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A Method for Calibrating False-Match Rates
in Record Linkage*

Thomas R. Belin, UCLA and Donald B. Rubin, Harvard University

Specifving a record-linkage procedure requires both (1) a method for measuring cioseness of agreement between records, typically a
scalar weight, and (2) a rule for deciding when to classify records as matches or nonmatches based on the weights. Here we outline
a general strategy for the second problem. that is, for accurately estimating false-match rates for each possible cutoff weight. The
strategy uses a model where the distribution of observed weights are viewed as a mixture of weights for true matches and weights for
false matches. An EM algorithm for fitting mixtures of transformed-normal distributions is used to find posterior modes; associated
posterior variability is due to uncertainty about specific normalizing transformations as well as uncertainty in the parameters of the
mixture model, the latter being calculated using the SEM algorithm. This mixture-model calibration method is shown to perform
well in an applied setting with census data. Further, a simulation experiment reveals that, across a wide variety of settings not satisfying
the model’s assumptions, the procedure is slightly conservative on average in the sense of overstating false-match rates, and the one-
sided confidence coverage (i.e.. the proportion of times that these interval estimates cover or overstate the actual false-match rate)

is very close to the nominal rate.
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1. AN OVERVIEW OF RECORD LINKAGE AND THE
PROBLEM OF CALIBRATING FALSE-MATCH RATES

1.1 General Description of Record Linkage

Record linkage (or computer matching, or exact match-
ing) refers to the use of an algorithmic technique to identify
records from different data bases that correspond to the same
individual. Record-linkage techniques are used in a variety
of settings; the current work was formulated and first applied
in the context of record linkage between the census and a
large-scale postenumeration survey (the PES), which com-
prises the first step of an extensive matching operation con-
ducted to evaluate census coverage for subgroups of the pop-
ulation (Hogan 1992). The goal of this first step is to declare
as many records as possible ‘“matched’ without an excessive
rate of error, thereby avoiding the cost of the resulting manual
processing for all records not declared ‘“matched.”

Specifying a record-linkage procedure requires both a
method for measuring closeness of agreement between rec-
ords and a rule using this measure for deciding when to clas-
sify records as matches. Much attention has been paid in the
record-linkage literature to the problem of assigning
“weights” to individual fields of information in a multivariate
record and obtaining a “‘composite weight” that summarizes
the closeness of agreement between two records (see, for
example, Copas and Hilton 1990; Fellegi and Sunter 1969;
Newcombe 1988; and Newcombe, Kennedy, Axford, and
James 1959). Somewhat less attention has been paid to the
problem of deciding when to classify records as matches,
although various approaches have been offered by Tepping
(1968), Fellegi and Sunter ( 1969). Rogot, Sorlie, and John-
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son (1986), and Newcombe ( 1988). Our work focuses on

the second problem by providing a predicted probability of

match for two records, with associated standard error, as a
function of the composite weight.

The context of our problem, computer matching of census
records, is typical of record linkage. After data collection,
preprocessing of data, and determination of weights, the next
step is the assignment of candidate matched pairs where each
pair of records consists of the best potential match for each
other from the respective data bases (cf. “hits’”” in Rogot,
Sorlie, and Johnson 1986; “pairs” in Winkler 1989; “assigned
pairs” in Jaro 1989). According to specified rules, a scalar
weight is assigned to each candidate pair, thereby ordering
the pairs. The final step of the record linkage procedure is
viewed as a decision problem where three actions are possible
for each candidate matched pair: declare the two records
matched, declare the records not matched, or send both re-
cords to be reviewed more closely (see, for example, Fellegi
and Sunter 1969). In the motivating problem at the U.S.
Census Bureau, a binary choice is made between the alter-
natives “declare matched” versus “send to followup,” al-
though the matching procedure attempts to draw distinctions
within the latter group to make manual matching easier for
follow-up clerks. In such a setting, a cutoff weight is needed
above which records are declared matched; the false-match
rate is then defined as the number of falsely matched pairs
divided by the number of declared matched pairs. Particu-
larly relevant for any such decision problem is an accurate
method for assessing the probability that a candidate matched
pair is a correct match as a function of its weight.

1.2 The Need for Better Methods of Classifying
Records as Matches or Nonmatches

Belin (1989a, 1989b, 1990) studied various weighting
procedures (including some suggested by theory, some used
in practice, and some new simple ad hoc weighting schemes)
in the census matching problem and reached three primary
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conclusions. First, different weighting procedures lead to
comparable accuracy in computer matching. Second, as ex-
pected logically and from previous work (e.g., Newcombe
1988, p. 144), the false-match rate is very sensitive to the
setting of a cutoff weight above which records will be declared
matched. Third, and more surprising, current methods for
estimating the false-match rate are extremely inaccurate,
typically grossly optimistic.

To illustrate this third conclusion, Table 1 displays em-
pirical findings from Belin (1990) with test-census data on
the performance of the procedure of Fellegi and Sunter
(1969), which relies on an assumption of independence of
agreement across fields of information. That the Fellegi-
Sunter procedure for estimating false-match rates does not
work well (i.e., is poorly calibrated ) may not be so surprising
in this setting, because the census data being matched do
not conform well to the model of mutual independence of
agreement across the fields of information (see, for example,
Kelley 1986 and Thibaudeau 1989). Other approaches to
estimating false-match rates that rely on strong independence
assumptions (e.g., Newcombe 1988) can be criticized on
similar grounds.

Although the Fellegi-Sunter approach to setting cutoff
weights was originally included in census/PES matching op-
erations (Jaro 1989), in the recent past (including in the
1990 Census) the operational procedure for classifying record
pairs as matches has been to have a human observer establish
cutoff weights manually by “eyeballing” lists of pairs of rec-
ords brought together as candidate matches. This manual
approach is easily criticized, both because the error properties
of the procedure are unknown and variable and because,
when linkage is done in batches at different times or by dif-
ferent persons, inconsistent standards are apt to be applied
across batches.

Another idea is to use external data to help solve this clas-
sification problem. For example, Rogot, Sorlie, and Johnson
(1986) relied on extreme order statistics from pilat data to
determine cutoffs between matches and nonmatches; but this
technique can be criticized, because extreme order statistics
may vary considerably from sample to sample, especially
when sample sizes are not large. One other possibility, dis-
cussed by Tepping ( 1968 ), requires clerical review of samples
from the output of a record-linkage procedure to provide

Table 1. Performance of Fellegi-Sunter Cutolf Procedure

on 1986 Los Angeles Test-Census Data
Acceptable false-match rate Observed faise-match rate
specified by user of among declared
matching program matched pairs
.05 0627
.04 .0620
.03 .0620
02 0619
0 .0497
10-3 0365
10~ 0224
10~ .0067
10-* 0087
1077 .0067 .

feedback on error rates to refine the calibration procedure.
Such feedback is obviously desirable, but in many applica-
tions, including the census/PES setting, it is impossible to
provide it promptly enough.

A more generally feasible strategy is to use the results of
earlier record-linkage studies in which all candidate matched
pairs have been carefully reviewed by clerks. This type of
review is common practice in operations conducted by the
Census Bureau. Each such training study provides a data set
in which each candidate pair has its weight and an outcome,
defined as true match or false match, and thus provides in-
formation for building a model to give probability of match
as a function of weight.

1.3 A Proposed Solution to the Problem of
Calibrating Error Rates

There are two distinct approaches to estimating the rela-
tionship between a dichotomous outcome, Z; = 1 if match
and Z; = 0 if nonmatch, from a continuous predictor, the
weight, W;: the direct approach, typified by logistic regres-
sion, and the indirect approach, typified by discriminant
analysis. In the direct approach, an iid model is of the form
AZi|\W;, v) X g(W;|}), where g(W;|{), the marginal dis-
tribution of W, is left unspecified with { a priori independent
of ». In the indirect approach, the iid model is of the form
h(Wi1Z;, $)[AZ (1 — \)1-20], where the first factor spec-
ifies, for example, a normal conditional distribution of W
for Z; = 0 and for Z; = 1 with common variance but different
means, and the second factor specifies the marginal proba-
bility of Z; = 1, A, which is a priori independent of ¢. Under
this approach, P(Z; | W, ) is found using Bayes’s theorem from
the other model specifications as a function of ¢ and A. Many
authors have discussed distinctions between the two ap-
proaches, including Halperin, Blackwelder, and Verter
(1971), Mantel and Brown (1974), Efron (1975), and
Dawid (1976).

In our setting, application of the direct approach would
involve estimating f(Z;| W;, v) in observed sites where de-
terminations of clerks had established Z;, and then applying
the estimated value of » to the current site with only W
observed to estimate the probability of match for each can-
didate pair. If the previous sites differed only randomly from
the current sites, or if the previous sites were a subsample of
the current data selected on W, then this approach would
be ideal. Also, if there were many previous sites and each
could be described by relevant covariates, such as urban/
rural and region of the country, then the direct approach
could estimate the distribution of Z as a function of W and
covariates and could use this for the current site. Limited
experience of ours and of our colleagues at the Census Bu-
reau, who investigated this possibility using 1990 Census
data, has resulted in logistic regression being rejected as a
method for estimating false-match rates in the census setting
(W. E. Winkler 1993, personal communication ).

But the indirect approach has distinct advantages when,
as in our setting, there can be substantial differences among
sites that are not easily modeled as a function of covariates
and we have substantial information on the distribution of
weights given true and false matches, 4(- | +). In particular,
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Figure 1. Histograms of Weights for True and Faise Matches by Site: (a) St. Louis; (b) Columbia; (c) Washington.

with the indirect approach, the observed marginal distribu-
tion of W, in the current site is used to help estimate
P(Z;| W,;) in this site, thereby allowing systematic site to site
differences in P(Z;| W;). In addition, there can be substantial
gains in efficiency using the indirect approach when nor-
mality holds (Efron 1975), especially when h(W;|Z; = 1,
¢) and h(W,|Z; = 0, ¢) are well separated; (that is, when
the number of standard deviations difference between their
means is large).

Taking this idea one step further, suppose that previous
validated data sets had shown that after a known transfor-
mation, the true-match weights were normally distributed,
and that after a different known transformation, the false-
match weights were normally distributed. Then, after in-
verting the transformations, P(Z;| W;) could be estimated
in the current site by fitting a normal mixture model, which
would estimate the means and variances of the two normal
components (i.e., ¢) and the relative frequency of the two
components (i.e., ), and then applying Bayes’s theorem.
In this example, instead of assuming a common P(Z; | W;)
across all sites, only the normality after the fixed transfor-
mations would be assumed common across sites. If there
were many sites with covariate descriptors, then (A, ¢) could
be modeled as a function of these, for example, a linear model
structure on the normal means.

To illustrate the application of our work, we use available
test-census data consisting of records from three separate
sites of the 1988 dress rehearsal Census and PES: St. Louis,
Missouri, with 12,993 PES records; a region in East Central
Missouri including Columbia, Missouri, with 7,855 PES re-
cords; and a rural area in eastern Washington state, with
only 2,318 records. In each site records were reviewed by

clerks, who made a final determination as to the actual match
status of each record; for the purpose of our discussion, the
clerks’ determinations about the match status of record pairs
are regarded as correct. The matching procedures used in
the 1988 test Census have been documented by Brown et
al. (1988), Jaro (1989), and Winkler (1989). Beyond dif-
ferences in the sizes of the PES files, the types of street ad-
dresses in the areas offer considerably different amounts of
information for matching purposes; for instance, rural route
addresses, which were common in the Washington site but
almost nonexistent in the St. Louis site, offer less information
for matching than do most addresses commonly found in
urban areas.

Figure | shows histograms of both true-match weights and
false-match weights from each of the three sites. The bi-
modality in the true-match distribution for the Washington
site appears to be due to some record pairs agreeing on ad-
dress information and some not agreeing. This might gen-
erate concern, not so much for lack of fit in the center of
the distribution as for lack of fit in the tails, which are essential
to false-match rate estimation. Of course, it is not surprising
that validated data dispel the assumption of normality for
true-match weights and false-match weights. They do, how-
ever—at least at a coarse level in their apparent skewness—
tend to support the idea of a similar nonnormal distributional
shape for true-match weights across sites as well as a similar
nonnormal distributional shape for false-match weights
across sites. Moreover, although the locations of these dis-
tributions change from site to site, as do the relative fre-
quencies of the true-match to the false-match components,
the relative spread of the true to false components is similar
across sites.
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These observations lead us to formulate a transformed-
normal mixture model for calibrating false-match rates in
record-linkage settings. In this model, two power (or Box-
Cox) transformations are used to normalize the false-match
weights and the true-match weights, so that the observed raw
weights in a current setting are viewed as a mixture of two
transformed normal observations.

Mixture models have been used in a wide variety of sta-
tistical applications (see Titterington, Smith, and Makov
1985, pp. 16-21, for an extensive bibliography). Power
transformations are also used widely in statistics, prominently
in an effort to satisfy normal theory assumptions in regression
settings (see, for example, Weisberg 1980, pp. 147-151).
To our knowledge, neither of these techniques has been uti-
lized in record linkage operations, nor have mixtures of
transformed-normal distributions, with different transfor-
mations in the groups, appeared previously in the statistical
literature, even though this extension is relatively straight-
forward. The most closely related effort to our own of which
we are aware is that of Maclean, Morton, Elston, and Yee
(1976), who used a common power transformation for dif-
ferent components of a mixture model, although their work
focused on testing for the number of mixture components.

Section 2 describes the technology for fitting mixture
models with components that are normally distributed after
application of a power transformation, which provides the
statistical basis for the proposed calibration method. This
section also outlines the calibration procedure itseif, includ-
ing the calculation of standard errors for the predicted false-
match rate. Section 3 demonstrates the performance of the
method in the applied setting of matching the Census and
PES, revealing it to be quite accurate. Section 4 summarizes
a simulation experiment to gauge the performance of the
calibration procedure in a range of hypothetical settings and
this too supports the practical utility of the proposed cali-
bration approach. Section 5 concludes the article with a brief
discussion.

2. CALIBRATING FALSE-MATCH RATES IN RECORD
LINKAGE USING TRANSFORMED-NORMAL
MIXTURE MODELS

2.1 Strategy Based on Viewing Distribution of
Weights as Mixture

We assume that a univariate composite weight has been
calculated for each candidate pair in the record-linkage
problem at hand, so that the distribution of observed weights
is a mixture of the distribution of weights for true matches
and the distribution of weights for false matches. We also
assume the availability of at least one training sample in
which match status (i.e., whether a pair of records is a true
match or a false match) is known for all record pairs. In our
applications, training samples come from other geographical
locations previously studied. We implement and study the
following strategy for calibrating the false-match rate ina
current computer-matching problem:

1. Use the training sample to estimate “global” param-
eters, that is, the parameters of the transformations that nor-
malize the true- and false-match weight distributions and

the parameter that gives the ratio of variances between the
two components on the transformed scale. The term *“‘global”
is used to indicate that these parameters are estimated by
data from other sites and are assumed to be relatively con-
stant from site to site, as opposed to “site-specific” param-
eters, which are assumed to vary from site to site and are
estimated only by data from the current site.

2. Fix the values of the global parameters at the values
estimated from the training sample and fit a mixture of
transformed-normal distributions to the current site’s weight
data to obtain maximum likelihood estimates (MLE’s) and
associated standard errors of the component means, com-
ponent variances, and mixing proportion. We use the EM
algorithm (Dempster, Laird, and Rubin 1977) to obtain
MLE’s and the SEM algorithm (Meng and Rubin 1991} to
obtain asymptotic standard errors.

3. For each possible cutoff level for weights, obtain a point
estimate for the false-match rate based on the parameter
estimates from the model and obtain an estimate of the stan-
dard error of the false-match rate. In calculating standard
errors, we rely on a large-sample approximation that makes
use of the estimated covariance matrix obtained from the
SEM algorithm.

An appealing modification of this approach, which we
later refer to as our “full strategy,” reflects uncertainty in
global parameters through giving them prior distributions.
Then, rather than fixing the global parameters at their esti-

‘mates from the training sample, we can effectively integrate

over the uncertainty in the global parameters by modifying
Step 2 to be: )

2'. Draw values of the global parameters from their pos-
terior distribution given training data, fix global parameters
at their drawn values, and fit a mixture of transformed-
normal distributions to the current weight data to obtain
MLE’s (and standard errors) of site-specific parameters;

and adding:

4. Repeat Steps 2’ and 3 a few or several times, obtaining
false-match rate estimates and standard errors from each
repetition, and combine the separate estimates and standard
errors into a single point estimate and standard error that
reflect uncertainty in the global parameters using the multiple
imputation framework of Rubin (1987).

We now describe how to implement each of these steps.

2.2 Using a Training Sample to Estimate Global
Parameters

Box and Cox (1964) offered two different parameteriza-
tions for the power family of transformations: one that ig-
nores the scale of the observed data, and the other—which
we will use—that scales the transformations by a function
of the observed data so that the Jacobian is unity. We denote
the family of transformations by

wl —1 .
¢(W.«;7,w)=—_F ify #0,
= wlog(w;) ify #0, (1)
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where » is the geometric mean. of the observations
Wiy enos Wy

lBy “transformed-normal distribution,” we mean that
for some unknown values of ¥ and w, the transformed
observations Y(w;; v, w) (i = 1, ..., n) are normally dis-
tributed. Although the sample geometric mean is deter-
mined by the data, we will soon turn to a setting involving
a mixture of two components with different transforma-
tions to normality, in which even the sample geometric
means of the two components are unknown; consequently,
we treat  as an unknown parameter, the population geo-
metric mean.

When the transformations are not scaled by the geometric-
mean factor, as Box and Cox (1964, p. 217) noted, “the
general size and range of the transformed observations may
depend strongly on [y].” Of considerable interest in our
setting is that when transformations are scaled, not only are
the likelihoods for different values of y directly comparable,
at least asymptotically, but also, by implication, so are the
residual sums of squares on the transformed scales for dif-
ferent values of v. In other words, scaling the transformations
by w”~! has the effect asymptotically of unconfounding the
estimated variance on the transformed scale from the esti-
mated power parameter. This result is important in the con-
text of fitting mixtures of transformed-normal distributions
when putting constraints on component variances in the fit-
ting of the mixture model; by using scaled transformations,
we can constrain the variance ratio without reference to the
specific power transformation that has been applied to the
data.

Box and Cox (1964 ) also considered an unknown location
parameter in the transformation, which may be needed be-
cause power transformations are defined only for positive
random variables. Because the weights that arise from record-
linkage procedures are often allowed to be negative, this issue
is relevant in our application. Nevertheless, Belin (1991)
reported acceptable results using an ad hoc linear transfor-
mation of record-linkage weights to a range from 1 to 1,000.
Although this ad hoc shift and rescaling is assumed to be
present, we suppress the parameters of this transformation
in the notation.

In the next section we outline in detail a transformed-

normal mixture model for record-linkage weights. Fitting
this model requires separate estimates of ¥ and w for the
true-match and false-match distributions observed in the
training data, as well as an estimate of the ratio of variances
on the transformed scale. The v's can, as usual, be estimated
by performing a grid search of the likelihoods or of the re-
spective posterior densities. A modal estimate of the variance
ratio can be obtained as a by-product of the estimation of
the v’s. We also obtain approximate large-sample variances
by calculating for each parameter a second difference as nu-
merical approximation to the second derivative of the log-
likelihood in the neighborhood of the maximum (Belin
1991). In our work we have simply fixed the w’s at their
sample values, which appeared to be adequate based on the
overall success of the methodology on both real and simu-
lated data; were it necessary to obtain a better fit to the data,
this approach could be modified.

2.3 Fitting Transtormed Normai Mixtures with
Fixed Globail Parameters

2.3.1 Background on Fitting Normal Mixtures Without
Transformations. Suppose that f; and f; are densities that
depend on an unknown parameter ¢, and that the density
fis a mixture of f; and f;, i.e., f(X|9, A) = Mi(X|¢)
+ (1 = A) (X |¢) for some X between 0 and 1. Given an
iid sample (X}, X3, . . . , X,;) from f( X | ¢, A), the likelihood
of @ = (¢, A\) can then be written as

LB X,, ..., X)) =[] f(X:10)

i=1

=1 IMi(Xi19) + (1 = M) A(X; [ 9)].

i=1

Following the work of many authors (e.g., Aitkin and Rubin
1985; Dempster et al. 1977; Little and Rubin 1987; Orchard
and Woodbury 1972; Titterington et al. 1985), we formulate
the mixture model in terms of unobserved indicators of
component membership Z;, i =1, ..., n, where Z, = 1 if
X; comes from component 1 and Z; = 0 if X; comes from
component 2. The mixture model can then be expressed as
a hierarchical model,

X1(Z =1},0 = fi(-19)
X1{Z=0},8 = (- 19)
Z,16 = Bernoulli (A).

The “complete-data” likelihood, which assumes that the
“missing data” Z,, ..., Z, are observed, can be written as

L(¢9A|Xh---’Xn; Zlo-”,Zn)

=TT IMU(X TN Z (1 — M) f( X[ 9)] 5.

im]

Viewing the indicators for component membership as miss-
ing data motivates the use of the EM algorithm to obtain
MLE’s of (¢, A). The E step involves finding the expected
value of the Z;’s given the data and current parameter esti-
mates ¢ and A9, where ¢ indexes the current iteration.
This is computationally straightforward both because the iid
structure of the model implies that Z; is conditionally in-
dependent of the rest of the data given X; and because the
Z;’s are indicator variables, so the expectation of Z; is simply
the posterior probability that Z; equals 1. Using Bayes’s
theorem, the F step at the (¢ + 1)st iteration thus involves
calculating

Z{"" = E@Zi|X,, ..., X 6N )
- AOf(Xi169) @)
AO[X16D) + (1= 2D (X6 ®)

fori=1,...,n.

The M step involves solving for MLE’s of 4 in the
“complete-data” problem. In the case where f; corresponds
to the N(u,, ¢?) distribution and f; corresponds to the N(u2,
o3) distribution, so that ¢ = (u,, g, 3, 03), the M step at
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iteration (¢ + 1) involves calculating
e o 2 z,""x,
bosmzim
wen _ 2R (1=Z{"")X,
’ (1 =2z ")

(3)

and
280X
AR
g3 = 2l (L= Z1"0)X = D)
Tr(1-2Z%")
The updated value of A at the (¢ + 1)st iteration is given by

(t+1)
6%(19]) - — M )2

“4)

1 +
+1) — 2: Z(‘ 3]
A(‘ )_— i s

i=1

(&)

which holds no matter what the form of the component den-
sities may be. Instabilities can arise in maximum likelihood
estimation for normaily distributed components with distinct
variances, because the likelihood is unbounded at the
boundary of the parameter space where either o = 0. Unless
the starting values for EM are near a local maximum of the
likelihood, EM can drift toward the boundary where the re-
sulting fitted model suggests that one component consists of
any single observation (with zero variance) and that the other
component consists of the remaining observations (Aitkin
and Rubin 1985).

When a constraint is placed on the variances of the two
components, EM will typically converge to an MLE in the
interior of the parameter space. Accordingly, a common ap-
proach in this setting is to find a sensible constraint on the
variance ratio between the two components or to develop
an informative prior distribution for the variance ratio. When
the variance ratio V = ¢%/03 is assumed fixed, the E step
proceeds exactly as in (2) and the M step for wi*" and
u$*Y is given by (3); the M step for the scale parameters
with fixed Vis

l n

= [Z ZG - w2+ v -z
i=1

a3 = i .

7 (6)

X (X; — ué‘“’)Z],

2.3.2 Modifications to Normal Mixtures for Distinct
Transformations of the Two Components. We now describe
EM algorithms for obtaining MLE’s of parameters in mix-
tures of transformed-normal distributions, where there are
distinct transformations of each component. Throughout the
discussion, we will assume that there are exactly two com-
ponents; fitting mixtures of more than two components in-
volves straightforward extensions of the arguments that fol-
low (Aitkin and Rubin 1985).

We will also assume that the transformations are fixed;
that is, we assume that the power parameters (the two 7v,’s)
and the “‘geometric-mean” parameters (the two w;’s) are

known in advance and are not to be estimated from the data.
We can write the mode! for a mixture of transformed-normal
components as follows:

X;10, Z, = 1 ~ Transformed-N(u,, 01, v1, @),
X:18, Z; = 0 ~ Transformed- N(u3, 03, ¥2, @2),
Z;|60 ~ Bernoulli (),

where 8 = {u,, us, 03, 63, \, ¥y, 2, w1, @2 } and the expres-
sion “Transformed-N" with four arguments refers to the
transformed-normal distribution with the four arguments
being the location, scale, power parameter, and “‘geometric-
mean” parameter of the transformed-normal distribution.
The complete-data likelihood can be expressed as

LOVXy, ... X3 2y, ..., Zy)
1 X\ 1%
- o~ AKX - al) (_‘)
,l:Il [mVZ—r “

X [ 1 e—l/2[(KX1:1z.wz)—uz)1/¢ﬂ
(4] 2%

X\ 02
(w—) ] JiJa,
2

where J, and J, are the Jacobians of the scaled transfor-
mations X = . If w, and w, were not fixed a priori but
instead were the geometric means of the X; for the respective
components, then J, = J, = 1. In our situation, however,
because the Z,’s are missing, J, and J; are functions of { X; },
{Z;}, and 8, and are not generally equal to 1. Still, J; and
J, are close to | when the estimated geometric mean of the
sample X; in component k is close to w,. We choose to ignore
this minor issue; that is, although we model w, and w; as
known from prior considerations, we still assume J, = J,
= 1. To do otherwise would greatly complicate our estima-
tion procedure with, we expect, no real benefit; we do not
blindly believe such fine details of our model in any case,
and we would not expect our procedures to be improved by
the extra analytic work and computational complexity.

To keep the distinction clear between the parameters as-
sumed fixed in EM and the parameters being estimated in
EM, we partition the parameter into 8 = {0s,, 0 }, Where
oﬂx = {‘Yh Y2, W, W2, V} and 0& = {”’Iy (2D U%, X}, and
where the variance ratio ¥V = o3/ ¢3. Based on this formu-
lation, MLE's of 8 can be obtained from the following EM
algorithm:

E step. Fori=1,...,n, calculate Z """ as in (2), where
—

f(.X, la(,)) = ! e_llz[(“’h;"r”l)_“l)l/'ﬂ (&)" f

d a,V2x we

g=1412 (7)

M step. Calculate u{"" and u§"*" asin (3), \**V asin (5),
and o2¢*" and ¢3¢ as in (6), with X; replaced by ¥(X;;
vg, wy) for g = 1, 2; if the variance ratio ¥ were not fixed
but were to be estimated, then (4) would be used in place
of (6).

2.3.3 Transformed-Normal Mixture Model for Record-
Linkage Weights. Let the weights associated with record
pairs in a current data set be denoted by W;, i=1,...,n,
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where as before Z; = | implies membership in the false-
match component and Z; = 0 implies membership in the
true-match component. We assume that we have already
obtained, from a training sample, (a) values of the power
transformation parameters, denoted by v for the false-match
component and by vt for the true-match component, (b)
values of the “geometric mean” parameters in the transfor-
mations, denoted by wg for the false-match component and
by wr for the true-match component, and (c) a value for the
ratio of the variances between the false-match and true-match
components, denoted by V. Our model then becomes

VV,'o, {Zl = l} ~ Trans{ormed—N(“F’ 6%7 YF, “)F),
u/ltoy {Zl = 0} ~ Transrorma'N(“T’ 0'%', YT “’T)»
Z;16 ~ Bernoulli ()),

where 8 = {ug, ur, of, o}, N, vF, Y1, wr, wr}. We work
with 5, = {ve, y1, wp, 0, V= 0’12=/0"2r} and b = { pf, ur,
o#, A\}. The algorithm of Section 2.3.2, with “F” and “T”
substituted for “1”* and *“2,” describes the EM algorithm for
obtaining MLE’s of s from {W;;i = 1,..., n} with {Z;;
i=1,..., n} missing and global parameters vg, vyr, wr,
wt, and V fixed at specified values.

2.4 False-Match Rate Estimates and Standard
Errors with Fixed Global Parameters

2.4.1 Estimates of the False-Match Rate. Under the
transformed-normal mixture model formulation, the false-
match rate associated with a cutoff C can be expressed as a
function of the parameters 4 as

i - Q(WF(C; YE, WF) = MF)
OF

e(Cl8) =

OF

Substitution of MLE’s for the parameters in this expres-
sion provides a predicted false-match rate associated with
cutoff C.

Because there is a maximum possible weight associated
with perfect agreement in most record-linkage proce-
dures, one could view the weight distribution as truncated
above. According to this view, the contribution of the
tail above the upper truncation point (say, B), should be
discarded by substituting ®([¥,(B; v, wg) = n,]/ o) for
the 1s inside the bracketed expressions (g = F, T as ap-
propriate). Empirical investigation suggests that trun-
cation of the extreme upper tail makes very little differ-
ence in predictions. The results in Sections 3 and 4 reflect
false-match rate predictions without truncation of the
extreme upper tail.

2.4.2 Obtaining an Asymptotic Covariance Matrix for
Mixture-Model Parameters From SEM Algorithm. The
SEM algorithm (Meng and Rubin 1991) provides a method
for obtaining standard errors of parameters in models that
are fit using the EM algorithm. The technique uses estimates
of the fraction of missing information derived from successive
EM iterates to inflate the complete-data variance—-covariance
matrix to provide an appropriate observed-data variance-
covariance matrix. Details on the implementation of the
SEM algorithm in our mixture-model setting are deferred to
the Appendix.

Standard arguments lead to large-sample standard errors
for functions of parameters. For example, the false-match
rate ¢(C|0) can be expressed as a function of the four com-
ponents of Oy, = (ur, ur, 02, A) by substituting o¢/ V_l; for
orin (8). Then the squared standard error of the estimated
- false-match rate is given by SE2(¢) ~ d7Ad, where A is the
covariance matrix for 6, obtained by SEM and the vth com-
ponent of d is d, = ¢/ 0.

X[l - @(w)] +(1 - X)[l — Q(‘p'r(c’ Y1, W) — #‘r)] :

(8)

ot

. 2.4.3 Estimates of the Probability of False Match for a
Record Pair With a Given Weight. The transformed-nor-
mal mixture model also provides a framework for estimating
the probability of false match associated with various cutoff
weights. To be clear, we draw a distinction between the
“probability of false match™ and what we refer to as the
‘““neighborhood false-match rate” to avoid any confusion
caused by (1) our using a continuous mixture distribution
to approximate the discrete distribution of weights associated
with a finite number of record pairs, and (2) the fact that
there are only finitely many possible weights associated with
many record-linkage weighting schemes. The “neighborhood
false-match rate around W™ is the number of false matches
divided by the number of declared matches among pairs of
records with composite weights in a small neighborhood of
W with a specific model, the neighborhood false-match rate
is the “probability of false match™ implied by the relative
density of the true-match and false-match components
at W,

In terms of the mixture-model parameters, the false-match
rate among record pairs with weights between W and
W + h is given by

= Ape(W, h|0)
HW, h|0) = Noe(W, h18) + (1 — Npr(W, h18)°
where
p(W, hl6) = ¢(\0,(W+ h;:p wg) — “l)
4

_ Q(¢£( W; 7‘1 “"l) — “!) , g= F, T,
O

and 4 = {“Fs HT, d%') U'zl'r YFs YT, WF, @T, A}. Al'-ho“gh the
number of false matches is not a smooth function of the
number of declared matches, £(W, 4|8) is a smooth function
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of h. The probability of false match under the transformed-
normal mixture model is the limit as A — 0 of £&(W, h|6),
which we denote as n( W |6); we obtain

W 16)
A( ape(W, h|o))
; oh
= Im
w0 | L[ Ops(W, h10) BWEUAID)
)‘( oh )”1 ")( oh )
AF(W16)

TXE(WI0) + (1 - Ner(WIe)’ ®)

L7l
A e-uzw,(w;v,.u,)—u,/-,)’(LV)'
’
o, V2% Wy

g=FT.

where

bz (W10) =

FEstimates of neighborhood false-match rates are thus rou-
tinely obtained by substituting the fixed global parameter
values and MLE’s of uf, pt, 08, 01, and X into (9).

Because the neighborhood false-match rate captures the
trade-off between the number of false matches and the num-
ber of declared matches, the problem of setting cutoffs can
be cast in terms of the question “Approximately how many
declared matches are needed to make up for the cost of a
false match?” If subject matter experts who are using a record-
linkage procedure can arrive at an answer to this question,
then a procedure for setting cutoffs could be determined by
selecting a cutoff weight where the estimated neighborhood
false-match rate equals the appropriate ratio. Alternatively,
one could monitor changes in the neighborhood false-match
rate (instead of specifying a “tolerable” neighborhood false-
match rate in advance) and could set a cutoff weight at a
point just before the neighborhood false-match rate accel-
erates.

2.5 Reflecting Unceriainty in Global Parameters

When there is more than one source of training data, the
information available about both within-site and between-
site variability in global parameters can be incorporated into
the prior specification. For example, with two training sites,
we could combine the average within-site variability in a
global parameter with a 1 df estimate of between-site vari-
ability to represent prior uncertainty in the parameter. With
many sites with covariate descriptors, we could model the
multivariate regression of global parameters on covariates.

The procedure we used in the application to census/PES
data offers an illustration in the simple case with two training
sites available to calibrate a third site. For each of the training-
data sites and each of the components (true-match and false-
match), joint MLE's were found for (vg, 4y, 77), 8 =F, T,
using a simple grid-search over the power parameters. This
yielded two estimates of the power parameters, v¢ and vT,
and two estimates of the variance ratio ¥ between the false-
match and true-match components. Additionally, an esti-
mated variance—covariance matrix for these three parameters

was obtained by calculating second differences of the log-
likelihood at grid points near the maximum.

Values of each parameter for the mixture-model fitting
were drawn from separate truncated-normal distributions
with mean equal to the average of the estimates from the
two training sites and variance equal to the sum of the
squared differences between the individual site parameter
values and their mean (i.e., the estimated “between” vari-
ance), plus the average squared standard error from the two
prior fittings (i.e., the average “within™ variance). The trun-
cation ensured that the power parameter for the false-match
component was less than 1, that the power parameter for
the true-match component was greater than 1, and that the
variance ratio was also greater than 1. These constraints on
the power parameters were based on the view that because
there is a maximum possible weight corresponding to com-
plete agreement and a minimum possible weight corre-
sponding to complete disagreement, the true-match com-
ponent will have a longer left tail than right tail and the false-
match component will have a longer right tail than left tail.
The truncation for the variance ratio was based on an as-
sumption that false-match weights will exhibit more vari-
ability than true-match weights for these data on the trans-
formed scale as well as on the original scale.

For simplicity, the geometric-mean terms in the transfor-
mations (wr and wr ) were simply fixed at the geometric mean
of the component geometric means from the two previous
sites. If the methods had not worked as well as they did with
test and simulated data, then we would have also reflected
uncertainty in these parameters.

Due to the structure of our problem, in which the role of
the prior distribution is to represent observable variability
in global parameters from training data, we presume that
the functional form of the prior is not too important as long
as variability in global parameters is represented accurately.
That is, we anticipate that any one of a number of methods
that reflect uncertainty in the parameters estimated from
training data will yield interval estimates with approximately
the correct coverage properties, i.e., nominal (1 — a) X 100%
interval estimates will cover the true value of the estimand
approximately (1 — a) X 100% or more of the time. Alter-
native specifications for the prior distribution were described
by Belin (1991).

When we fit multiple mixture models to average over un-
certainty in the parameters estimated by prior data (i.e., when
we use the “full strategy” of Section 2.1), the multiple-
imputation framework of Rubin (1987) can be invoked to
combine estimates and standard errors from the separate
models to provide one inference. Suppose that we fit m mix-
ture models corresponding to m separate draws of the global
parameters from their priors and thereby obtain false-match
rate estimates ¢,, ¢3, . - - » & and variance estimates u;, 4,
..., Uy, where u; = SE3(¢;) is obtained by the method of
Section 2.4.2. Following Rubin (1987, p. 76), we can esti-
mate the false-match rate by

lm
“’;Zli

iml

and its squared standard error by
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;%( ‘)2+l§
mo12 & — ¢ u;.

SE(z) =

m+l[
i=1

Monte Carlo evaluations documented by Rubin ( 1987, secs.
4.6-4.8) illustrate that even a few imputations (m = 2, 3, or
5) are enough to produce very reasonable coverage properties
for interval estimates in many cases. The combination of
estimation procedures that condition on global parameters
with a multiple-imputation procedure to obtain inferences
that average over those global parameters is a powerful tech-
nique that can be applied quite generally.

3. PERFORMANCE OF CALIBRATION PROCEDURE
ON CENSUS COMPUTER-MATCHING DATA

3.1 Resuits From Test-Census Data

We use the test-census data described in Section 1.3 to
illustrate the performance of the proposed calibration pro-
cedure, where determinations by clerks are the best measures
available for judging true-match and false-match status. With
three separate sites available, we were able to apply our strat-
egy three times, with two sites serving as training data and
the mixture-model procedure applied to the data from the
third site.

We display results from each of the three tests in Figure
2. The dotted curve represents predicted false-match rates
obtained from the mixture-model procedure, with accom-
panying 95% intervals represented by the dashed curves. Also
plotted are the observed false-match rates, denoted by the.
“O” symbol, associated with each of several possible choices
of cutoff values between matches and nonmatches.

We call attention to several features of these plots. First,
it is clearly possible to match large proportions of the files
with little or no error. Second, the quality of candidate
matches becomes dramatically worse at some point where
the false-match rate accelerates. Finally, the calibration pro-
cedure performs very well in all three tests from the stand-
point of providing predictions that are close to the true values
and interval estimates that include the true values.

In Figure 3 we take a magnifying glass to the previous
displays to highlight the behavior of the calibration procedure
in the region of interest where the false-match rate accelerates.
That the predicted false-match rate curves bend upward close
to the points where the observed false-match rate curves rise
steeply is a particularly encouraging feature of the calibration
method.

For comparison with the logistic-regression approach, we
report in Table 2 (p. 704) the estimated false-match rates
across the various sites for records with weights in the interval
{5, 0], which in practice contains both true matches and
false matches. Two alternative logistic regression models—
one in which logit(n) is modeled as a linear function of
matching weight and the other in which logit(n) is modeled
as a quadratic function of matching weight, where 7 is the
probability of false match—were fitted to data from two sites
to predict false-match rates in the third site. A predictive
standard error to reflect binomial sampling variability, as
well as uncertainty in parameter estimation, was calculated
using
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Figure 2. Performance of Calibration Procedure on Test-Census Data:
(a) St. Louis, Using Columbia and Washington as Training Sample; (b)
Columbia, Using St. Louis and Washington as Training Sample; (c) Wash-
ington, Using St. Louis and Columbia as Training Sample. O = observed
false-match rate; - - - = predicted faise-match rate; --- = upper and lower
95% bounds.
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Figure 3. Performance of Calibration Procedure in Region of interest:
(a) St. Louis, Using Columbia and Washington as Training Sampie; (b)
Columbia, Using St. Louis and Washington as Training Sample; (c) Wash-
ington, Using St. Louis and Columbia as Training Sample. O = observed
false-match rate; - - - = predicted faise-match rate; --- = upper and lower
95% bounds.

—

SE = nL_ S w1 — 201 + wlvar(Byw,],

i=1

where n* is the number of record pairs with weights in the
target interval and #; is the predicted probability of false
match for candidate pair . For the linear logistic model, we
have w; = (1, w;)7, where w; is the weight for record pair i
and var(g) is the 2 X 2 covariance matrix of the regression
parameters, whereas for the quadratic logistic model we have
w; = (1, w;, w?)7, where var(f) is the 3 X 3 covariance
matrix of the regression parameters.

As can be seen from Table 2, the predicted false-match
rates from two alternative logistic regression models often
were not in agreement with the observed false-match rates;
in fact, they were often several standard errors apart. Because
weights typically depend on site-specific data, this finding
was not especially surprising. It is also noteworthy that the
estimate of the quadratic term g, in the quadratic models
was more than two standard errors from zero using the St.
Louis data (p = .029) but was near zero using the Columbia
and Washington data sets individually (p = .928 and p
= .719). Using the mixture-model calibration approach, in
two of the three sites the observed false-match rate is within
two standard errors of the predicted false-match rate, and in
the other site (St. Louis) the mixture-model approach is
conservative in that it overstates the false-match rate. We
regard this performance as superior to that of logistic regres-
sion—not surprising in light of our earlier discussion in Sec-
tion 1.3 of why we eschewed logistic regression in this setting.
Refining the mixture-model calibration approach through a
more sophisticated prior distribution for global parameters
(e.g., altering the prior specification so that urban sites are
exchangeable with one another but not with rural sites) may
result in even better performance by reflecting key distinc-
tions in distributional shapes across sites.

3.2 A limitation in the Extreme Tails

For small proportions of the records declared matched,
counter-intuitive false-match rate estimates arise, with false-
match rate estimates increasing as the proportion declared
matched goes to zero. Such effects are explained by the false-
match component being more variable than the true-match
component, so that in the extreme upper tail of the com-
ponent distributions the false-match component density is
greater than the true-match component density. To avoid
nonsensical results (since we know that the false-match rate
should go to zero as the weight approaches the maximum
possible weight), we find the points along the false-match-
rate curve and the upper interval-estimate curve, if any, where
the curves depart from a monotone decreasing pattern as
the proportion declared matched approaches zero. From the
point at which the monotone pattern stops, we linearly in-
terpolate false-match rate estimates between that point and
zero. We are not alarmed to find that the model does not fit
well in the far reaches of the upper tails of component dis-
tributions, and other smoothing procedures may be preferred
to the linear-interpolation procedure used here.
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Table 2. Performance of Mixture-Model Calibration Procedure on Test-census Matching Weights in the interval (-5, 0]

Predicted faise-match rate
Predicted false-match rate (SE) for cases with Predicted false-match rate
(SE) for cases with weights weights in [~5, 0] under (SE) for cases with
Observed false-match rate in {—5, 0] under linear quadratic logistic model; weights in [—5, 0] based
among cases with weights logistic model; that is logit(n) that is logit(n) = a + B on mixture-model
Site to be predicted in{-5, 0] =a+fWM) W) + 8, Wt)? calibration method
St. Louis 646 417 429 .852
(= 73/113) (.045) (.045) (-033)
Columbia .389 584 613 .524
(= 14/36) (.079) (-:079) (.083)
Washington 294 573 597 145
(=5/17) (.115) (.115) (.085)

4. SIMULATION EXPERIMENT TO INVESTIGATE
PROPERTIES OF CALIBRATION PROCEDURE

4.1 Description of Simulation Study

Encouraged by the success of our method with real data,
we conducted a large simulation experiment to enhance our
understanding of the calibration method and to study sta-
tistical properties of the procedure (e.g., bias in estimates of
the false-match rate, bias in estimates of the probability of
false match, coverage of nominal 95% interval estimates for
false-match rates, etc.) when the data generating mechanism
was known. The simulation procedure involved generating
data from two overlapping component distributions, with
potential “site-to-site” variability from one weight distri-
bution to another, to represent plausible weights, and rep-
licating the calibration procedure on these samples.

Beta distributions were used to represent the components
of the distribution of weights in the simulation experiment.
Simulated weights thus were generated from component dis-
tributions that generally would be skewed and that have a
functional form other than the transformed-normal distri-
bution used in our procedure. The choice of beta-distributed
components was convenient in that simple computational
routines were available (Press, Flannery, Teukolsky, and
Vetterling 1986) to generate beta-random deviates and to
evaluate tail probabilities of beta densities.

Table 3 lists factors and outcome variables that were in-
cluded in the experiment. Here we report only broad de-
scriptive summaries from the simulation study. Greater detail
on the design of the experiment and a discussion of the strat-
egy for relating simulation outcomes to experimental factors
have been provided by Belin (1991). The calibration pro-
cedure was replicated 6,000 times, with factors selected in a
way that favored treatments that were less costly in terms of
computer time (for details, again see Belin 1991).

4.2 Results

Figure 4 displays the average relative bias from the various
simulation replicates in a histogram. Due to the way that we
have defined relative bias (see Table 3), negative values cor-
respond to situations where the predicted false-match rate is
greater than the observed false-match rate; that is, negative
relative bias corresponds to conservative false-match rate es-
timates. [t is immediately apparent that the calibration pro-

cedure is on target in the vast majority of cases, with depar-
tures falling mostly on the “conservative” side, where the
procedure overstates false-match rates and only a few cases
where the procedure understates false-match rates.

The few cases in which the average relative bias was un-
usually large and negative were examined more closely, and
all of these had one or more cutoffs where the observed false-
match rate was zero and the expected false-match rate was
small. In such instances the absolute errors are small, but
relative errors can be very large. Clearly, however, errors
between a predicted false-match rate of .001 or .002 and
observed false-match rate of 0 presumably are not of great
concern in applications.

There was a single replicate that had a positive average
relative bias substantially larger than that of the other rep-
licates. Further investigation found that a rare event occurred
in that batch, with one of the eight highest-weighted records
being a false match, which produced a very high relative
error. In this replicate, where the predicted false-match rate
under the mixture model was .001, the observed false-match
rate was .125 and the expected (beta) faise-match rate was
.00357. Belin (1991) reported that other percentiles of the
distribution in this replicate were fairly well calibrated (e.g.,
predicted false-match rates of .005, .01, .10, .50, and .90
corresponded to expected beta false-match rates of .007, .011,
.130, .45S, and .896); thus it was apparently a rare event
rather than a breakdown in the calibration method that led
to the unusual observation.

With respect to the coverage of interval estimates, we focus
on simulation results when the SEM algorithm was applied
to calculate a distinct covariance matrix for each fitted mix-
ture model (n = 518). In the other simulation replicates,
shortcuts in standard error calculations were taken so as to
avoid computation; Belin (1991) reported that these shortcut
methods performed moderately worse in terms of coverage.
For nominal two-sided 95% intervals, the calculated intervals
covered observed false-match rates 88.58% of the time (SE
= 1.94%); for nominal one-sided 97.5% intervals, the cal-
culated intervals covered observed false-match rates 97.27%
of the time (SE = 1.45%). Thus the calibration method does
not achieve 95% coverage for two-sided interval estimates,
but when it errs it tends to err on the side of overstating false-
match rates, so that the one-sided interval estimates perform
well.
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Table 3. Description of Factors and Outcomes in Simulation Experiment

Experimental factors Comments
1. Number of sources of training data 1. Possible values = {3, 4, ..., 30}
2. Sizes of training samples 2-3. Possible values = {2, 000 2 001, . .., 9,999}
3. Size of current data base 4. Possible vaiues in [.01, .5]
4. Mixing proportion between false-match and true-match 5. Be(ay, bry, 8 ~ U(1.75, 2) be ~ U(3, 6).
components 6. Befar, by), ayr ~ U(8, 12) by ~ U(1.75, 2)
5. Shape of the false-match component 7-8. Separate draws from 5-6 for separate sites, or common shapes
6. Shape of true-match component across sites
7. Amount of site-to-site variability in mixing proportion 9. Perform SEM for each mixture model being fit, or a short-cut
8. Amount of site-to-site variability in shapes of component method to save time based on approximations
distributions 10. Possible values = (3, 5, 10}
9. Method for caiculating standard errrors
10. Number of mixture modeis fit
Outcomes measured in simulation Comments
1. Average relative bias in false-match rate estimates across 20 1. Prespecified false-match rates = {.001, .002, . .., . 015, .02, .025,
prespecified predicted false-match rates .03, .04, .05}
2. Average two-sided coverage rate = average of 20 indicators for Relative bias = [(observed false-match rate) — (predicted faise-

whether interval estimates of false-match rate covered observed
false-match rate

3. Average one-sided coverage rate = average of 20 indicators for
whether interval estimates of faise-match rate covered or
overstated false-match rate

4. Expected probability of false match for 10 predicted probabilities
of faise match

match rate)}/ V(expected false-match rate)

“'predicted faise-match rate”” = estimated faise-match rate
caiculated under transformed-normal mixture model
“‘observed false-match rate” = {# faise matches}/{# deciared
matches} at given cutoff
“‘expected false-match rate” = {tail area of Beta faise-match
component}/{sum of tall areas of Beta component distributions}
2-3. Same false-match rates as in 1.
4. Estimated probabiiities of false match = {.00125, .0025, .005, .01,
.02, .10, .25, .50, .75, .90}

Turning to the performance of the estimated probabilities
of false match (i.e., neighborhood false-match rates) obtained
from the fitted mixture models, Table 4 provides the mean,
standard deviation, minimum, and maximum of the true
underlying probabilities being estimated by the calibration
procedure. Although in specific sites the calibration proce-
dure substantially understates or overstates false-match rates,
the procedure appears to have good properties in the aggre-
gate.

5. DISCUSSION

Previous attempts at estimating false-match rates in record
linkage were either unreliable or too cumbersome for prac-
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Figure 4. Histogram of Average Relative Bias Across Simulation Repii-
cates.

tical use. Although our method involves fitting nonstandard
models, other researchers have used software that we devel-
oped to implement the technique in at least two other settings
(Ishwaran, Berry, Duan, and Kanouse 1991; Scheuren and
Winkler 1991, 1993). This software is available on request
from the first author.

Analyses by Belin (1991) have revealed that the deficien-
cies in the calibration procedure typically occurred where
the split in the proportion of records between the two com-
ponents was very extreme. For example, after excluding a
few dozen replicates where 99% or more of the records were
declared matched above the point where the procedure pre-
dicted a false-match rate of .005, there was no evidence that
sample sizes of the data bases being matched had an impact
on the accuracy of estimated probabilities of false match,
implying that breakdown of the calibration procedure ap-
pears to be a threshold phenomenon.

Table 4. Performance of Estimated Probabilities of Faise-Match
in Predicting True Underlying Probabilities

Mean of Std. deviation Minimumof  Maximum

Estimated actual of actual actual of actual

probabillty probabilities  probabilities  probabilities probabilities
.00125 .00045 .00075 .00000 0105
.0025 .0012 .00143 .00000 0170
.005 .0030 .00268 .00000 0295
.01 .0072 .00470 .00002 .059
02 0160 .00818 .00019 .1183
10 .0813 03231 00155 .4980
25 .2086 07385 .00549 .8094
50 .4555 11998 02812 .9551
75 7459 10768 .20013 .9988
90 .9244 05222 .56845 1.000
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Finally, on several occasions when we have discussed these
techniques and associated supporting evidence, we have been
questioned about the validity of using determinations of
clerks as a proxy for true-match or false-match status. Beyond
pointing to the results of the simulations, we note that (a)
clerical review is as close to truth as one is likely to get in
many applied contexts, and (b) possible inaccuracy in as-
signment of match status by clerks is no criticism of the
calibration procedure. This methodology provides a way to
calibrate false-match rates to whatever approach is used to
identify truth and falsehood in the training sample and ap-
pears to be a novel technique that is useful in applied con-
texts.

APPENDIX: IMPLEMENTATION OF THE
SEM ALGORITHM

The SEM algorithm is founded on the identity that the observed-
data observed information matrix L, for a k-dimensional parameter
6 can be expressed in terms of the conditional expectation of the
“complete-data” observed information matrix evaluated at the MLE
(Lom) a8

Liee = (I — DM)Loa,

where I is the k X k identity matrix and DM is the Jacobian of the
mapping defined by EM (i.e., of the mapping that updates parameter
values on the tth iteration to those on the (£ + 1)st iteration) eval-
uated at the MLE . Taking inverses of both sides of the previous
equation yields the identity

Vose = I3L = Voo + AV,

where Voo = Io, and AV = V_ .DM(I — DM)~}, the lat-
ter reflecting the increase in variance due to the missing infor-
mation.

The SEM procedure attempts to evaluate the DM matrix of par-
tial derivatives numerically. First, EM is run to convergence and
the MLE #§ is obtained. To compute partial derivatives, all but one
of the components of the parameter are fixed at their MLE’s, and
the remaining component is set to its value at the rth iteration, say
6'(i). Then, after taking a “forced EM step” by using this parameter
value as a start to a single iteration (E step and M step), the new
estimates, say 8" (i) forj = 1, . . ., k, yield the following estimates
of partial derivatives:

o = ?f_”ii)_‘_?l_
61" (i) - §,
It is necessary to perform k forced EM steps at every iteration of
SEM—aithough Meng and Rubin (1991) pointed out that once
convergence is reached for each component of the vector (-, 7;12,
.., I, it is no longer necessary to perform the forced EM step
for component | = i’

Because we regard the variance ratio as fixed when fitting our
mixture models, we are actually estimating four parameters in the
calibration mixture-model setting: the locations of the two com-
ponents, one unknown scale parameter, and a mixing parameter.
We can calculate the complete-data information matrix for (ug,
ur, o, A) as

a, 0 ay O
A= 0 ap a3y O
ay ay ayp 0

0 0 0 au

where
22z Vien(-2 2 Z
ay = :61% i o = 11:% ) a5 = ‘,lg f
_ZhZ TR (1-2)
T (=22
z'. Z,' W —
a3 = ay = i=1 (‘l Br)
oF
_ _V I (1 —Z)w —ur)
a3; = a3 = ) .

The missing information in our problem arises from the fact that
the Z;’s are unknown.

Because the covariance matrix is 4 X 4, every iteration of the
SEM algorithm takes roughly four times as long as an iteration of
EM. It also should be pointed out that the SEM algorithm relies
on precise calculation of MLE’s. Although it may only be necessary
to run EM for 10 or 20 iterations to obtain accuracy to two decimal
places in MLE’s, it might take 100 or more iterations to obtain
accuracy to, say, six decimal places. These aspects of the SEM al-
gorithm can make it computationally expensive.

The DM matrix containing the r;’s will not generally be sym-
metric, but of course the resulting covariance matrix should be
symmetric. If the resulting covariance matrix is not symmetric even
though several digits of numerical precision are obtained for the
MLE and the r;’s, this reflects an error in the computer code used
to implement the forced SEM steps or perhaps in the code for the
E step and M step themselves. The symmetry or lack thereof in the
resulting covariance matrix thus provides a diagnostic check on the
correctness of the program.

Experience with the SEM algorithm suggests that convergence
of the numerical approximations to the partial derivatives of the
mapping often occurs in the first few iterations and further reveals
that beyond a certain number of iterations, the approach can give
nonsensical results owing to limitations in numerical precision, just
as with any numerical differentiation procedure. Meng and Rubin
(1991) suggested specifying a convergence criterion for the r,’s and
ceasing to calculate these terms once the criterion is satisfied for all
Jj=1,..., k. An alternative (used in producing the results in Secs.
3 and 4) involves running the SEM algorithm for eight iterations,
estimating all partial derivatives of the mapping on each iteration,
assessing which two of the eight partial derivative estimates are
closest to one another, and taking the second of the two as our
estimate of the derivative. Experience with this approach suggests
that it yields acceptable results for practice in that the off-diagonal
elements of the resulting covariance matrix agree with one another
to a few decimal places.

[Received February 1993. Revised November 1993.]
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