the same range, that is, about 15-30%.
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FEelative Bias in MSE Estimator
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Figure 6 Percent bias in Prasad-Rao MSE estimator, estimated
variances, MLE, m = 50, p = 4, 10 obs. per domain. Note: The
first 4 points have been omitted.

Figure 7 shows the effect on 25% understatement of the actual
MSE when the sampling errors are estimated. Compared to Figure 5,
the results are much flatter, in the range of 15-20%, compared to
the much more dramatic swings in Figure 5. Unlike Figures 3 and 5,
the combination of the extra variability from estimating the
sampling variances and the somewhat larger actual MSE eliminates
the phenomenon of the dramatic drop towards 0% at the right end of
the scale.

It was previously noted that REML applied to the sample data
and estimated sampling variances yielded estimates with the largest
actual MSE. Specifically, choice 5), with the estimator from
Cressie (1992), appears here, although it was previously noted that
the alternative 6) produces essentially identical results. Figure
8 shows the bias in the estimated MSE for REML. Figure 8§ closely
resembles Figure € in shape but has estimated biases moved up by
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roughly 5-10 percentage points. Again, results of this comparison
to MLE are consistent with a greater downward bias in the MSE for
the latter.

Percent with 25% Understatement of MSE
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Figure 7 Percent understatement of true MSE by 25 percent or
more, estimated variances, MLE, m = 50, p = 4, 10 obs. per
domain.

Figure 9 resembles Figure 7, in showing a flatter performance
over the range than Pigqures 3 and 5. Overall, however, the
comparison of Figure 9 to Figure 7 awards a significant advantage
to REML compared to MLE in preventing marked understatement of the
true MSE. This finding is consistent with the relative shift in
bias of the MSE estimators compared in Figures 6 and 8.

As noted earlier, use of sample variances in the method of
moments estimator produces an increase in actual MSE comparable to
the increase for MLE. Figure 10 shows performance comparable or
slightly better than that of REML in Figure 8 under the same
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circumstances. Again, the MSE estimates exhibit less downward bias
than for MLE in Figure 6.

Relative Bias in MSE Estimator

20
.'.
15 — +
++
w 10—
) ++
L e
£ 5=
5t 2
=
& 0 — X x
b |
i ++
+.+ F
+
-10 I T T T T T
0 10 20 30 40 50 60 70

88 of true deviations

Figure 8 Percent bias in Prasad-Rao MSE estimator, estimated
variances, REML, m = 50, p = 4, 10 obs. per domain. MNote: The
first 4 points have been omitted.

Comparison of Figures 11 and 9 reveals that the slight bias
advantage of the method of moments approach compared to REML, shown
previously by Figures 10 and 8, is traded against more frequent
understatement of the actual MSE by 25% or more. Conseguently,
there is not a single winner in the contest of these alternatives.

Generally, the method of moments approach does appear to
outperform MLE in Figures 6 and 7. The method of moments is
subject to less downward bias than MLE at the upper end of the
range studied and exhibits less frequent understatement.

587




Percent with 25% Understatement of MSE
14 -

25 %

10 — "

Percent with 25% understatement
(=]
|
o+

0 I T I I I T |

0 10 20 30 40 50 60 70
S5 of true deviations

Figure 9 DPercent understatement of true MSE by 25 percent or
more, estimated variances, REML, m = 50, p = 4, 10 obs. per
domain.

Figures 12 and 13 present the results for the last
alternative, 8), which weights observations equally in estimating

o? and which does not require iteration. The f£indings show a
considerable downward bias in MSE estimation under these
conditions. For example, comparison of Figure 12 to Figure 10

shows a more consistent downward bias over much of the range
studied. In turn, the probability of 25% understatement is higher
in Figure 13 than Figure 11.

Generally, the findings show that the properties of the MSE
estimators are affected to a significant degree as a result of
estimating sampling variances when there are relatively few
observations or degrees of freedom in each of the domains. These
empirical findings do not appear to be a straightforward
consequence of the available theoretical results.
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Relative Bias in MSE Estimator
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Figure 10 Percent bias in Prasad-Rac MSE estimator, estimated

variances, method of moments, m = 50, p = 4, 10 obs. per
domain. Note: The first 4 points have been omitted.

When n = 20 observations are instead available for variance
estimation within each cluster, the effects of estimating the
variances becomes lesz pronounced. In other words, the
corresponding Figures 6 and 7 for m = 20 become more like Figures
4 and 5, and the pairs of Figures 8 and 9, 10 and 11, and 12 and 13
each resemble Figures 2 and 3 more closely. Conseguently, and not
surprisingly, the effect on MSE estimation depends on the degree of
precision of the sampling variances in the domain, and not simply
on the fact that the sampling variances have been estimated.

Translation of the implication of these results to application
will, in the author's opinion, not be simple. Compared to the
estimation of variance for standard estimates, such as the sample
mean, the issue of the variance of the variance, that is, the
design-based variance of a variance estimator, is a fairly arcane
subject that has consequently received relatively little attention.
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A simple count of the algebraic degrees of freedom will not
typically provide an adequate indication of the expected
performance of the variance estimator, except in the sense that a
variance estimator based on a small number of observations or
clusters is certain to be highly wvariable. Generally, non-
normality of the individual or clustered cbservations may increase
the variance of the variance substantially compared to its behavior
under normality.
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Figure 11 Percent understatement of true MSE by 25 percent or
more, estimated variances, method of moments, m = 50, p = 4,
10 obs. per domain.

Results for m = 20 domains follow many of the same patterns as
m = 50. Overall, however, there is substantially less evidence to
evaluate whether the EBLUP has yielded substantial declines in MSE.
When m = 50, the MSE estimators begin to exhibit relatively extreme
behavior, including their upward bias, when the actual reductions
are 75% or more. For m = 20, the same patterns appear much
earlier, at around 50% actual reduction. Similarly, the phenomenon
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in Figure 3 and others where the MSE estimator suddenly stops
overestimating the true MSE by 25% or more shows up much earlier
for m = 20. Thus, effective MSE estimation in situations wheres the
gains from EBLUP are substantial requires numbers of domains on the
order of m = 50. Specific findings are available from the author.

Relative Bias in MSE Estimator
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Figure 12 Percent bias in Prasad-Rao MSE estimator, estimated

variances, equally weighted method, m = 50, p = 4, 10 obs. per
domain. Note: The first 4 points have been omitted.

Except for separate FORTRAN programs to generate the sample
data used in the Monte Carlo study, the variance program VPLX
calculated the EBLUP estimators and summarized the results. PC's
with 486-class processors performed the calculations for m = 20,
and a Sun SPARC 10 for m = 50, although selective problems were
checked against each other to verify independence of results on the
choice of platform.
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Figure 13 Percent understatement of true MSE by 25 percent or
more, estimated variances, equally weighted method, m = 50, p
= 4, 10 obs. per domain.

5. Concluding Remarks

Continued advances in computer technology is certain to have
a2 continued impact on the practice of statistics. Figures 1-13
summarize empirical results that the author would not have had the
resources to undertake even a few years ago. Even so, such answers
are not yet easily obtained -- for example, each set of points
appearing in Figures 1-13 represents about 5 1/2 hrs. of
calculation.

The findings, although not generally remarkable, illustrate
the subtleties of applying complex estimation methods to practical
problems. Features appear that are difficult to anticipate from
knowledge of the theoretical results alone. Over time, Monte Carlo
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assessment should become even more of a standard to complement
theoretical findings.

Substantially more work can and should be done. Section 4.1
outlines a general strategy for wuseful additional study. As
examples, the effect of linkage between 8, and ¥, can and should be
studied in this manner. Variance generalization has appeared in
applications, but what are the consequences of applying a deficient
model, i.e., a variance generalization that overpredicts some
sampling wariances and underpredicts others? What are +the
consequences of misspecifying (2.1)? How should the variance
effects of missing data be taken into account? Issues such as
these may have a substantial effect on the behavior of EBLUP
procedures, and further Monte Carlo work offers an effective
approach.
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DISCUSSION

Phillip S. Kott
National Agricultural Statistics Service

For a number of years now, many of us in the survey sampling
community have been grappling with the following question:

"What is the proper role of models in survey sampling?"

The answer for survey sampling purists can be found in Hansen,
Madow, and Tepping (1983). Their Guiding Principle Neo. 4 states:

"Models are appropriately used to guide and evaluate the design of
probability samples [including the choice of estimators], but with
large samples the inference should not depend on the model."

This principle clearly justifies the use of model-assisted
methods within a randeomization-based framework, which is the basis
for Sarndal, Swensson, and Wretman'e celebrated new textbheook
(19%2). It is in sharp contrast, however, to the approach that
Hansen and his colleagues label "model-dependent."

Unfortunately, it is not at all clear how Guiding Principle
No. 4 applies to the issue of estimation in small domains. 1In
fact, in Guiding Principle No. 7, Hansen, Madow, and Tepping
concede;

"... model-dependent methods may have an advantage with quite small
samples, for which probability-sampling many not be appropriate"

This suggests that our original question needs to be turned around:

"What 1is the proper role of randomization-based inference when
estimating small domains?"

To Bayesians like Don Malec and Joe Sedransk, the answer to
this guestion is simple: "none." Others, like Bob Fay and myself,
would like to estimate the value 8, in a small domain i with an
estimator t; that has the following property: as the sample size
within domain i grows arbitrarily large (but the sampling fraction
stays fixed), t; approaches 8, in probability irrespective of the
validity of the model used in choosing t;.

We realize, of course, that the sample size within domain i is
not arbitrarily large. 1In fact, in small domain estimation, the
sample size within i is usual so small that a conventional model-
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assisted, randomization-based estimator, ti(pyr has an unacceptably
large standard error, hence the need for a more creative, small
domain estimator in the first place! Still, we would not be happy
using an estimator that did not work well when it should; that is,
when the sample size within domain i was large.

One can write

t!:rb} - EE + E‘ij {1}

where s; 1s the sampling error of estimator t, .. Let us assume
that the model-assisted randomization-based estimator tipy 15 (2L
least) nearly randomization unbiased so that E,(s;) = 0, where the
subscript p denotes that the expectation is with respect to the
probability sampling process ("nearly unbiased" means that the bias
iz small kecaucse the sample size across all domains is large). Let
us also assume that Eurm is nearly unbiased under a model governing
the elements of the population; that is to say, E,(s.) = 0, where
the subscript M denotes that the expectation is with respect to the
model. Finally, let us assume that the turm is randomization
consistent; i.e. plim_,.(t,/0;) = 1, where n{i) is the sample size
in domain i.

In small domain estimation, it is common to model the behavior
of the domain values 8, as well as of the population's elements.
For convenience, let us restrict our attention to the following
domain-level "random effects" model:

B' = ,H-{Xi} + El'l' {2}

where ®, iz a vector of characteristics for domain i, p has a known
functional form (e.g., linear or logistic) but unknown parameters,
and €;, the random effect, is a random variable with mean zero and
positive variance.

Let m; be a nearly unbiased estimator for u(x;). A&n estimator
for t; of the form:

6 = (1-g)tyy + oMy

is nearly model unbiased. Its mean sguared error is (approxi-
imately) minimized when

Var (s;)
- . (3)
Var(s;) + E[(8; - m,)?]

Whether Var(s;) is the model or randomization variance of s; depends
on whether one's goal is to minimize the model or design variance
of t;”. The same holds true for the interpretation of E[(t, - m)?].

596




e

From both a model and randomization-based perspective,

Var(s;) and E[(O; - HHIE] are unknown. Sarndal, Swensscn, and
Wretman's estimator for Var, (€ p) = ?arhfsr} is also a reascnable
estimator for the model variance of s,. A reascnable estimator for

Ep[{ﬂi-mﬂz} is illusive, but a good estimator for E,[(®, - m)?] =
Var(e;) i=s not difficult to develeop.

Suppose one estimates Var,(s;) and Var(e;) from the sample,
plugs those estimates into equation (3), and then computes t ®.
Call the result t,". As the sample size in domain i increases,
Var,(s;) decreases, while Var(e,) remains a positive constant.
Thus, as n(i) grows arbitrarily large t;” converges to t,.,, making
it randomization consistent just like t;,. In fact, t," is fully
in the spirit with Hansen, Madow, and Tepping's Guiding Principle
Na. 4: models have been used in the cheoice of the estimater, but
the estimator itself, while biased, is randomization consistent.

Let us now turn to the primary question addressed in the Malec
& Sedransk and Fay papers: how should the variance of a small
domain estimator like t,” be estimated? Both papers take a model-
dependent approach. The problem with this approach, of course, is
that models can fail. Since Fay's paper deals with simulations, he
avoids the problem. Malec & Sedransk do not.

Malec & Sedransk are to be commended for their thoughtful and
thorough work in developing complex models at both the element and
domain levels that are appropriate for the survey data they are
examining. I have absolutely no problems with the determined parts

of these models. What bothers me are the random parts. In
particular, the authors build in random effects at the county level
only. They allow no additional clustering effects within area

segments or households. Moreover, they assume county effects are
uncorrelated both across adjacent counties and within states. An
example of counties in a state likely to be correlated are Kings,
Queens, New York, and Bronx Counties -- the four big boroughs of
New York City. I suspect that more than one of these counties
are represented in the authors' sample.

It should be noted that the goal of the Malec & Sedransk
paper is to produce state not county estimators. Their domain-
level model is on the county level, however. Thus, they estimate
B statey ™ Sigstare & With Ziestate Ciusyr Where t;,., = m; for counties not
represented in the sample. For counties represented in the sample,
tims, 18 similar to the tf discussed above. Nevertheless, because
of how the other counties are handled, there is no easy way of
modifying a Malec/Sedransk state estimator to make it randomization
consistent.
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If g were determined from an outside source, the model
variance of t,'* would be

Var, (t;9) = (1 - qg)*Var,(s;) + g?Var(e;). (4)

once estimators for Vary(s;) and Var(e;) are computed, an estimator
for Var,(t;9) quickly presents itself.

When a g (approximately) satisfying equation (3) is deter-
mined from the sample so that t,'9 = t.”, it is tempting to simply
plug that value into equation (4) along with estimates of Var,(s,)
and Var(e¢;). A good deal of high powered statistical work has gone
into showing why such a practice can be mistaken. I have a more
prosaic problem with this approach to variance estimation: it
relies entirely on the truth of the model; in particular, on the
model for the ¢,. It is true that we modeled the €; in developing
the estimator t,” in the first place, but to my mind this fact only
reinforces a need to be able to evaluate the accuracy of t; in a
way that does not require the same model assumptions.

The randomization mean squared error of t.‘® is

MSE, (t;'®) = {1-q]|=‘%.?arp{5i} + qup[[Bi —- 1) %7

Let v(s;) be a randomization-based estimator for Var,(s;). One can
estinate E[ (0, - m;)?] with (t; ., -m)®=-v(s;). Unfortunately, this
estimator is dreadfully unstable. It has, at most, 1 degree of
freedom. For many domains, v(s;) will also be very unstable, since
it has, at most, n(i) - 1 degrees of freedom.

It may come as a shock, but few users of our statistics are
all that concerned with variances. With thie ie mind, perhaps we
should abandon the search for a near perfect variance estimator for
t,". We do need to be assured that t.” has some minimum degree of
accuracy. One possibility is to model v (s;) and (t;., -m)%-v(s;)
across all the domains and to use the results to derive a
conservative indication about the accuracy of t.” for each i.
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DISCUSSION OF SMALL AREA ESTIMATION PAPERS
COPAFS CONFERENCE, MAY 26, 1994

David A. Marker
Westat, Inc.

Both of these papers are important for their general approach to the problem
of small area estimation: they attempt to understand the application of new methods
through the explicit use of models. Ideally, one would always design surveys to allow for
the production of accurate, direct, design-based estimates. However, when such estimates
cannot be produced, one is left with only two choices: either don’t produce estimates or
use models.

Malec and Sedransk present the use of hierarchical Bayes procedures for
small area estimation. I find this approach to be more satisfactory than empirical Bayes
procedures for at least three reasons. First, hierarchical Bayes procedures do not assume a
particular model to be true. To quote George Box, “All models are wrong, but some are
useful.” Second, by assuming instead that the truth comes from within a class of prior
distributions, it is possible to examine the robustness of the estimates; although this is
limited to the range of priors contained in the class. Third, hierarchical Bayes allows for
the use of informative priors. While Malec and Sedransk do not make use of informative
priors, this is a possible area for extending their results. Particularly for repeated surveys
such as the NHIS, there is a wealth of historical data that can be used. These data can be
incorporated for model selection, as variables in the actual model, or to construct
informative priors.

Many authors. including Malec and Sedransk, use the Gibbs sampler to
produce hierarchical Bayes estimates. The advantage of the Gibbs sampler is that it allows
for computations from complex distributions. However, the experiences relayed by Malec
and Sedransk and others indicate that this approach is extremely time intensive, in some
cases taking months to produce stable estimates. This raises questions about the actual
utility of this approach to produce timely small area estimates.

One additional point is worth making regarding the Gibbs sampler. As
mentioned earlier there is an abundance of historical NHIS data from which informative
priors could be developed. It would be very interesting to see the resulis of using the
Gibbs sampler when beginning with informative, rather than uninformative, priors.
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Malec and Sedransk develop their model using forward stepwise
regression. While this is a reasonable approach, it can lead to suboptimal results under
complex situations. Therefore, it might be worthwhile to examine alternative model-
selection methods. In selecting their model, they disregarded the sampling weights. They
reported that the weights would not have had significant impact based on analyses at the
national level. My concern is that given state-to-state differences this might not imply that
nothing is lost by disregarding weights when producing state estimates.

Fay uses simulation to examine the real situation of computing the accuracy
of small area estimates when the variances are unknown. The Prasad and Rao approach
that he evaluates is limited to situations in which the mean and variance arc independent.
Unfortunately in many situations, including the binomial variable used by Malec and
Sedransk, this is not true. Prasad and Rao developed a procedure for producing
approximately unbiased mean square errors (MSEs) for model-dependent small area
estimates. These MSE estimates are, however, conditional on the model.

For government agencies there is a strong interest in producing design-
based measures of accuracy, not ones conditional on models. A method for producing
design-based small area specific MSEs was introduced by Marker (1993). This approach
replaces the average MSE of Gonzalez and Waksberg with a small area specific MSE,
where the variance of the model-dependent estimator is computed for each small area i
using replicated methods (jackknife or balanced repeated replication). The bias is computed
by averaging across small areas.

MSE (vj) var (j) + avebias? (¥;)

where

avebias? (y;) aveMSE (3i) - avevar (3;)

This estimartor is not completely small area specific, but if the variance term
dominates the bias, the root mean square error will provide a useful substitute for the
traditional standard error. If the bias term dominates, the small areas can be grouped by
expected similar biases. The average bias can then be computed separately for each group
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of areas so that the MSE more accurately reflects small area differences. It would be very
useful if both Fay and Malec and Sedransk could examine the utility of this approach.
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