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Abstract 
This paper focuses on cross-sectional inference based on data from a longitudinal survey which carries some additional 
components to achieve cross-sectional representativity. When inferring about the differences in the cross-sectional 
populations at two different points in time, problems arise with  variance estimation for the difference of the respective 
estimates, when the estimates are derived from such a survey. There are several factors contributing to these problems. 
Of these, the most important is the sample overlap at the two time points due to the underlying longitudinal survey 
design; this introduces a strong covariance component which must be included in the estimate of the variance of the 
difference. Also associated with the underlying longitudinal sample is the complexity introduced by longitudinally 
sampled individuals moving from one geographical part of the country to another, and thus being used to represent a 
different part of the cross-sectional population than that for which they were selected. The degree of complication that 
such factors introduce to the variance estimation problem is determined by the manner in which the longitudinal sample 
has been supplemented and adjusted in order to attain cross-sectional samples and by the available design information 
that may be used for cross-sectional inference. 

The variance estimation problem is addressed for Canada’s Survey of Labour and Income Dynamics (SLID) within a 
Taylor linearization approach as well as within the resampling framework with emphasis on the bootstrap method. For 
cross-sectional purposes, SLID combines two independent panels of longitudinal individuals sampled three years apart 
and also includes all members of the families and households with whom the originally selected longitudinal individuals 
live at a certain point in time.  A numerical illustration  based on SLID is included. 

Key words: bootstrap, combining panels, Taylor linearization, variance estimation 

1. Introduction 
The objective of most cross-sectional surveys is to produce unbiased (or nearly unbiased) estimates 
of levels such as totals or means at a given time point, and, in the case of repeated surveys, to 
produce estimates of the net change that occurred in the population between two time points. These 
estimates are often accompanied by estimated measures of precision. The primary objective of 
longitudinal surveys is the production of longitudinal data series that are appropriate for studying the 
gross change in a population between collection dates, and for research on causal relationships 
among variables. 
In order to improve the cost-effectiveness of surveys, statistical agencies very often derive cross-
sectional estimates from longitudinal survey data assuming that the survey design takes this 
possibility into account, and that estimation procedures are developed to satisfy cross-sectional as 
well as longitudinal requirements.  A good example of such ‘double’ utilization of a longitudinal 
survey is the Canadian Survey of Labour and Income Dynamics (SLID). It was originally designed 
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to provide longitudinal estimates and analyses. However, recognizing the cross-sectional capabilities 
of SLID, Statistics Canada  made it a principal survey for providing annual income data and used 
it to replace a classic cross-sectional Survey of Consumer Finances (SCF) as of 1998. 
In order to achieve cross-sectional representativity,  different approaches have been taken in different 
longitudinal surveys. SLID employs overlapping panels, each of six years duration and selected three 
years apart.  The cross-sectional sample for a particular year also includes cohabitants of the 
longitudinal individuals from the two panels, i.e., all individuals that are living with the originally 
selected longitudinal individuals at a certain point in time. In this way, only households composed 
entirely of immigrants who have arrived since the last panel selection (at most three years out of 
date) are not represented in the sample.  The elaborate cross-sectional weighting scheme that 
includes a non-response adjustment, an optimal combination of the two panels, adjustments for 
interprovincial migration and influential values, and post-stratification to a number of post-stratum 
totals completes the adjustments towards cross-sectional representativity of the population at a given 
time (Levesque and Franklin, 2000). 
Point estimation of parameters of the cross-sectional population based on data from longitudinal 
surveys in general, and from SLID in particular,  has been studied and documented (Lavallee 1995, 
Merkouris 1999, Levesque and Franklin 2000). However, variance estimation for these estimates 
hasn’t received as much attention. In particular, the problem of formal comparison of the estimates 
from two years, which requires variance estimation for the difference of the estimates, is seldom 
addressed. This paper focuses on that problem. It is an extension of previous work by Roberts and 
Kovacevic (1999) on the comparison of cross-sectional prevalence rates estimated from the Canadian 
National Population Health Survey. 
The paper is organized into five sections. Section 2 contains a description of the problem and details 
some of its causes.  Two approaches to variance estimation as a practical solution to the problem are 
given in Sections 3 and 4. Section 5 contains a numerical illustration and some concluding remarks. 

2. Problem Description 
Statistics Canada conducted the Survey of Consumer Finances (SCF) annually beginning in 1971 
to provide income data for families and individuals. Its output consisted of estimates of a variety of 
income distribution parameters at the national and provincial levels for a number of different 
subpopulations. Due to the near independence of the samples in consecutive years, inference about 
net change from year to year was straightforward and computable from the reported annual estimates 
of levels and their standard errors. Since the survey contents of the SCF and SLID are almost 
identical, Statistics Canada decided to replace the SCF by SLID starting in 1998. The main reason 
was a gain in efficiency. Also the extensive demographic, socio-economic and labour content of 
SLID would allow different perspectives on income distributions through a better fitting of a variety 
of models. 
The longitudinal underpinnings of SLID introduce complexities that cause difficulties when it comes 
to estimation of the variance of the difference of estimates in any two years (that are not more than 
6 years apart).  Some of these complexities are the following: 
i) The  cross-sectional SLID sample in any year contains all longitudinal individuals and their 

cohabitants who are in-scope for cross-sectional purposes. Thus, the cross-sectional samples  are 
not  independent at the two time points and  have a large degree of overlap. Longitudinal 



 
    

 
 

 
 

  

 

 

   
 

individuals  are  in-scope  cross-sectionally  for a given year if they are still members of Canada’s 
ten provinces as of December 31 of the reference year, excluding  those  who  live  in  institutions, 
military barracks or on Indian reserves . 

ii) The cohabitants of the originally selected longitudinal individuals generally stay with these 
individuals for more than a year and thus  increase the overlap of the samples. 

iii) At  each of the time points after 1995, the cross-sectional samples contain two longitudinal panels 
that  were  selected three years apart. Each panel represents the entire survey population at the 
time  of its selection.  These overlapping panels are optimally combined to represent the cross-
sectional  population in a reference year. The optimality criterion was based on minimizing the 
variance of an estimated total and resulted in ‘panel allocation  factors’  calculated  at  the level  of 
province for each reference year. These factors were then applied to individual weights. The 
overlapping  panels can be thought of as a special case of a dual frame survey (Merkouris, 1999). 

iv) For cross-sectional purposes the longitudinal individuals who changed province of residence 
after  being  selected  into the longitudinal sample are considered to be part of the sample for the 
province in which they reside at the time of the cross-section.  However, for variance estimation 
these individuals must be considered to be part of their original province, stratum and cluster. 

v) The  cross-sectional samples are affected by longitudinal non-response because of the way in 
which longitudinal individuals are included in the cross-sectional samples. 

Many of these complexities are accounted for through SLID’s elaborate weighting scheme so that 
point estimation of cross-sectional parameters and their net change over time is consistent. Bootstrap 
weights specifically created for each cross-sectional sample  also account for most of these 
complexities. However, estimation of the variance for the difference of two estimates obtained in 
different years is not straightforward due to the sample overlap. 
For purposes of illustration, suppose we are interested in estimating the variance of the difference 
of estimates for reference years, 1997 and 1998. Here we illustrate some difficulties in determination 
of SLID individuals who are in the cross-sectional samples in these two years through graphical 
presentation of the composition of the cross-sectional and  longitudinal SLID samples for 1997 and 
1998. There are 78,532 individuals with positive 1997 cross-sectional weights, and 79,611 with 
positive 1998 cross-sectional weights. An individual with a  positive cross-sectional weight in a 
particular year is cross-sectionally in scope and belongs to a responding household in that year. The 
total number of cross-sectional individuals common to both years is 75,351, of which 66,847 are 
longitudinal individuals. The remaining 8,504 common individuals are the cohabitants who were 
with longitudinal individuals in both years. The common individuals represent  96% of the cross-
sectional sample in 1997 and 95% in 1998. There were 101 (23+78) longitudinal individuals for 
1997 that were not in scope cross-sectionally in 1997; 78 of them remained longitudinal in 1998 and 
also became cross-sectionally valid in 1998, while the remaining 23 individuals are probably 
longitudinal non-respondents in 1998. Another 225 individuals, who were in the longitudinal 
samples in both years and in the 1997 cross-sectional sample, were lost for cross-sectional estimation 
in 1998, most likely by moving out of scope (due to moving into institutions or out of the ten 
provinces, or dying).  It is also interesting to observe that 530 (142+388) individuals had positive 
longitudinal weights in 1998 but had zero longitudinal and cross-sectional weights in 1997, most 
likely due to wave nonresponse in 1997. Only 388 of these were cross-sectionally in scope in 1998. 
Most of cross-sectional individuals in SLID stayed in the province where they were originally 
selected: in 1997 only 3.2% lived in a different province and in 1998 only 3.9%. 
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In  order to address the problem of variance 
estimation for the difference of cross-sectional 
estimates obtained in 1997 and 1998, we now 
introduce some notation.  Let st be the 
individuals on the cross-sectional  SLID  sample 
at time  t, where t=1 for 1997 and t=2 for 1998. 
Suppose that we are interested in the mean 
after-tax  income within a domain of the 
population at  each time point.  The mean 
income  within the domain at time  t may be 
estimated by  θ̂ ˆ 

t / X̂ 
t �Y t , with Ŷ 

t �Ds w
X̂ ti yti  and 
�Dt s wti xti ,  where w t onal 

weight ot
ti  is the cross-secti

f  the  ith individual in st  (who will be 
called called the  itth individual); yti � income if 
the  itth individual is in the domain, and yti �0 
otherwise; and xti �1 if the itth individual is in 
the domain, and x �0 otherwise. Then
∆̂� θ̂ � θ̂

ti 

1 2  estimates the net change in the mean 

income  between  the  two  time periods.  The main problem addressed in this paper is the estimation 
of the variance of ∆̂ . In the next two sections we present two possible methods, Taylor linearization 
and a pseudo-coordinated bootstrap method. 

3.  Variance Estimation:  Taylor Linearization Approach 

3.1 Linearization of ∆̂ 

One  possible  approach to obtaining a design-based variance estimate of ∆̂  is Taylor linearization. 
In  developing this approach, for ease of presentation, adjustments to the final weights will be 
ignored.   Since ∆̂  is a non-linear function of the data from both samples st , t=1,2, the first step is 
to linearize ∆̂  by  expansion into a Taylor series around the true net change in means.  Assuming that 
the remainder term is negligible for a sufficiently large  sample,  the following  approximation  holds: 

ˆ 1
∆ K

1 ∆ � (Ŷ ) � ˆ  ˆ  ˆ
1 �Y1 θ1 (X1 �X1) � (Y2 �Y2) � θ2 (X2 �X2) , 

X1 X2 

(1)

where θt �Yt /Xt , t=1,2. This implies that 

Var (∆̂) K 1 1 Var ˆ   w1i (y1i �θ1 x1i) � ˆ w2i (y )
X

� . 2i θ2 x2i
1 s1 X2 s2 

(2)

10 
Sample  st  can be expressed as st� { stk where stk represents those observations in st  forming the 

k�1 

cross-sectional sample for province k at time t. It then follows that  

Var (∆̂) 10 
K Var ˆk�1 Ẑ

10
� ˆ

1 (s1k) ˆk�1 Z2(s2k) , (3) 



    

 

where Ẑ 
t (stk ) � ˆ wti Zti , and Zti � X�1

t ( yti � θ t xti ) , t=1,2. 
stk 

 

If  we ignore, for the moment, longitudinal individuals who are residing in a different province than 
the one for which they were selected, the provincial samples stk are independent due to design of 
SLID, where there was independent sample selection in different provinces  .   This  then  implies  that 

10Var (∆̂) K ˆk�1 Var Ẑ1(s1k)� Ẑ2(s2k) . (4)  

The kth provincial component of this variance, Var Ẑ1(s1k)� Ẑ2(s2k) , can be expanded further as 

Var Ẑ1(s1k)� Ẑ2(s2k) �Var Ẑ1(s1k) � Var Ẑ2(s2k) �2Cov Ẑ1(s1k), Ẑ2(s2k . (5) 

The problem of estimating the variance of   ∆̂  then reduces to estimating the terms on the right hand 
side of (5). 

3.2 Notation and Assumptions Required for Variance Estimation 

The following detailed notation is required for explanation of the variance estimation: 
 H  tk �# of strata in the cross-sectional sample in province k at time  t,
 n  tkh �# of sampled clusters in the hth stratum in province k at time  t,
 ntkhc � # of sampled individuals in cth cluster of hth stratum  in province  k at time  t,
 wtkhci � weight on the ith individual in cth cluster of hth stratum in province k at time t, and
z X̂ �1 ˆ

tkhci � t (ytkhci �θt xtkhci) . 
It should be noted that the strata and weights are those in use after the combining of the two panels. 
See Levesque and Franklin (2000) and Merkouris (1999) for details. 
The  following  standard  assumptions for  variance  estimation for data from a survey with a stratified 
multistage design are considered to hold for each of the cross-sectional SLID samples: 
i) The design of each cross-sectional sample is approximately stratified with selection of psu’s with 

replacement. 
ii) Each psu is selected at most once  (because  of small sampling fractions). 

n
n ˆ

tkhc 
tkh i�1 wtkhci z � tkhci ntkh ztkhc iii) (i.e.,  ntkh × weighted cluster total) is approximately  unbiased as 

an estimator for the stratum total Ztkh  for any  z variable and for any value of t, k, h, and c.
Under these assumptions, there is a straightforward approach to estimate a stratum total and the 
variance of stratum total at each time point.  As well, if the same psu’s are represented in a stratum 
at both time points, there is a straightforward approach to estimating a covariance between stratum 
totals at the two time points. In particular,  under these assumptions: 

where  
iii) If, at times t=1 and t=2, the same psu’s are observed in a stratum sample, (which implies that  

i) An (approximately) unbiased estimate for Ztkh is Ztkh � ˆc�
tkh 

1 ztkhc . ˆ n

ii) An (approximately) unbiased estimate of the variance of Ẑ 
tkh is 

¯varˆ [Ẑ 
tkh]�ntkh / (ntkh �1)ˆ 

n
c�

tkh 
1 (ztkhc � Ztkh)

2 ,
¯ Ztkh � Ẑ 

tkh /ntkh .



 n1kh � n2kh ), an (approximately) unbiased estimate of the covariance of Ẑ1kh and Ẑ2kh  is given 
by

n1kh ¯ ¯covˆ [Ẑ1kh , Ẑ2kh]�n1kh / (n1kh �1)ˆc�1 (z1khc � Z1kh) (z2khc � Z2kh) . 

 

     

  
   

   

    
  

 

3.3 Application 

These results can then be readily applied to the cross-sectional SLID samples for 1997 and 1998. By 
the design of SLID, cross-sectional samples for those two years should consist of the same strata and 
psu’s within each province at both time points, even though there are several reasons to expect that 
the individuals within a particular psu would not be exactly the same at the two time points (such 
as nonresponse of a longitudinal individual to the income questions at one of the time points or a 
longitudinal person entering an institution between the two time points). The following variance and 
covariance estimates would follow in a straightforward manner from the results above: 

Htk ntkh varˆ Ẑ 
t(stk) �ˆh�1 ntkh / (ntkh �1)ˆc�1 (ztkhc Ztkh)

2 
� ¯ , and 

H1k n1kh ¯ ¯ˆcov Ẑ1(stk) , Ẑ2(s2k) �ˆh�1 n1kh / (n1kh �1)ˆc�1 (z1khc � Z1kh) (z2khc � Z2kh) , 

while  z1khc  and z2khc  would consist of weighted sums over different individuals if the khc-th psu
contained different individuals at the two time points. 

3.4 Accounting for Movers Between Provinces 

In  the  development above, it was assumed that individuals continue to reside in the province for 
which they  were  selected  into the sample.  Modifications  need to be made to the Taylor linearization 
variance  approach when there are movers, that is, people who, for either time point,  are cross-
sectionally representing a different province than the one for which they were drawn into the  sample. 
This  can  be done by first decomposing s { {tk into s {tk �st1k st2k ... st10k where stjk are those people 
in stk  who were selected into the sample in province  j. Then, Var(∆̂)  can be expanded in the stjk , and 
terms be grouped according to the province of selection.  Making use of the fact that independent 
sampling was done by province, formulae similar to those in 3.3 above may be developed readily 
for calculating the required variances and covariances among  the  stjk  domains.   While  theoretically 
straightforward, implementation could be tedious if many of the stjk, j£k  are non-empty. 

4. Variance Estimation: Bootstrap Methods 
Replication methods for variance estimation are becoming increasingly popular for analysis of data 
from complex surveys.  Methods suitable for data from stratified multistage survey designs are now 
available, and their properties have been investigated both theoretically and empirically.  One 
attractive feature of these methods is that the relatively difficult task of deriving replicate survey 
weights only needs to be done once by the methodologists most familiar with the survey design and 
weighting.  In particular, complexities due to multistage sampling, multiple frame estimation, 
interprovincial migration of longitudinal panel members, adjustments to the weights to account for 
non-response, etc., can be incorporated into these replicate weights.  Use of the replicate weights by 
any analyst to derive valid design based variance estimates is then relatively simple, and does not 
require any direct knowledge of the complex survey design or weighting procedures. 



 
In this section we first briefly describe a bootstrap method, called the coordinated bootstrap, which 
is suitable for overlapping samples on two occasions.  We then describe an approximation to the 
coordinated bootstrap, called the pseudo-coordinated bootstrap, which may be used when 
coordinated bootstrap weights are unavailable. 

4.1 Coordinated Bootstrap Method 

In  this  subsection  we  describe  a  coordinated bootstrap method for estimation of the variance of the 
difference of two cross-sectional estimates.  The bootstrap resampling method for iid samples has 
been extensively studied  (see Efron, 1982). It was extended by Rao and Wu (1988) to stratified 
multistage designs and again by Rao, Wu and Yue (1992) to include nonsmooth statistics.  Yung 
(1997) contains a concise description of the procedure.  To summarize, for each bootstrap replicate 
a  sample  of PSUs is drawn with replacement from the set of sampled PSUs in each stratum. 
Sampling  weights of each sample  unit  are then adjusted to reflect this resampling; this is called the 
bootstrap adjustment to the sampling weights.  Any further adjustments to the sampling weights, 
such as  nonresponse adjustments or calibration of the weights, should also be applied to each 
bootstrap  replicate  to  produce  what we will call a set of bootstrap weights.  The bootstrap variance 
estimator for a weighted estimator θ̂  is then calculated as  

θ̂
� 

θ̂
� vB(θ̂) � 1 2 

(b) � (])B ˆb (6)

where θ̂�  is the estimate of θ  based on the  bth set of bootstrap weights, and θ̂� 
(b) (.)  is the mean  of  θ̂� 

(b)
over the B bootstrap replicates. Alternatively, θ̂  is often substituted for θ̂� 

(.) in (6).
The same method may be used for multistage sampling on two occasions with overlapping samples. 
The following procedure is used for each bootstrap replicate.  For sample PSUs  that  are  common  to 
the two occasions by design, the bootstrap samples for the two occasions must be “coordinated”; i.e., 
the same bootstrap samples of PSUs should be used for each occasion.  For the sample PSUs that 
are  chosen independently on either occasion, bootstrap samples of PSUs should also be chosen 
independently.   Bootstrap adjustments to the sampling weights would be applied as usual, and any 
further  adjustments  to  the weights would be applied independently in each sample.  Now, if  θ̂ � ∆̂
is  the difference between two cross-sectional estimates, one from each of the samples, then its 
variance can be estimated consistently from (6) using these coordinated sets of bootstrap weights. 

4.2 Pseudo-Coordinated Bootstrap Method 

Although the coordinated bootstrap offers a neat solution to the problem of variance estimation for 
the difference of two cross-sectional estimates, it cannot be applied when the bootstrap samples were 
drawn independently for each of the two samples, as is often the case for cross-sectional files 
produced from longitudinal surveys.  Recalling that  Var ( ∆̂ ) � Var ( θ̂ )�Var ( θ̂ )�2Cov ( θ̂ , θ̂1 2 1 2 ) , 
we propose here a method to produce approximate coordinated bootstrap weights which may be used 
for estimation of the covariance of the two cross-sectional estimates.  Because of the approximations 
and assumptions involved it is recommended that the original bootstrap weights,  wti(b) , be used for 
estimation of the variances of the cross-sectional estimates. 
In the coordinated bootstrap approach, for individuals in PSUs that are  common  to  the  two  samples 
the bootstrap adjustment of the basic sampling weights would be the same for both samples.  Thus 



 
  

  

 

for an individual in the overlap of the two samples, the ratio of the bth coordinated bootstrap weight 
to the final estimation weight should be approximately the same for both samples, with any 
differences in these ratios due only to differences in the other adjustments to the weights.  If we also 
assume that individuals not in the sample overlap were sampled independently of the overlap, and 
independently on each occasion, then their contribution to the covariance should be zero.  Under 
these conditions the procedure described below should yield reasonable results.  For SLID, cross-
sectional individuals who are not in the overlap are not independent of the overlap; however, the 
number of such individuals is relatively small. 

 From the bth set of bootstrap weights associated with s1 we define a set of pseudo-coordinated 
bootstrap (PCB) replicate weights as follows: 

w1,1i(b) � 
w1i(b) iMs1 , iMs2 
w1i iMs1 , i¬Ms2 
0 i¬Ms1 

w1,2i(b) � 
w2iw1i(b) /w1i 
w2i 

iMs1 , iMs2 
i¬Ms1 , iMs2 

0 i¬Ms2 

(7) 

We can similarly define PCB weights, w2,1i(b) and w2,2i(b) , corresponding  to  the  bth set of bootstrap
weights associated with  s2 . If PSU identifiers were available, then we could replace the PCB 
adjustment factor w1i(b) /w1i  in (7) by  D DjMPSU(i)w1j(b) / jMPSU(i)w1j , which would be more stable. If we 
have  B replicates in each set of bootstrap weights then  it  may  be  reasonable  to  construct  B/2 sets of 
PCB weights based on s1 bootstraps and B/2  based  on  s2 ;  however, we may have as many as B sets 
based on each sample.  If the original bootstrap weights are benchmarked to some population  totals, 
then  we  may wish to similarly benchmark the PCB weights, assuming that the benchmarking 
procedure is  known.  The covariance of two cross-sectional estimates, θ̂1  and θ̂2 , would then be 
estimated by  

θ̂
� 

θ̂
� 

θ̂
� 

θ̂
� covB(θ̂1 , θ̂2 ) � 1 

ˆb 1(b) � 1(]) 2(b) � 2(])BPC 

(8)

where the summation is over the B  sets of PCB weights,  and  θ̂� 
PC 1(b)  and  θ̂� 

1(b)  are  calculated  using, 
respectively, either w1,1(b) and w1,2(b) from (7), or w2,1(b) and w2,2(b) .

4.2.1 Pseudo-Coordinated Bootstrap for Non-independent Non-overlap 

If the assumption of independence of the sampling of individuals not in the overlap is not reasonable, 
then the above procedure would tend to underestimate the magnitude of the covariance.  However, 
the procedure could be modified in various ways. 
The first approach to accounting for dependence of the non-overlapping  part  of  the  sample  is  based 
on identifying PSUs within the samples.  For s2  individuals whose PSU intersects the common 
sample, PCB weights based on s1  bootstrap weights could be constructed by multiplying w2i by
Dj w D

MPSU(i) 1j(b) / jMPSU(i)w1j .  For PSUs that do not intersect the common sample at all, it might be 
reasonable to assume that such PSUs from s1  are sampled independently of those in s2 . 
Alternatively,  if  such PSUs from s1  can be linked to corresponding PSUs from s2 , then a similar 
type of adjustment can be used to construct PCB weights. 
For a second, somewhat simpler approach, if θ  is a smooth function of population totals,  then  some 



  

 

    

  

  

 
   

of  the extra covariance due to the non-overlapping parts of the samples could be captured using a 
linear  approximation.  Suppose for example that θ � θ(X ) where X is the population total of a 
variable  x. If we write X̂ o  k X̂ no

� X̂ 
k � k , where the superscript “o” denotes the overlap part of the 

sample, and the superscript “no” denotes the non-overlap part, then we may  write an approximation: 

jθ1 jθ2 X̂ no X̂ noCov( θ̂1, θ̂2 ) � Cov( X̂1
o, X̂ o )�  Cov( X̂ no, X̂ o )�  Cov( X̂1

o, )�  Cov( X̂ no, ) .2 1 2 2 1 2
jX1 jX2 

If we now define PCB weights based on s1 bootstraps as 

w1,1i(b) � 
w1i(b) iMs1 
0 i¬Ms1 

w1,2i(b) � 
w2iw1i(b) /w1i iMs1 , iMs2 
w2i i¬Ms1 , iMs2 
0 i¬Ms2 

then  these weights could be used to estimate Cov( X̂ o
1 , X̂ o )  and Cov( X̂ no, X̂ o

2 1 2 ) . Similarly defined 
PCB weights based on s X X̂ no

2 bootstraps could be used to estimate Cov( ˆ o, X̂ o ) and Cov( X̂ o,
ˆ ˆ 1 2 1 2 ) . 

However,  estimation of the component Cov(X no
1 ,X no

2 )  requires PCB weights that simultaneously 
adjust the weights for both of the non-overlapping parts of the samples. 

5. Illustration 
The proposed methods are applied to SLID data where the average after-tax incomes for individuals 
aged 16 and over with income for 1997 and 1998 are compared. There were 60,901 and 62,272 such 
individuals in the 1997 and 1998 cross-sectional samples, respectively. The averages, their difference 
and the corresponding standard errors obtained by the proposed methods are given in the Table 
below. 

Estimated averages of  income-after-tax, their
 difference and standard errors 

Estimates 

Standard Errors 

Taylor 
Bootstrap 

Coordinated Pseudo-
Coordinated 

θ̂97 20285 137 132 

θ̂98 21125 142 137 

ˆ ˆ-θ97 θ98 -840 79 82 81 

For application of the Taylor method all 
longitudinal individuals, and so their 
cohabitants, were associated with their 
province of residence at their time of 
selection. Also, it was assumed that the 
weights of all individuals from a stratum 
were multiplied by the same panel 
allocation factor (PAF).  In such a case the 
stratum total can be estimated unbiasedly 
and the basic assumptions for variance 
estimation by Taylor linearization method 
as stated in Section 3 are satisfied. 

This, however, may not be exactly true since the weights of individuals that joined the population 
after the selection of the first panel are not modified by the PAF, meaning that within a Panel 2 
stratum some individual weights may be multiplied and some may not. However, the number of such 
individuals represents less then 0.6% of the Panel 2 size. 
The bootstrap calculations are based on 500 replicates.  The bootstrap weights that were produced 
for SLID for the 1997 and 1998 cross-sectional samples are already coordinated. The PCB weights 



  

 

  

 

for this empircal comparison are defined as in (7), using an individual  level  PCB adjustment  factor, 
with no subsequent benchmarking, and based on the assumption of independence of individuals  not 
in the sample overlap.  The first 250 sets PCB weights were based on the first 250 sets  of  bootstrap 
weights for s1 , while the second 250 were based on the second 250 sets of bootstrap weights for  s2 . 

The estimate of Cov( θ̂ ˆ
97 ,θ98 )  based on the Taylor linearization method was 16346, while that based 

on coordinated bootstrap was 14806, and that based on the pseudo-coordinated bootstrap was 14838. 
The  preferred method for variance estimation in this set-up is the coordinated bootstrap, as it can 
take explicit account of all of the complexities of the survey design and estimation. The pseudo-
coordinated bootstrap performed well in our example. Some additional empirical investigation is 
needed  to  assess  its properties. Standard errors estimated by Taylor method are very close to those 
obtained by the bootstrap methods despite the approximations  involved, including the ingnoring of 
weight adjustments. 
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