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ABSTRACT

This paper focuses on how to deal with record linkage errors when engaged in regression analysis. Recent work
by Rubin and Belin (1991) and by Winkler and Thibaudeau (1991) provides the theory, computational algorithms,
and software necessary for estimating matching probabilities. These advances allow us to update the work of Neter,
Maynes, and Ramanathan (1965). Adjustment procedures are outlined and some successful simulations are described.
Our results are preliminary and intended largely to stimulate further work.
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1. INTRODUCTION

Information that resides in two separate computer data
bases can be combined for analysis and policy decisions.
For instance, an epidemiologist might wish to evaluate the
effect of a new cancer treatment by matching information
from a collection of medical case studies against a death
registry in order to obtain information about the cause and
date of death (e.g., Beebe 1985). An economist might wish
to evaluate energy policy decisions by matching a data base
containing fuel and commodity information for a set of
companies against a data base containing the values and
types of goods produced by the companies (e.g., Winkler
1985). If unique identifiers, such as verified social security
numbers or employer identification numbers, are available,
then matching data sources can be straightforward and
standard methods of statistical analysis may be applicable
directly.

When unique identifiers are not available (e.g., Jabine
and Scheuren 1986), then the linkage must be performed
using information such as company or individual name,
address, age, and other descriptive items. Even when
typographical variations and errors are absent, name
information such as ‘‘Smith’’ and ‘‘Robert’’ may not be
sufficient, by itself, to identify an individual. Further-
more, the use of addresses is often subject to formatting
errors because existing parsing or standardization software
does not effectively allow comparison of, say, a house
number with a house number and a street name with a
street name. The addresses of an individual we wish to
match may also differ because one is erroneous or because
the individual has moved.

Over the last few years, there has been an outpouring
of new work on record linkage techniques in North
America (e.g., Jaro 1989; and Newcombe, Fair and
Lalonde 1992). Some of these results were spurred on by

a series of conferences beginning in the mid-1980s (e.g.,
Kilss and Alvey 1985; Howe and Spasoff 1986; Coombs
and Singh 1987; Carpenter and Fair 1989); a further major
stimulus in the U.S. has been the effort to study under-
coverage in the 1990 Decennial Census (e.g., Winkler and
Thibaudeau 1991). The new book by Newcombe (1988)
has also had an important role in this ferment. Finally,
efforts elsewhere have also been considerable (e.g., Copas
and Hilton 1990).

What is surprising about all of this recent work is that
the main theoretical underpinnings for computer-oriented
matching methods are quite mature. Sound practice dates
back at least to the 1950s and the work of Newcombe and
his collaborators (e.g., Newcombe et al. 1959). About a
decade later, the underlying theory for these basic ideas
was firmly established with the papers of Tepping (1968)
and, especially, Fellegi and Sunter (1969).

Part of the reason for the continuing interest in record
linkage is that the computer revolution has made possible
better and better techniques. The proliferation of machine
readable files has also widened the range of application.
Still another factor has been the need to build bridges
between the relatively narrow (even obscure) field of com-
puter matching and the rest of statistics (e.g., Scheuren
1985). Our present paper falls under this last category and
is intended to look at what is special about regression
analyses with matched data sets.

By and large we will not discuss linkage techniques here.
Instead, we will discuss what happens after the link status
has been determined. The setting, we will assume, is the
typical one where the linker does his or her work separately
from the analyst. We will also suppose that the analyst (or
user) may want to apply conventional statistical tech-
niques - regression, contingency tables, life tables, erc. -
to the linked file. A key question we want to explore then
is ““What should the linker do to help the analyst?”’ A
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related question is *“What should the analyst know about
the linkage and how should that information be used?*’

In our opinion it is important to conceptualize the linkage
and analysis steps as part of a single statistical system and
to devise appropriate strategies accordingly. Obviously the
quality of the linkage effort may directly impact on any
analyses done. Despite this, rarely are we given direct
measures of that impact (e.g., Scheuren and Oh 1975). Rubin
(1990) has noted the need to make inferential statements
that are designed to summarize evidence in the data being
analyzed. Rubin’s ideas were presented in the connotation
of data housekeeping techniques like editing and imputation,
where nonresponse can often invalidate standard statistical
procedures that are available in existing software packages.
We believe Rubin’s perspective applies at least with equal
force in record linkage work.

Organizationally, our discussion is divided into four
sections. First, we provide some background on the linkage
setting, because any answers - even partial ones - will
depend on the files to be linked and the uses of the matched
data. In the next section we discuss our methodological
approach, focusing, as already noted, just on regression
analysis. A few results are presented in section 4 from some
exploratory simulations. These simulations are intended
to help the reader weigh our ideas and get a feel for some
of the difficulties. A final section consists of preliminary
conclusions and ideas for future research. A short appendix
containing more on theoretical considerations is also
provided.

2. RECORD LINKAGE BACKGROUND

When linking two or more files, an individual record
on one file may not be linked with the correct corresponding
record on the other file. If a unique identifier for corres-
ponding records on two files is not available - or is subject
to inaccuracy - then the matching process is subject to
error. If the resultant linked data base contains a substantial
proportion of information from pairs of records that have
been brought together erroneously or a significant propor-
tion of records that need to be brought together are
erroneously left apart, then statistical analyses may be
sufficiently compromised that results of standard statistical
techniques could be misleading. For the bulk of this paper
we will only be treating the situation of how erroneous
links affect analyses. The impact of problems caused by
erroneous nonlinks (an implicit type of sampling that can
yield selection biases) is discussed briefly in the final section.

2.1 Fellegi-Sunter Record Linkage Model

The record linkage process attempts to classify pairs in
a product space A X B from two files A and B into M,
the set of true links, and U, the set of true nonlinks. Making
rigorous concepts introduced by Newcombe (e.g.,

Newcombe et al. 1959), Fellegi and Sunter (1969) considered
ratios of probabilities of the form:

R =Pr(yeT|M)/Pr(yeT'| U), 2.n

where vy is an arbitrary agreement pattern in a comparison
space I'. For instance, I might consist of eight patterns
representing simple agreement or not on surname, first
name, and age. Alternatively, eachy € I might additionally
account for the relative frequency with which specific
surnames, such as Smith or Zabrinsky, occur. The fields
that are compared (surname, first name, age) are referred
to as matching variables.

The decision rule is given by:
If R > Upper, then designate pair as a link.

If Lower < R < Upper, then designate pair as
a possible link and hold for clerical review. 2.2)

If R < Lower, then designate pair as a nonlink.

Fellegi and Sunter (1969) showed that the decision rule
is optimal in the sense that for any pair of fixed bounds
on R, the middle region is minimized over all decision rules
on the same comparison space I'. The cutoff thresholds
Upper and Lower are determined by the error bounds. We
call the ratio R or any monotonely increasing transfor-
mation of it (such as given by a logarithm) a matching
weight or total agreement weight.

In actual applications, the optimality of the decision
rule (2.2) is heavily dependent on the accuracy of the
estimates of the probabilities given in (2.1). The probabil-
ities in (2.1) are called matching parameters. Estimated
parameters are (nearly) optimal if they yield decision rules
that perform (nearly) as well as rule (2.2) does when the
true parameters are used.

The Fellegi-Sunter approach is basically a direct exten-
sion of the classical theory of hypothesis testing to record
linkage. To describe the model further, suppose there are
two files of size n and m where - without loss of generality -
we will assume that n- = m. As part of the linkage process,
a comparison might be carried out between all possible
n X m pairs of records (one component of the pair coming
from each file). A decision is, then, made as to whether
or not the members of each comparison-pair represent the
same unit or whether there is insufficient evidence to deter-
mine link status.

Schematically, it is conventional to look at the n X m
pairs arrayed by some measure of the probability that the
pair represent records for the same unit. In Figure 1, for
example, we have plotted two curves. The curve on the
right is a hypothetical distribution of the n true links by
the “‘matching weight’’ (computed from (2.1) but in natural
logarithms). The curve on the left is the remaining of the
n X (m — 1) pairs - the true nonlinks - plotted by their
matching weights again in logarithms.
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Figure 1. Log Frequency vs. Weight, Links and Nonlinks
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Typically, as Figure 1 indicates, the link and nonlink
distributions overlap. At the extremes the overlap is of no
consequence in arriving at linkage decisions; however,
there is a middle region of potential links, say between
“L’ and ‘“U”’, where it would be hard, based on Figure 1
alone, to distinguish with any degree of accuracy between
links and nonlinks.

The Fellegi-Sunter model is valid on any set of pairs we
consider. However, for computational convenience, rather
than consider all possible pairsin A x B, we might consider
only a subset of pairs where the records from both files
agree on key or ‘‘blocking’’ information that is thought
to be highly accurate. Examples of the logical blocking
criteria include items such as a geographical identifier like
Postal (e.g., ZIP) code or a surname identifier such as a
Soundex or NYSIIS code (see e.g., Newcombe 1988, pp.
182-184). Incidentally, the Fellegi-Sunter Model does not
presuppose (as Figure 1 did) that among the n x m pairs
there will be n links but rather, if there are no duplicates
on A or B, that there will be at most n links.

2.2 Handling Potential Links

Even when a computer matching system uses the
Fellegi-Sunter decision rule to designate some pairs as
almost certain true links or true nonlinks, it could leave
a large subset of pairs that are only potential links. One
way to address potentially linked pairs is to clerically
review them in an attempt to delineate true links correctly.
A way to deal with erroneously nonlinked pairs is to per-
form additional (again possibly clerical) searches. Both of
these approaches are costly, time-consuming, and subject
to error.

Not surprisingly, the main focus of record linkage
research since the beginning work of Newcombe has been
how to reduce the clerical review steps caused by the poten-
tial links. Great progress has been made in improving
linkage rules through better utilization of information in
pairs of records and at estimating error rates via probabil-
istic models.

Record linkage decision rules have been improved through
a variety of methods. To deal with minor typographical
errors such as ‘‘Smith’’ versus ‘‘Smoth’’, Winkler and
Thibaudeau (1991) extended the string comparator metrics
introduced by Jaro (1989). Alternatively, Newcombe et al.
(1989) developed methods for creating and using partial
agreement tables. For certain classes of files, Winkler and
Thibaudeau (1991) (see also Winkler 1992; Jaro 1989)
developed Expectation-Maximization procedures and
ad hoc modelling procedures based on a priori informa-
tion that automatically yielded the optimal parameters in
(2.1) for use in the decision rules (2.2).

Rubin and Belin (1991) introduced a method for
estimating error rates, when error rates could not be
reliably estimated via conventional methods (Belin 1991,

pp. 19-20). Using a model that specified that the curves
of weights versus log frequency produced by the matching
process could be expressed as a mixture of two curves
(links and nonlinks), Rubin and Belin estimated the curves
which, in turn, gave estimates of error rates. To apply their
method, Rubin and Belin needed a training sample to yield
an q priori estimate of the shape of the two curves.

While many linkage problems arise in retrospective,
often epidemiological settings, occasionally linkers have
been able to designate what information is needed in both
data sets to be linked based on known analytic needs.
Requiring better matching information, such as was done
with the 1990 Census Post-Enumeration Survey (see e.g.,
Winkler and Thibaudeau 1991), assured that sets of potential
links were minimized.

Despite these strides, eventually, the linker and analyst
still may have to face a possible clerical review step. Even
today, the remaining costs in time, money and hidden
residual errors can still be considerable. Are there safe
alternatives short of a full review? We believe so and this
belief motivates our perspective in section 3, where we
examine linkage errors in a regression analysis context.
Other approaches, however, might be needed for different
analytical frameworks.

3. REGRESSION WITH LINKED DATA

Our discussion of regression will presuppose that the
linker has helped the analyst by providing a combined data
file consisting of pairs of records - one from each input
file - along with the match probability and the link status
of each pair. Link, nonlink, and potential links would all
be included and identified as such. Keeping likely links and
potential links seems an obvious step; keeping likely
nonlinks, less so. However, as Newcombe has pointed out,
information from likely nonlinks is needed for computing
biases. We conjecture that it will suffice to keep no more
than two or three pairs of matches from the B file for each
record on the A file. The two or three pairs with the highest
matching weights would be retained.

In particular, we will assume that the file of linked cases
has been augmented so that every record on the smaller
of the two files has been paired with, say, the two records
on the larger file having the highest matching weights. As
n < m, we are keeping 2n of the n X m possible pairs.
For each record we keep the linkage indicators and the
probabilities associated with the records to which it is paired.
Some of these cases will consist of (link, nonlink) combina-
tions or (nonlink, nonlink) combinations. For simplicity’s
sake, we are not going to deal with settings where more
than one true link could occur; hence, (link,link) combina-
tions are by definition ruled out.

As may be quite apparent, such a data structure allows
different methods of analysis. For example, we can partition
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the file back into three parts - identified links, nonlinks,
and potential links. Whatever analysis we are doing could
be repeated separately for each group or for subsets of
these groups. In the application here, we will use nonlinks
to adjust the potential links, and, thereby, gain an addi-
tional perspective that could lead to reductions in the Mean
Square Error (MSE) over statistics calculated only from
the linked data.

For statistical analyses, if we were to use only data
arising from pairs of records that we were highly confident
were links, then we might be throwing away much addi-
tional information from the set of potentially linked pairs,
which, as a subset, could contain as many true links as the
set of pairs which we designate as links. Additionally, we
could seriously bias results because certain subsets of the
true links that we might be interested in might reside
primarily in the set of potential links. For instance, if we
were considering affirmative action and income questions,
certain records (such as those associated with lower income
individuals) might be more difficult to match using name
and address information and, thus, might be heavily
concentrated among the set of potential links.

3.1 Motivating Theory

Neter, Maynes, and Ramanathan (1965) recognized '

that errors introduced during the matching process could
adversely affect analyses based on the resultant linked
files. To show how the ideas of Neter et al. motivate the
ideas in this paper, we provide additional details of their
model. Neter et al. assumed that the set of records from
one file (1) always could be matched, (2) always had the
same probability p of being correctly matched, and (3) had
the same probability g of being mismatched to any remaining
records inthe second file (j.e. p + (N — 1)g = 1where
N is file size). They generalized their basic results by
assuming that the sets of pairs from the two files could be
partitioned into classes in which (1), (2) and (3) held.

Our approach follows that of Neter et al. because we
believe their approach is sensible. We concur with their
results showing that if matching errors are moderate then
regression coefficients could be severely biased. We do not
believe, however, that condition (3) - which was their
main means of simplifying computational formulas - will
ever hold in practice. If matching is based on unique iden-
tifiers such as social security numbers subject to
typographical error, it is unlikely that a typographical
error will mean that a given record has the same probability
of being incorrectly matched to all remaining records in
the second file. If matching variables consist of name and
address information (which is often subject to substan-
tially greater typographical error), then condition (3) is
even more unlikely to hold.

To fix ideas on how our work builds on and generalizes
results of Neter e ai. we consider a special case. Suppose

we are conducting ordinary least squares using a simple
regression of the form,

Yy=ay+ ax + €. 3.1)

Next, assume mismatches have occurred, so that the y
variables (from one file) and the x variables (from another
file) are not always for the same unit.

Now in this setting, the unadjusted estimator of g,
would be biased; however, under assumptions such as that
x and y are independent when a mismatch occurs, it can
be shown that, if we know the mismatch rate, 4, that an
unbiased adjusted estimator can be obtained by simply
correcting the ordinary estimator by multiplying it by
(1/(1 — h)). Intuitively, the erroneously linked pairs
lead to an understatement of the true correlation (positive
or negative) between x and y. The adjusted coefficient
removes this understatement. With the adjusted slope
coefficent 4,, the proper intercept can be obtained from the
usual expression 4y = § — 4,%, where 4, has been adjusted.

Methods for estimating regression standard errors can
also be devised in the presence of matching errors. Rather
than just continuing to discuss this special case, though,
we will look at how the idea of making a multiplicative
adjustment can be generalized. Consider

Y=XB +¢, 3.2)

the ordinary univariate regression model, for which error
terms all have mean zero and are independent with constant
variance o2. If we were working with a data base of size
n, Y would be regressed on X in the usual manner. Now,
given that each case has two matches, we have 2n pairs
altogether. We wish to use (X;,Y;), but instead use
(Xi,Z;). Z; could be Y, but may take some other value,
Y}, due to matching error.

Fori=1,...,n,
Y; with probability p;
Z; = (3.3)
Y; with probability g;; for j=i,
pi+Ljg; =1L

The probability p; may be zero or one. We define
h; = 1 — p;and divide the set of pairs into » mutually
exclusive classes. The classes are determined by records
from one of the files. Each class consists of the independent
x-variable X, the true value of the dependent y-variable,
the values of the y-variables from records in the second
file to which the record in the first file containing X have
been paired, and computer matching probabilities (or
weights). Included are links, nonlinks, and potential links.
Under an assumption of one-to-one matching, for each
i =1, ..., n, there exists at most one j such that g; > 0.
We let ¢ be defined by ¢ (i) = j.
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The intuitive idea of our approach (and that of Neter
et al.) is that we can, under the model assumptions,
express each observed data point pair (X,Z) in terms of
the true values (X,Y) and a bias term (X,b). All equations
needed for the usual regression techniques can then be
obtained. Our computational formulas are much more
complicated than those of Neter et al. because their strong
assumption (3) made considerable simplification possible
in the computational formulas. In particular, under their
model assumptions, Neter ef al. proved that both the mean
and variance of the observed Z-values were necessarily
equal the mean and variance of the true Y-values.

Under the model of this paper, we observe (see Appendix)
that

E(Z) = (1/n) LE(Z|i) = (1/n) L, (Yipi + L;Y; qip)

=(1/n) LY+ (1/n) L [Yi( = h) + Yyihil
=7 + B. (3.9

Aseach X,,i = 1, ..., n, can be paired with either ¥;
or Y, (., the second equality in (3.4) represents 2z points.
Similarly, we can represent 0, in terms of o, and a bias
term B,,, and o? in terms of o2 and a bias term B,,. We
neither assume that the bias terms have expectation zero
nor that they are uncorrelated with the observed data.

With the different representations, we can adjust the
regression coefficients 3,, and their associated standard
errors back to the true values 8,, and their associated
standard-errors. Our assumption of one-to-one matching
(which is not needed for the general theory) is done for
computational tractability and to reduce the number of
records and amount of information that must be tracked
during the matching process.

In implementing the adjustments, we make two crucial
assumptions. The first is that, fori = 1, ..., n, wecan
accurately estimate the true probabilities of a match p;.
See Appendix for the method of Rubin and Belin (1991).
The second is that, foreachi = 1, ..., n, the true value
Y; associated with independent variable X is the pair with
the highest matching weight and the false value Yy ; is
associated with the second highest matching weight. (From
the simulations conducted it appears that at least the first
of these two assumptions matters greatly when a signifi-
cant portion of the pairs are potential links.)

3.2 Simulated Application

Using the methods just described, we attempted a
simulation with real data. Our basic approach was to take
two files for which true linkage statuses were known and
re-link them using different matching variables - or really
versions of the same variables with different degrees of
distortion introduced, making it harder and harder to

distinguish a link from a nonlink. This created a setting
where there was enough discrimination power for the
Rubin-Belin algorithm for estimating probabilities to
work, but not so much discriminating power that the
overlap area of potential links becomes insignificant.

The basic simulation results were obtained by starting
with a pair of files of size 10,000 that had good information
for matching and for which true match status was known.
To conduct the simulations a range of error was introduced
into the matching variables, different amounts of data were
used for matching, and greater deviations from optimal
matching probabilities were allowed.

Three matching scenarios were considered: (1) good,
(2) mediocre, and (3) poor. The good matching scenario
consisted of using most of the available procedures that
had been developed for matching during the 1990 U.S.
Census (e.g., Winkler and Thibaudeau 1991). Matching
variables consisted of last name, first name, middle initial,
house number, street name, apartment or unit identifier,
telephone, age, marital status, relationship to head of
household, sex, and race. Matching probabilities used in
crucial likelihood ratios needed for the decision rules were
chosen close to optimal.

The mediocre matching scenario consisted of using last
name, first name, middle initial, two address variations,
apartment or unit identifier, and age. Minor typographical
errors were introduced independently into one seventh of
the last names and one fifth of the first names. Matching
probabilities were chosen to deviate from optimal but were
still considered to be consistent with those that might be
selected by an experienced computer matching expert.

The poor matching scenario consisted of using last
name, first name, one address variation, and age. Minor
typographical errors were introduced independently into
one fifth of the last names and one third of the first names.
Moderately severe typographical errors were made in one
fourth of the addresses. Matching probabilities were
chosen that deviated substantially from optimal. The
intent was for them to be selected in a manner that a practi-
tioner might choose after gaining only a little experience.

With the various scenarios, our ability to distinguish
between true links and true nonlinks differs significantly.
For the good scenario, we see that the scatter for true links
and nonlinks is almost completely separated (Figure 2).
With the mediocre scheme, the corresponding sets of
points overlap moderately (Figure 3); and, with the poor,
the overlap is substantial (Figure 4).

We primarily caused the good matching scenario to
degenerate to the poor matching error (Figures 2-4) by
using less matching information and inducing
typographical error in the matching variables. Even if we
had kept the same matching variables as in the good
matching scenario (Figure 2), we could have caused curve
overlap (as in Figure 4) merely by varying the matching
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Figure 2. Log of Frequency vs. Weight Good Matching Scenario, Links and Nonlinks

—Tr
32

24

16

-16

. .t
»
* * .
* ® * %
n?,‘: .
*
N * T
‘l
&
J’i.\ *
{" ’t,*
Lkt
h ST
. *
w*&’:
“'.:.“
{{‘}‘.
»
,;4::
* *’*t
R
&“t* ‘*
% *
et
* 'ii
¢
* »
e .t
s, | °
* » t‘g
t.igi
oogi
o
'O*
e
e
o*
o
[e X
8
°§
O°§
Oog
085
(o]
o 8
o)
8
o]
089
3 go °
& o Q
3 T ¥ T - -t T
o o © ~ © - ] o~ -
&

T
—24

Weight

= link

*

0 = nonlink,

112 m



Record Linkage Techniques -- 1997

Figure 3. Log of Frequency vs. Weight Mediocre Matching Scenario, Links and Nonlinks
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Table 1

Counts of True Links and True Nonlinks and Probabilities of an Erroneous Link in Weight Ranges
for Various Matching Cases; Estimated Probabilities via Rubin-Belin Methodology

False match rates

Good Mediocre Poor
Weight
True Prob True Prob True Prob

Link NL True Est Link NL True Est Link NL True Est

15+ 9,176 0 .00 .00 2,621 0 .00 .00 0 1 .00 .00
14 111 0 .00 .00 418 0 .00 .00 0 1 .00 .00
13 91 0 .00 .01 1,877 0 .00 .00 0 1 .00 .00
12 69 0 .00 02 1,202 0 .00 .00 0 1 .00 .00
i1 59 0 .00 .03 832 0 .00 .00 0 1 .00 .00
10 69 0 .00 .05 78S 0 .00 .00 0 1 .00 .00
9 42 0 .00 .08 610 0 .00 .00 0 1 .00 .00

8 36 2 .05 13 439 3 .00 .00 65 1 .02 .00

7 30 1 03 .20 250 4 .00 .01 39 1 .03 .00

6 14 7 33 .29 265 9 t .03 .03 1,859 57 .03 .03

S 28 4 12 .40 167 8 .05 .06 1,638 56 .03 .03

4 6 3 33 51 89 6 .06 11 2,664 62 .02 .05

3 12 7 37 .61 84 5 .06 .20 1,334 31 02 11
2 8 6 43 .70 38 7 .16 31 947 30 .03 .19

1 7 13 .65 .78 33 34 51 46 516 114 18 25
0 7 4 .36 .83 13 19 .59 61 258 65 .20 .28
-1 3 5 .62 .89 7 20 74 74 93 23 .20 31
-2 0 11 .99 91 3 11 .79 .84 38 23 .38 .41
-3 4 6 .60 .94 4 19 .83 .89 15 69 .82 .60
~4 4 3 43 95 0 15 99 94 1 70 99 .70
-5 4 4 .50 97 0 15 99 .96 0 25 99 .68
-6 0 5 .99 .98 0 27 .99 .98 0 85 .9 .67
-7 1 6 .86 .98 0 40 .99 .99 .99 .99
-8 0 8 99 99 0 41 .99 .99 .99
-9 0 4 99 9 0 4 .99 .99 .99
-10- 0 22 0 22 .99 .99 .9

Notes: In the first column, weight 10 means weight range from 10 to 11. Weight ranges 15 and above and weight ranges —~9 and below are added
together. Weights are log ratios that are based on estimated agreement probabilities. NL is nonlinks and Prob is probability.

parameters given by equation (2.1). The poor matching
scenario can arise when we do not have suitable name
parsing software that allows comparison of corresponding
surnames and first names or suitable address parsing soft-
ware that allows comparison of corresponding house
numbers and street names. Lack of proper parsing means
that corresponding matching variables associated with
many true links will not be properly utilized.

Our ability to estimate the probability of a match varies
significantly. In Table 1 we have displayed these probabil-
ities, both true and estimated, by weight classes. For the
good and mediocre matching scenarios, estimated proba-
bilities were fairly close to the true values. For the poor
scenario, in which most pairs are potential links, deviations
are quite substantial.

For each matching scenario, empirical data were created.
Each data base contained a computer matching weight,
true and estimated matching probabilities, the independent
x-variable for the regression, the true dependent y-variable,
the observed y-variables in the record having the highest
match weight, and the observed y-variable from the record
having the second highest matching weight.

The independent x-variables for the regression were
constructed using the SAS RANUNI procedure, so as to
be uniformly distributed between 1 and 101. For this paper,
they were chosen independently of any matching variables.
(While we have considered the situation for which regres-
sion variables are dependent on one or more matching
variables (Winkler and Scheuren 1991), we do not present
any such results in this paper.)
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Three regression scenarios were then considered. They
correspond to progressively lower R?values: (1) R? between
0.75 and 0.80; (2) between 0.40 and 0.45; and (3) between
0.20 and 0.22. The dependent variables were generated with
independent seeds using the SAS RANNOR procedure.
Within each matching scenario (good, mediocre, or poor),
all pairing of records obtained by the matching process
and, thus, matching error was fixed.

It should be noted that there are two reasons why we
generated the (x,y)-data used in the analyses. First, we
wanted to be able to control the regression data sufficiently
well to determine what the effect of matching error was.
This was an important consideration in the very large
Monte Carlo simulations reported in Winkler and Scheuren
(1991). Second, there existed no available pairs of data files
in which highly precise matching information is available
and which contain suitable quantitative data.

In performing the simulations for our investigation,
some of which are reported here, we created more than 900
data bases, corresponding to a large number of variants
of the three basic matching scenarios. Each data base
contained three pairs of (x,y)-variables corresponding to
the three basic regression scenarios. An examination of
these data bases was undertaken to look at some of the
matching sensitivity of the regressions and associated
adjustments to the sampling procedure. The different data
bases determined by different seed numbers are called
different samples.

The regression adjustments were made separately for
each weight class shown in Table 1, using both the estimated
and true probabilities of linkage. In Table 1, weight class
10 refers to pairs having weights between 10 and 11 and
weight class —1 refers to pairs having weights between
—0and - 1. All pairs having weights 15 and above are
combined into class 15 + and all pairs having weights — 9
and below are combined into class — 10— . While it was
possible with the Rubin-Belin results to make individual
adjustments for linkage probabilities, we chose to make
average adjustments, by each weight class in Table 1.
(See Czajkaet al. 1992, for discussion of a related decision.
Our approach has some of the flavor of the work on pro-
pensity scores (e.g., Rosenbaum and Rubin 1983, 1985).
Propensity scoring techniques, while proposed for other
classes of problems, may have application here as well.

4. SOME HIGHLIGHTS AND LIMITATIONS
OF THE SIMULATION RESULTS

Because of space limitations, we will present only a few
representative results from the simulations conducted. For
more information, including an extensive set of tables, see
Winkler and Scheuren (1991).

The two outcome measures from our simulation that
we consider are the relative bias and relative standard

error. We will only discuss the mediocre matching scenario
in detail and only for the case R? between 0.40 and 0.45.
Figures 5-7 shows the relative bias results from a single
representative sample. An overall summary, though, for
the other scenarios is presented in Table 2. Some limitations
on the simulation are also noted at the end of this section.

4.1 Ilustrative Results for Mediocre Matching

Rather than use all pairs, we only consider pairs having
weights 10 or less. Use of the smaller subset of pairs allows
us to examine regression adjustment procedures for weight
classes having low to high proportions of true nonlinks.
We note that the eliminated pairs (having weight 10 and
above) are associated only with true links. Figures 5 and
6 present our results for adjusted and unadjusted regres-
sion data, respectively. Results obtained with unadjusted
data are based on conventional regression formulas (e.g.,
Draper and Smith 1981). The weight classes displayed are
cumulative beginning with pairs having the highest weight.
Weight class w refers to all pairs having weights between
w and 10.

We observe the following:

® The accumulation is by decreasing matching weight
(i.e. from classes most likely to consist aimost solely of
true links to the classes containing increasing higher
proportions of true nonlinks). In particular, for weight
class w = 8, the first data point shown in Figures 5-7,
there were 3 nonlinks and 439 links. By the time, say,
we had cumulated the data through weight class w = §,
there were 24 nonlinks; the links, however, had grown
to 1,121 - affording us a much larger overall sample
size with a corresponding reduction in the regression
standard error.

Relative biases are provided for the original and adjusted
slope coefficient 4, by taking the ratio of the true coef-
ficient (about 2) and the calculated one for each
cumulative weight class.

Adjusted regressfon results are shown employing both
estimated and true match probabilities. In particular,
Figure 5 corresponds to the results obtained using esti-
mated probabilities (all that would ordinarily be available
in practice). Figure 7 corresponds to the unrealistic
situation for which we knew the true probabilities.

¢ Relative root mean square errors (not shown) are obtained
by calculating MSEs for each cumulative weight class.
For each class, the bias is squared, added to the square
of the standard errors, and square roots taken.

Observations on the results we obtained are fairly
straightforward and about what we expected. For example,
as sample size increased, we found the relative root mean
square errors decreasd substantially for the adjusted coef-
ficients. If the regression coefficients were not adjusted,
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Figure 5. Relative Bias for Adjusted Estimators, Estimated Probabilities
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Figure 6. Relative Bias for Unadjusted Estimators
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Figure 7. Relative Bias for Adjusted Estimators, True Probabilities
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standard errors still decreased as the sample size grew, but
at an unacceptably high price in increased bias.

One point of concern is that our ability to accurately
estimate matching probabilities critically affects the
accuracy of the coefficient estimates. If we can accurately
estimate the probabilities (as in this case), then the adjust-
ment procedure works reasonably well; if we cannot (see
below), then the adjustment could perform badly.

4.2 Overall Results Summary

Our results varied somewhat for the three different
values of R? - being better for larger R2 values. These R?
differences, however, do not change our main conclusions;
hence, Table 2 does not address them. Notice that, for the
good matching scenario, attempting to adjust does little
good and may even cause some minor harm. Certainly it
is pointless, in any case, and we only included it in our
simulations for the sake of completeness. At the other
extreme, even for poor matches, we obtained satisfactory
results, but only when using the true probabilities -
something not possible in practice.

Table 2

Summary of Adjustment Results for
IMlustrative Simulations

Basis of Matching scenarios

adjustments Good

Mediocre Poor

Adjustment
True was not helpful
probabilities| because it was

Good results
like those in

Good results
like those in

not needed Section 4.1 Section 4.1
Poor results
: because Rubin-
Esuma.n‘efi Same as Same as Belin could not
probabilities above above

estimate the
probabilities

Any statistical estimation procedure will have difficuity
with the poor matching scenario because of the extreme
overlap of the curves. See Figure 4. We believe the mediocre
scenario covers a wide range of typical settings. Nonetheless,
the poor matching scenario might arise fairly often too,
especially with less experienced linkers. Either new esti-
mation procedures will have to be developed for the poor
case or the Rubin-Belin probability estimation procedure
- which was not designed for this situation - will have to
be enhanced.

4.3 Some Simulation Limitations

The simulation results are subject to a number of limita-
tions. Some of these are of possible major practical
significance; others less so. A partial list follows:

¢ In conducting simulations for this paper, we assumed
that the highest weight pair was a true link and the second
highest a true nonlink. This assumption fails because,
sometimes, the second highest is the true link and the
highest a true nonlink. (We do not have a clear sense of
how important this issue might be in practice. It would
certainly have to be a factor in poor matching scenarios.)

A second limitation of the data sets employed for the
simulations is that the truly linked record may not be
present at all in the file to which the first file is being
matched. (This could be important. In many practicai
settings, we would expect the ‘‘logical blocking criteria’
also to cause both pairs used in the adjustment to be
false links.)

A third limitation of our approach is that no use has
been made of conventional regression diagnostic tools.
(Depending on the environment, outliers created
because of nonlinks could wreak havoc with underlying
relationships. In our simulations this did not show up
as much of a problem, largely, perhaps, because the X'
and Y values generated were bounded in a moderately
narrow range.)

5. CONCLUSIONS AND FUTURE WORK

The theoretical and related simulation results presented
here are obviously somewhat contrived and artificial. A lot
more needs to be done, therefore, to validate and generalize
our beginning efforts. Nonetheless, some recommendations
for current practice stand out, as well as areas for future
research. We will cover first a few of the topics that intrigued
us as worthy of more study to improve the adjustment of
potential links. Second, some remarks are made about the
related problem of what to do with the (remaining)
nonlinks. Finally, the section ends with some summary ideas
and a revisitation of our perspective concerning the unity
of the tasks that linkers and analysts do.

5.1 Improvements in Linkage Adjustment

An obvious question is whether our adjustment proce-
dures could borrow ideas from general methods for errors-
in-variables (e.g., Johnston 1972). We have not explored
this, but there may be some payoffs.

Of more interest to us are techniques that grow out of
conventional regression diagnostics. A blend of these with
our approach has a lot of appeal. Remember we are making
adjustments, weight class by weight class. Suppose we looked
ahead of time at the residual scatter in a particular weight
class, where the residuals were calculated around the
regression obtained from the cumulative weight classes
above the class in question. Outliers, say, could then be
identified and might be treated as nonlinks rather than
potential links.
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We intend to explore this possibility with simulated data
that is heavier-tailed than what was used here. Also we will
explore consciously varying the length of the weight classes
and the minimum number of cases in each class. We have
an uneasy feeling that the number of cases in each class
may have been too small in places. (See Table 1.) On the
other hand, we did not use the fact that the weight classes
were of equal length nor did we study what would have
happened had they been of differing lengths.

One final point, as noted already: we believe our approach
has much in common with propensity scoring, but we did
not explicitly appeal to that more general theory for aid
and this could be something worth doing. For example,
propensity scoring ideas may be especially helpful in the
case where the regression variables and the linkage
variables are dependent. (See Winkler and Scheuren (1991)
for a report on the limited simulations undertaken and the
additional difficulties encountered.)

5.2 Handling Erroneous Nonlinks

In the use of record linkage methods the general problem
of selection bias arises because of erroneous nonlinks.
There are a number of ways to handle this. For example,
the links could be adjusted by the analyst for lack of
representativeness, using the approaches familiar to those
who adjust for unit or, conceivably, item nonresponse
(e.g., Scheuren et al. 1981).

The present approach for handling potential links could
help reduce the size of the erroneous nonlink problem but,
generally, would not eliminate it. To be specific, suppose
we had a linkage setting where, for resource reasons, it was
infeasible to follow up on the potential links. Many practi-
tioners might simply drop the potential links, thereby,
increasing the number of erroneous nonlinks. (For instance,
in ascertaining which of a cohort’s members is alive or
dead, a third possibility - unascertained - is often used.)

Our approach to the potential links would have implicitly
adjusted for that portion of the erroneous nonlinks which
were potentially linkable (with a followup step, say). Other
erroneous nonlinks would generally remain and another
adjustment for them might still be an issue to consider.

Often we can be faced with linkage settings where the
files being linked have subgroups with matching information
of varying quality, resulting in differing rates of erroneous
links and nonlinks. In principle, we could employ the
techniques in this paper to each subgroup separately. How
to handle very small subgroups is an open problem and
the effect on estimated differences between subgroups,
even when both are of modest size, while seemingly
straightforward, deserves study.

5.3 Concluding Comments

At the start of this paper we asked two ‘‘key’’ questions.
Now that we are concluding, it might make sense to reconsider

these questions and try, in summary fashion, to give some
answers.

o ‘““What should the linker do to help the analyst?”’ If
possible, the linker should play a role in designing the
datasets to be matched, so that the identifying informa-
tion on both is of high quality. Powerful algorithms exist
now in several places to do an excellent job of linkage
(e.g., at Statistics Canada or the U.S. Bureau of the
Census, to name two). Linkers should resist the temp-
tation to design and develop their own software. In most
cases, modifying or simply using existing software is
highly recommended (Scheuren 1985). Obviously, for
the analyst’s sake, the linker needs to provide as much
linkage information as possible on the files matched so
that the analyst can make informed choices in his or her
work. In the present paper we have proposed that the
links, nonlinks, and potential links be provided to the
analyst - not just links. We strongly recommend this,
even if a clerical review step has been undertaken. We
do not necessarily recommend the particular choices
we made about the file structure, at least not without
further study. We would argue, though, that our choices
are serviceable.

‘“What should the analyst know about the linkage and
how should this be used?”’ The analyst needs to have
information like link, nonlink, and potential link status,
along with linkage probabilities, if available. Many
settings could arise where simply doing the data analysis
steps separately by link status will reveal a great deal
about the sensitivity of one’s results. The present paper
provides some initial ideas about how this use might be
approached in a regression context. There also appears
to be some improvements possible using the adjustments
carried out here, particularly for the mediocre matching
scenario. How general these improvements are remains
to be seen. Even so, we are relatively pleased with our
results and look forward to doing more. Indeed, there
are direct connections to be made between our approach
to the regression problem and other standard techniques,
like contingency table loglinear models.

Clearly, we have not developed complete, general answers
to the questions we raised. We hope, though, that this
paper will at least stimulate interest on the part of others
that could lead us all to better practice.

ACKNOWLEDGMENTS AND
DISCLAIMERS

The authors would like to thank Yahia Ahmed and
Mary Batcher for their help in preparing this paper and
two referees for detailed and discerning comments.
Fruitful discussions were held with Tom Belin. Wendy
Alvey also provided considerable editorial assistance.

121 m



Scheuren and Winkler

The usual disclaimers are appropriate here: in parti-
cular, this paper reflects the views of the authors and not
necessarily those of their respective agencies. Problems,
like a lack of clarity in our thinking or in our exposition,
are entirely the authors’ responsibility.

APPENDIX

The appendix is divided into four sections. The first
provides details on how matching error affects regression
models for the simple univariate case. The approach most
closely resembles the approach introduced by Neter et al.
(1965) and provides motivation for the generalizations
presented in appendix sections two and three. Computa-
tional formulas are considerably more complicated than
those presented by Neter ef al. because we use a more
realistic model of the matching process. In the second section,
we extend the univariate model to the case for which all
independent variables arise from one file, while the depen-
dent variable comes from the other, and, in the third, we
extend the second case to that in which some independent
variables come from one file and some come from
another. The fourth section summarizes methods of Rubin
and Belin (1991) (see also Belin 1991) for estimating the
probability of a link.

A.1l. Univariate Regression Model

In this section we address the simplest regression situa-
tion in which we match two files and consider a set of
numeric pairs in which the independent variable is taken
from a record in one file and the dependent variable is
taken from the corresponding matched record from the
other file.

Let Y = XB + ebe the ordinary univariate regression
model for which error terms are independent with expectation
zero and constant variance o2. If we were working with
a single data base, Y would be regressed on X in the usual
manner. Fori = 1, ..., n, we wish to use (X, Y;) but we
will use (X;,Z;), where Z; is usually ¥; but it may take
some other value Y; due to matching error.

Thatis, fori =1, ..., n,

Y; with probability p;
i =
Y; with probability ¢; for j # i,

where p; + ¥;ziqy = 1.

The probability p;, may be zero or one. We define
h; = 1 — p,. Asin Neter et al. (1965), we divide the set
of pairs into n mutually exclusive classes. Each class consists
of exactly one (X;,Z;) and, thus, there are n classes. The
intuitive idea of our procedure is that we basically adjust

Z;in each (X;,Z;) for the bias induced by the matching
process. The accuracy of the adjustment is heavily depen-
dent on the accuracy of the estimates of the matching
probabilities in our model.

To simplify the computational formulas in the expla-
nation, we assume one-to-one matching; that is, for each
i =1, ..., n, there exists at most one j such that g; > 0.
We let ¢ be defined by ¢ (i) = j. Our model still applies
if we do not assume one-to-one matching.

As intermediate steps in estimating regression coefficients
and their standard errors, we need to find p, = E(Z),
a?, and o,,. As in Neter et al. (1965),

E(Z) = (/) TE(Z]D) = (1/m) L (Yipi + L;aiY; G;j)
=(1/n) LY,
+ (UM L (Y (= h) + Yy hil

= Y+B. (A.1.1)

The first and second equalities are by definition and the
third is by addition and subtraction. The third inequality
is the first time we apply the one-to-one matching assump-
tion. The last term on the right hand side of the equality
is the bias which we denote by B. Note that the overall bias
B s the statistical average (expectation) of the individual
biases [Y; (—=h) + Yy ] for i=1, ..., n
Similarly, we have

o} = E(Z - EZ)® = E(Z - (Y + B))?

(I/ny5(Y = 12 pi + (1/n) L)

(Y, - N?q; - BEZ - V) + B

(1/n)S,, + B,, — B* = ¢ + B,, — B,
(A.1.2)

where B, = (1/n) (Y= D2(=h) + (Yo~ D2 h),
Syy =Li (Yi — D)?and o} = (1/n)S,,.

on = E{(Z — EZ)(X — EX)]
= (Unm L, (Y, - D(X; = R)p
+ (1/m L (Y = DX = X) gy

= (1/m)Sy + By = 0y + By, (A.13)
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where B,, = (1/n)L;{(Y; = P)(X; — X)(—h) +
Yoy = DX =DV 1], Sy =L (Y, = DX - X),
and g, = (1/n)S,,. The term B,, is the bias for the
second moments and the term B, is the bias for the cross-
product of Y and X. Formulas (A.1.1), (A.1.2), and
(A.1.3), respectively, correspond to formulas (A.1), (A.2),
and (A.3) in Neter et al. The formulas necessarily differ
in detail because we use a more general model of the
matching process.

The regression coefficients are related by

Box = 04/0} = 0,,/0% + B/} = By + B,/o?. (A1)
To get an estimate of the variance of 8,,, we first derive
an estimate s? for the variance ¢ in the usual manner.

(n=2)s? =5, = ) =8 + B Sy

=no} — nB,dt. (A.1.5)

Using (A.1.2) and (A.1.3) allows us to express s* in
terms of the observable quantities o2 and o, and the bias
terms B,,, B,,, and B that are computable under our
assumptions. The estimated variance of 8, is then com-
puted by the usual formula (e.g., Draper and Smith 1981,
18-20)

Var(8,,) = s%/(na?).

We observe that the first equality in (A.1.5) involves
the usual regression assumption that the error terms are
independent with identical variance.

In the numeric examples of this paper we assumed that
the true independent value X; associated with each Y; was
from the record with the highest matching weight and the
false independent value was taken from the record with
the second highest matching weight. This assumption is
plausible because we have only addressed simple regres-
sion in this paper and because the second highest matching
weight was typically much lower than the highest. Thus,
it is much more natural to assume that the record with the
second highest matching weight is false. In our empirical
examples we use straightforward adjustments and make
simplistic assumptions that work well because they are
consistent with the data and the matching process. In more
complicated regression situations or with other models
such as loglinear we will likely have to make additional
modelling assumptions. The additional assumptions can
be likened to the manner in which simple models for
nonresponse require additional assumptions as the models
progress from ignorable to nonignorable (see Rubin 1987).

In this section, we chose to adjust independent x-values
and leave dependent y-values as fixed in order to achieve
consistency with the reasoning of Neter et al. We could have
just as easily adjusted dependent y-values leaving x-values
as fixed.

A.2. Multiple Regression with Independent Variables
from One File and Dependent Variables from the
Other File

At this point we pass to the usual matrix notation
(e.g., Graybill 1976). Our basic model is

Y=X8+c¢,

where Yisan x larray, Xisan X parray,Bisap x 1
array, and eisan x 1 array.

Analogous to the reasoning we used in (A.1.1), we can
represent

Z=Y+ B, (A.2.1)

where Z, Y, and B are n x 1 arrays having terms that
correspond, fori =1, ..., n, via

Zi=Yi+pyi + hiyew.

Because we observe Z and X only, we consider the
equation

Z=XC+e. (A.2.2)

We obtain an estimate € by regressing on the observed
data in the usual manner. We wish to adjust the estimate
€to an estimate 8 of 8 in a manner analogousto (A.1.1).

Using (A.2.1) and (A.2.2) we obtain

XTX)'XTY + (X'X)"'XB=C. (A.2.3)

The first term on the left hand side of (A.2.3) is the
usual estimate 8. The second term on the left hand side of
(A.2.3) is our bias adjustment. X7 is the transpose of X.

The usual formula (Graybill 1976, p. 176) allows esti-
mation of the variance o? associated with the i.i.d. error
components of e,

(n - p)&* = (Y - XB)T(Y - XP)
= YTy - 3 X7y, (A.2.9)
where 8 = (X7X) ! XTy.

Via (A.2.1) 8 X7Y can be represented in terms of the
observable Z and X in a manner similar to (A.1.2) and
(A.1.3). As

Y'Yy = 27 - B'Z - Z'B + B'B, (A.2.5)

we can obtain the remaining portion of the right hand side
of (A.2.4) that allows estimation of ¢2.

Via the usual formula (e.g., Graybill 1976, p. 276), the
covariance of § is

cov[B] = ¢ (XTX) !, (A.2.6)

which we can estimate.
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A.3. Multiple Regression with Independent Variables
from Both Files

‘When some of the independent variables come from the
same file as ¥ we must adjust them in a manner similar
to the way in which we adjust ¥in equations (A.1.1) and
(A.2.1). Then data array X can be written in the form

X;=X+ D, (A.3.])
where D is the array of bias adjustments taking those terms
of X arising from the same file as ¥ back to their true values
that are represented in X,;. Using (A.2.1) and (A.2.2), we
obtain

Y+ B= (X, - D)C. (A32)

With algebra (A.3.2) becomes
(XIXy) "' XJY = (X]X,)~'X{(- B)
+ (XIx,'x¥(x, + D)C
= (X]X,)~'X](- B)

+ (XX "'XIDC + C. (A33)

If D is zero (i.e., all independent x-values arise from a
single file), then (A.3.3) agrees with (A.2.3). The first term
on the left hand side of (A.2.3) is the estimate of 8. The
estimate 2 is obtained analogously to the way (A.2.3),
(A.2.4) and (A.2.5) were used. The covariance of A follows
from (A.2.6).

A.4. Rubin-Belin Model

To estimate the probabilty of a true link within any
weight range, Rubin and Belin (1991) consider the set of
pairs that are produced by the computer matching program
and that are ranked by decreasing weight. They assume
that the probability of a true link is a montone function
of the weight; that is, the higher the weight, the higher the
probability of a true link. They assume that the distribu-
tion of the observed weights is a mixture of the distribu-
tions for true links and true nonlinks.

Their estimation procedure is:

1. Model each of the two components of the mixture as
normal with unknown mean and variance after separate
power transformations.

2. Estimate the power of the two transformations from
a training sample.

3. Taking the two transformations as known, fit a normal
mixture model to the current weight data to obtain
maximum likelihood estimates (and standard errors).

4. Use the parameters from the fitted model to obtain
point estimates of the false-link rate as a function of
cutoff level and obtain standard errors for the false-link
rate using the delta-method approximation.

While the Rubin-Belin method requires a training
sample, the training sample is primarily used to get the
shape of the curves. That is, if the power transformation
is given by

(W = 1)/(8u®Y) if 6#0
‘I’(wl; 6: w) =

w log(w;) if 6=0,

where w is the geometric mean of the weights w;,
i=1, ..., n,thenwand écan be estimated for the two
curves. For the examples of this paper and a large class
of other matching situations (Winkler and Thibaudeau
199 1), the Rubin-Belin estimation procedure works well.
In some other situations a different method (Winkler 1992)
that uses more information than the Rubin-Belin method
and does not require a training sample yields accurate
estimates, while software (see e.g., Belin 1991) based on
the Rubin-Belin method fails to converge even if new
calibration data are obtained. Because the calibration data
for the good and mediocre scenarios of this paper are
appropriate, the Rubin-Belin method provides better
estimates than the method of Winkler.
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