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Abstract 

The X11-ARIMA method, or X12 method based on the latter procedure, with their various variants are the most 
commonly procedures used for estimating the seasonally adjusted data and the trend-cycle. Both of these procedures 
fail to provide estimates for the variances of the estimators that they produce. In this paper we propose a simple 
general method, based on linear approximation, for estimating the variances of the X11-ARIMA estimators. This 
method is based on Pfeffermann (1994) but is extended for any multi-stage run. The variances account for the 
sampling error of the survey estimators and for the variability of the trend, seasonal and irregular components 
defining the decomposition model. We demonstrate the application of this suggested method to Israeli time series. 
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Background 

Statistical Agencies throughout the world publish each month seasonally adjusted figures for a large number of 
series. In recent years, some statistical agencies started to publish trend-cycle estimates as a complement to 
seasonally adjusted data to help reveal better the movements in the series and the occurrence of turning points. The 
X11-ARIMA method, or X12 method based on the latter procedure, with their various variants are the most 
commonly procedures used for estimating the seasonally adjusted data and the trend-cycle. However, both of these 
procedures fail to provide estimates for the variances of the estimators that they produce. Thus, while national 
statistical institutes publish estimates for the variances of the unadjusted estimators, no estimates are usually 
published for the variances of the seasonally adjusted estimators and the trend-cycle estimators. 
Various approaches for obtaining variances for X11 or X12 estimators have been proposed. Wolter and Monsour 
(1981) suggested two approaches, one that accounts only for the effect of the sampling error and one that reflects 
also the uncertainty due to stochastic time series variation. Burridge and Wallis (1985) investigated the use of the 
steady-state Kalman filter for calculation of model based seasonal adjustment variances for approximating the X11 
filters. Pfeffermann (1994) developed an approach that recognizes the contributions of sampling error and irregular 
variation to the X11 seasonal adjustment variances. Bell and Kramer (1999) developed an approach to obtain 
variances for X11 adjustments accounting for sampling error and the errors from forecasting extension. 
Since May 1996, the Central Bureau of Statistics of Israel uses a specific sequential application of X11-ARIMA 
method in order to produce seasonally adjusted data and trend estimators: the modified Henderson procedure (see 
Dagum (1996)). This specific application can be described by the following two steps. In the first step, we apply 
X11-ARIMA with default options to the original data and estimate the combined linear effect of the trading day and 
moving Jewish festivals from the irregular estimators. Using these prior adjustment factors, we apply X11-ARIMA 
in order to obtain the best estimators of the seasonally adjusted data. The second step is carried out through another 
X11-ARIMA run, with different variants, on the modified adjusted series from step one and produces the final trend 
estimators. Thus, unlike one-step application of X11-ARIMA, the seasonal component is obtained from step one and 
the trend-cycle component is obtained from step two. The problem of estimating the variances of the estimators 
become more difficult in the specific sequential application described above. 



 

 

 

 

 

One-stage Estimation of the Variances of X11 Estimators by Pfeffermann (1994) 

Let { denote the observed series of the survey estimates. First, we assume the additive 
decomposition model 

 y t : t = 1,...,T } 

y t = Tt  + S t + e t  (1)

where Tt is the trend-cycle level, S t is the seasonal effect and et is the compound error term (usually e t = I t + et 

where I  is the irregular component and et is the survey error). t  

It is assumed that et : t = 1,...,T are stationary and E(et ) = 0 where the expectation is with respect to all random 
sources. 
Following Young (1968) and Wallis (1982), the seasonal component estimator Ŝ ˆ

t  and the trend-cycle estimator Tt ,
computed by application of X11 linear filters, can be represented by the linear approximation in the form 

T −t 

T̂ 
t ≈ ∑ wkt yt +k = wt ′y 

k=− (t −1) 
(2) 

T −t ~ ~Ŝ 
t ≈ ∑wkt y t+ k = wt ′y 

k =−(t −1) 
(3) 

W ~ 
for t=1,…,T. The matrices   and W can be obtained from respective filters of X11 (programs which calculate 
these matrices were developed in Statistics Canada and later in BLS). 
Under the assumption that the estimators of the seasonal component and the trend level are unbiased we can define 
the variances that we want to estimate as: 

ˆ
T −t 

var(T  
t ) ≈ var( ∑ wktet +  k ) ,  t=1,…,T

k =−( t−1) 
(4) 

 
T −t ~var(Ŝ 

t ) ≈ var( ∑wktet+ k ) , t=1,…,T 
k= −(t −1) 

(5) 

T −t 

var(T̂  
t − T̂  

t+ s ) ≈ var( ∑ (wkt − wk −s, t+ s )et+k ) , t=1,…,T-s 
k =−( t−1) 

(6) 

T −t ~var(Ŝ 
t − Ŝ 

t +s ) ≈ var( ∑(w ~ 
kt − wk−s ,t+ s )et+ k ) , t=1,…,T-s 

k=− (t −1) 

 
~ W and W are 

(7) 

Since the matrices known and non-random then the problem of estimating the variances above 
reduces to estimation of all covariances cov(e , e ).t k 

Let R = y − T − S 
t t t t 

ˆ ˆ ˆ define the linear filter approximation to the X11 residuals. Then R  t
ˆ can be expressed as 

T −t T −t T −t 

R̂ 
t ≈ ∑akt yt +k = ∑akt (Tt +k + S t +k ) + ∑ aktet+ k 

k =−( t−1) k=− (t −1) k=− (t −1) 
(8) 

~ a = 1− w − w if t=k and a = −w − w ~ if t ≠ k .kt kt kt kt kt kt where 
Pfeffermann (1994) uses the following two properties in order to estimate the variances of the linear combinations of 
the error terms et from the variances of R̂t .
1.  In the center of the series, postulate: 

T −t ∑a (Tt + S ) ≈ 0 .kt + k t +k 
k =−( t−1) 



2.  The X11 residual series R̂ 
t , t = 25,...,T − 24 , is stationary. 

Since R̂  are produced by X11, autocovariances of the series R̂ can easily be estimated, for example, as t t
T −25 

côv(R̂ 
t , R̂ 

t− k ) = 1 ∑ (R̂ 
t − R )(R̂ 

t −k − R )
T − 48 t =25+k 

and therefore the autocovariances of the series et can be obtained by solving the resulting equations for the 

unknown  do not
depend on t. In practice, these autocovariances damp to zero so that it can be assumed that, for k>C (cutoff value), 

cov(et , es )   . Note that since  is assumed to be stationary then  {et , t = 1,...,T } cov(et ,et+ k )

cov(e t ,e t+ k ) = 0 . This reduces the number of equations required for the estimation of the variance and the 
autocovariances of the error terms to C+1 (see Pfeffermann (1994)). 
Now, the variances defined by (4)-(7) can be estimated by: 

   
T −t T −t 

var(T̂  
t ) ≈ ∑ ∑wktwlt côv(et +k ,et+l ) , t=1,…,T 

k =−(t −1) l= −(t −1) 
(9) 

    
T −t T −t ~ ~var(Ŝ 

t ) ≈ ∑ ∑ wktwlt côv(et+ k ,et +l ) , t=1,…,T 
k =−( t−1) l =−( t−1) 

(10) 

 

T −t T −t 

var(T̂  
t − T̂  

t+ s ) ≈ ∑ ∑ (wkt − wk −s ,t+ s )(wlt − wl− s,t +s ) côv(et +k ,et +l ) , 
k =−(t −1) l =−(t −1) 

t=1,…T-s (11) 

 

T −t T −t ~ ~ ~var(Ŝ 
t − Ŝ 

t +s ) ≈ ∑ ∑ (wkt − wk −s ,t+ s )(w ~ 
lt − wl− s,t +s ) côv(et +k ,e

k =−( t−1) l =−( t−1) 

t=1,…T-s. 

t +l ) , 

(12) 

Now consider the multiplicative decomposition . It is known that the multiplicative model of X11 
gives similar results to the log-additive decomposition, i.e. applying the additive model to the new series 

~

y t = Tt S t e t 

ˆ ~ ~)~y  t = log( y  t .  The method considered above yields   andˆ   var(T ) and var(S ) . Define  T = exp(T )t t 

S = exp(St  t )
~  . Assume that have approximately normal distribution. Utilizing the relationship between 

~ ~T and St t 
 ˆ ˆ

the variance of the normal and the lognormal distributions we can write 

ˆ 2 ⎡ var(T̂ ) = T exp(2 var(T ~̂ )) − exp(var(T ~̂ )) t t t t⎢⎣  
(13)

~ ~ˆ 2 ⎡ var(Ŝ ) = S exp(2 var(Ŝ )) − exp(var(Ŝ )) t t t t⎢⎣  
(14)

(See Pfeffermann (1995) for more details). 

Multi-stage Estimation of the Variances of X11-ARIMA Estimators 

As described above, the Central Bureau of Statistics of Israel uses a specific sequential application of X11-ARIMA 
method in order to produce seasonally adjusted data and trend estimators. Thus, the estimates Ŝ and T̂ are the t t

results of sequential application with different options on each step. Assuming linear approximation is valid on each 
W W~ 

step, the variances of these estimators can also be estimated by (2) and (3) but with some other matrices  and  . 
These matrices can be obtained analytically if one knows the respective weight matrices on each step but, even in 



  

  

this case, calculations of these matrices can be not trivial. Here, we propose a simple general procedure in order to 
W ~ 

obtain  and W for any given series { y t }. 

1.  For any given series { t , t=1,…,T} y and some vector c = (c1 ,...,c m ) define T new series { y m
t ,  t=1,…,T,

m=1,…,T} by  y m m
t = y t if m ≠ t and y  

t = y t − c m if m = t m. Note that for the series { y t } all the 

observations except the m observation coincide with the observations of the original series { y t }. 

  

2. m Apply all sequence of X11-ARIMA steps independently to all series { y  t } as defined above in order to obtain

the estimates ˆ ), (T̂ 1(T , Ŝ , Ŝ 1 T T
 ),...,(T̂ , Ŝ 

 )t t t ttt   are obtained from the 

sequential application of X11-ARIMA to the original series 

  . Note that the estimates (T̂ , Ŝ 
t t )

 from the same application to series 

{ 1 yt } ,etc. 

{ y 1 1 t }, (T̂ , Ŝ 
t t )

3.  Define the required weights by: 

 
ˆ ˆ t +k 

c Tt − Ttw = , k=-(t-1),…,T-t kt c t+k 

(15)

 
ˆ ˆ t+ kS − S~ c t tw = , k=-(t-1),…,T-t . kt ct +k 

(16)

Under the assumption that (2) and (3) hold for the input series {y t }, one can easily verify that for any c m ,

m=1,…,T the weights wc and ~ c
kt wkt obtained by this procedure coincide with the required weights. 

With real data some or all steps of the estimation usually include some non-linear options such as identification and 
gradual replacement of outliers, identification and estimation of Arima models for augmenting the series by one year 
(or two years) of extrapolated values, pre-adjusting for trading day variation, etc. As a result, in general, equations 
(2) and (3) need not be satisfied with the same weights for any input series. On the other hand even under all the 
above non-linear options one can expect that for small enough oscillation of input series (2) and (3) are fulfilled with 

W ~ 
almost the same matrices  and W . 

Now we can write the properties essential for the estimation of the variances from Pfeffermann (1994) as follows: 

T −t 
cT̂ 

t ≈ ∑ wkt yt +k 
k=−( t−1) 

(17) 

T −t ~ cŜ 
t ≈ ∑wkt y t +k 

k =−(t −1) 
(18) 

T −t T −t 
c cR̂ 

t = yt − T̂ 
t − Ŝ 

t = ∑akt y t+ k ≈ ∑aktet +k 
k= −(t −1) k =−( t−1) 

(19) 

where  . The residual series { R̂ } is stationary in the t

center of the series. 
a c = 1− w c − w~  c 

kt kt kt if t = k and a c  −  − w 
 = wc ~

kt kt  c if t ≠ kkt 

In the one-stage additive case, the respective weights are known and thus it is very convenient to reduce the problem 
of variance estimation of multiplicative X11-ARIMA estimators to estimating their log-additive analogue. In our 
case, since we do not assume that the weights for log-additive analogue of the series to be known, a more simple and 
direct method can be considered. Following the arguments in the previous section, the multiplicative multi-stage 
X11-ARIMA estimates T̂ and Ŝ 

 may be by t t approximated 



 

T −t 
clog(T̂  

t ) ≈ ∑wkt log( yt +k ) 
k=− (t −1) 

(20) 

T −t ~ clog( Ŝ 
t ) ≈ ∑wkt log( y t+ k ) . 

k =−(t −1) 
(21) 

Note that the above procedure for estimating the weights is applied to the logarithms of the original series and the 
estimates. 

Testing the Estimated Matrices of Weights 

Let 
T −t 

dt (T ) = T̂ 
t − ∑wkt

c y t+ k 
k =−(t −1) 

and 
T −t ~ cdt (S ) = Ŝ 

t − ∑wkt y t +k 
k =−( t−1) 

define the error terms associated with the approximations (17) and (18). Consider 

1/ 2
⎛ 1 T 

2  
s  (T ) = ⎜ ∑d t (T) ÷ 

⎝ T t =1  
and 

1/ 2
⎛ 1 T 

2  
s  (S ) = ⎜ ∑dt (S )÷ 

⎝ T t=1  
as measures of exactness of these approximations respectively. These measures can easily be used in order to verify 
the properties (17) and (18). For example, if these measures are comparably small with respect to the variation in the 
original series given t, then the weights can be regarded as satisfactory. 
Let us now consider (19). Since et is not accessible, the exactness of the approximation can not be checked directly. 

On the other hand, for any sufficiently smooth function g t  (candidate for trend) it is assumed that 
T −t 

c∑akt g t +k ≈ 0 . 
k =−( t−1) 

Fit a regression model for the input series y t , on the data suitable (not very complicated) assuming that the 

residuals are independent.  Let e~ 
t denote to the residuals of the regression. Note that e ~ ≠ e but there exist a t t 

sufficiently smooth function g~t so that e ~ = e + g~  t t t . Let 
T −t T −t 

c c ~dt (e) = ∑akt yt +k − ∑aktet +k 
k =−( t−1) k =−(t −1) 

define the error term associated with approximation (19). Consider 

1/ 2
⎛ 1 T 

2  
s  (e) = ⎜ ∑dt (e) ÷ 

⎝ T t =1  
as a measure of exactness of the approximation (19). 



  

 

 

The above analysis can help to define the vector c and thus the required weights. Note that for any c m if the 
statistics suggested above have high values then linear approximation cannot be used for the analysis. 

Real Data Examples 

This section contains two real data examples that illustrate the application of the method. For each data set the 
following steps were carried out: 
1.  Consider sequentially five vectors of constants c=(c,…,c) where c=1.1, 1.01, 1.001, 1.0001, 1.00001. 
2.  For any given series { y t } and each vector c define auxiliary series { ifm yt }, m=1,…,t such that y mt = y t 

mm ≠ t and y m = y m / c. 
 3.  Apply all the sequence of X11-ARIMA steps independently to all series m yt }{ in order to obtain the multi-

stage X11-ARIMA estimators Tt ,  m mT , S and S for t=1,…,T and m=1,…,T. t t t 
ˆ ˆ ˆ ˆ

4. 
~ 

 For each vector c calculate matrices W and W  as 
c t +kw = (log(T̂ ) − log(T̂  )) / log(c )kt t t t+k 

       and 
~ c t +kw = (log(Ŝ ) − log(Ŝ )) / log(c ) .kt t t t+ k 

W ~ 
    Five pairs of matrices  and W corresponding to five vectors c are calculated. 

5.  Calculate the statistics d (T ) , d (S) and d (e)t t t  as defined above. Use the residuals of 3-d order polynomial 

regression of log( yt ) against t , t 2 and t 3 in order to compute d (e)t  . If all of the following conditions: 
(One) in the center of 

the series the weights are time invariant: 
   c c ~ c ~ wi ,k ≈ wi+ j ,k + j , wi ,k ≈ wi+ j ,k + j for 25<i,k and i+j, k+j<T-25; 

(Two) the s  -
statistics are comparably small with respect to variation of { y t \ t}: 

max(s  (T ),s  (S ),s  (e)) < std (e~ 
t \ t) 

 ~
are satisfied for a vector c then the corresponding weight matrices W and W are used and the final variances are 
calculated by the Pfeffermann (1994) method. If the above conditions are satisfied for more than one vector c, then 
the weights corresponding to the vector with lowest values of the statistics are used. 

6.  If one of the conditions of the previous step is not satisfied then the steps 1 - 5 are repeated with linear options 
of X11-ARIMA. Let 

T −t 

d (lin) (T ) = T̂ − w(lin)c y ,t t ∑ kt t +k 
k =−( t−1) 

T −t 
c

d (lin) t (S) = Ŝ 
t − ∑w ~(lin) kt y t+ k 

k= −(t −1) 

define the error terms where T̂ and Ŝ are trend and seasonal component estimates obtained in step 3. Consider the t t 

statistics: 

⎛ 1 T 
2 

1/ 2 

s  (lin)(T ) = ⎜ ∑d (lin) t (T ) ÷ 
⎝ T t=1  

and 



1/ 2
⎛ 1 T 

2  
s  (lin)(S ) = ⎜ ∑d (lin) t (S ) ÷ . 

⎝ T t =1  

  

 

If max(s  (lin)(T),s  (lin)(S )) < std(e~ 
t \ t) then the weights  W (lin) Wand  (lin)~ 

are used and the final 
variances are calculated by the Pfeffermann (1994) method. If not, then we conclude that for a given series the 
method described above cannot be used. 

Total Industrial Production Index. The data was processed through X11-ARIMA program for the time span from 
January 1990 to November 1999 (119 observations) using (i) multiplicative decomposition model; (ii) the best 
options for seasonal adjustment (including adjustments for trading day and moving festivals) and (iii) the modified 
Henderson trend estimation. 
In step 4, for c=0.0001 the following values of the statistics were obtained: s  (T ) = 0.0249 , s  (S) = 0.0306 , 
s  (e) = 0.0005. These values are small enough with respect to std (e~ 

t \ t) ≈ 0.05 so that the second condition 

in 5 is satisfied. This condition is not satisfied for c ≠ 0.0001. On the other hand, the first condition concerning 
the weights being time invariant is not satisfied for the weights when c=0.0001. In step 6, the following values were 
obtained: s  (lin)(T) = 0.0264 , s  (lin)(S) = 0.0351and they are almost equal for all vectors c. The values of 
the weights almost coincide in the center of the series with the respective weights obtained by the program 
developed in BLS. Clearly, the condition concerning the weights being time invariant is satisfied and therefore we 

~ W (lin)and W (lin)can apply the weights .  We should mention that we have compared the X11-ARIMA 
~ 

estimators with the estimators based on W and W , and the estimators based on W (lin) ~ 
and W (lin) . These 

comparisons are not demonstrated here for reasons of space. Figure 1 displays the plot of the trend-cycle estimators 
bounded by 2 times plus or minus the estimates of the standard deviation of the trend-cycle estimators for the series 
Total Industrial Production Index. Figure 2 shows the corresponding plot for the seasonal component. 

Total Tourist Arrivals by Air. The data was processed through X11-ARAMA program for the time span from 
January 1980 to December 1994 (168 observations) using (i) multiplicative decomposition model; (ii) the best 
options for seasonal adjustment (including adjustments for trading day and moving festivals) and (iii) the modified 
Henderson trend estimation. 
In step 5, none of the conditions were satisfied for any vector c. In step 6, the following values were obtained: 
s  (lin)(T) = 0.0146 , s  (lin)(S) = 0.0074 and these values are small enough with respect to 
std (e~ 

t \ t) ≈ 0.015 . Clearly, the condition concerning the weights being time invariant is satisfied and therefore 
~ 

we can apply the weights W (lin)and W (lin) . Figure 3 displays the plot of the trend-cycle estimators bounded 
with 2 times plus or minus the estimates of the standard deviation of the trend-cycle estimators for the series Total 
Tourist Arrivals by Air for the first 132 points. Figure 4 shows the corresponding plot for the seasonal component. 

Concluding Remarks 

This paper presented a simple general method, based on Pfeffermann (1994) but extended for any multi-stage run , 
for estimating the variances of the X11-ARIMA estimators. The variances estimated account for the sampling error 
and the irregular variation. 

Under the assumption that the linear approximation holds, we have presented an alternative procedure for estimating 
~ 

the weight matrices W and W . One notable feature of this procedure is that it is very simple and can be applied to 
any length of series processed through X11-ARIMA program (or X12). On the other hand, the use of very small c-
constants may cause, for example, calculation errors, therefore some checking is needed. 

As mentioned before, the X11-ARIMA algorithm contains several non-linear options. Even under some non-linear 
options, one can expect that the linear approximation hold with very similar weight matrices. On the other hand, 
some non-linear options, for example, the replacement of extreme values, can lead to terrible behavior of the 
weights but the final estimator can be very close to the respective one obtained through linear operations. We have 



suggested several statistics in order to determine when the linear weights can be used for the estimation and 
demonstrated this for real data examples. 



Figure 1. Total Industrial Production Index 
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Figure 2. Total Industrial Production Index     
Seasonal Component Estimator 
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Figure 3. Total Tourist Arrivals by Air    
Trend-cycle Estimator 
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Figure 4. Total Tourist Arrivals by Air 
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