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Abstract: Microaggregation is a technique used for the protection of the confdentiality of respondents in micro-
data releases. It is typically used for economic data where respondent identifability is quite high. Rather than releas-
ing a perturbed version of the data, microaggregation releases the averages of small groups in which no single 
respondent is dominant. 

The original form of microaggregation was for univariate data. It was implemented by sorting the data and then 
reporting the averages of adjacent groups of fx ed size. Any partial group at the end would be pooled with the fnal 
complete group to ensure that the desired minimum group size was obtained. The typical group size was small, with 
fv e a common choice. An immediate improvement would be to allow some number of internal groups, perhaps near 
the center of the data, to be larger to compensate for the incomplete group. 

As a further improvement the groups can be allowed to have varying sizes so that no group will include a large gap in 
the sorted data. Each of the resulting groups can be more homogeneous when the group boundaries are allowed to be 
sensitive to the distribution of the data. This can be described as a clustering problem with a variable number of clus-
ters and a minimum cluster size. The number of clusters is chosen to be as large as possible consistent with homoge-
neous clusters and the minimum cluster size. 

Techniques for determining such data directed microaggregations have been proposed which use randomized search-
ing methods. These methods are typically terminated early as they are quite expensive to operate. They seek to mini-
mize the total within cluster sum of squares as suggested by some clustering methods. They have two disadvantages 
of not leading to readily solved optimization problems and of not being the most suitable criterion for highly skewed 
data typical of economic applications. 

For highly skewed data the width of the clusters may be a more suitable measure. The total within cluster width may 
be obtained by summing the gaps between adjacent members of the clusters. Cluster size may be controlled by requir-
ing a minimum number of adjacent gaps be included in any cluster. The result is an optimization problem for a linear 
objective function over the indicator variables for the gap inclusions. Each data point and its potential cluster neigh-
bors would appear in a constraint which enforces the minimum cluster size. The resulting system can be readily 
solved. 

For bivariate, or higher dimensional, data a the notion of adjacency is defned even though sorting is no longer well 
defned. The size of a cluster can be measured by the length of its minimal spanning tree. The problem of fnding 
groups of size exactly two is the well known perfect matching problem. One form of clustering is minimal spanning 
tree partitioning which resembles the univariate method above. Suitable constraints for minimum cluster size, which 
are more elaborate than in the univariate case, can be constructed and the resulting systems solved. For larger prob-
lems, or higher dimensions, we may choose to use only a Delaunay triangulation rather than all adjacencies. 

Keywords: Statistical Disclosure Control, Statistical Confdentiality , Microdata Release, 
Microaggregation 



  

1. Introduction 

The demand for public use samples of the fles 
collected by statistical agencies is very strong. 
For demographic data, this demand has been 
met by standard practices for some time. These 
practices do not carry over to fles of establish-
ments. A specialized technique has been devel-
oped to address the needs for establishment 
data for secondary analysis. The released data 
is the average of a small number of similar 
records. This release technique is called micro-
aggregation [4], [1]. 

The number of records in the groups to be 
averaged is as small as the disclosure require-
ments will permit. Often this means fv e 
records in a released group average. We will 
use fv e as our fx ed example for simplicity 
although other values are possible. The origi-
nal microaggregation proposal was for a single 
data variable. The single variable would be 
sorted and fv e adjacent records would be 
assigned to a group. If the fle for release had 
one thousand records, there would be two hun-
dred groups of size fv e and the released public 
use fle would have two hundred records. For 
other sizes there could be a partial group left 
over. In the initial proposal, this partial group 
would be combined with the last complete 
group so that the fnal group would have a size 
of fv e to nine members. A modifcation of this 
is to have some number of groups of size six 
and for the enlarged groups to be internal 
groups rather than the fnal groups [3]. To deal 
with higher dimensional data the technique of 
dimensional reduction was used so that the 
original proposals could be used. The dimen-
sional reduction was a projection, often that 
suggested by a principal component analysis. 
More direct techniques are possible, although 
more complex technically. The diffculty is that 
sorting is not well defned in two or more 
dimensions although the notion of adjacent can 
be effectively defned. 

The microaggregation technique is typically 

applied to establishment data. Like most eco-
nomic data, it is highly skewed. When the 
effects of microaggregation on secondary anal-
ysis are examined, an immediate question is 
the effect of the technique on the distribution 
of the data. One measure of the effect is the 
spread within the groups. For skewed data, the 
fnal groups will have the highest internal 
spread. Having the fnal group be of varying 
size will further increase its variability so the 
modifcation of varying internal group size is 
very natural. For skewed data, variance may 
not be the preferred measure of within group 
spread. Often we would prefer to use the range 
of the group. Variance is associated with the 
Gaussian distribution. Skewed distributions are 
more often like the exponential distribution. 
The Laplace, or double exponential, distribu-
tion is a symmetric distribution with the same 
long tails as the exponential distribution. The 
Laplace distribution leads to medians and 
mean absolute deviations in the same way that 
the Gaussian distribution leads to means and 
variances. We will measure within group 
spread by the group range for one dimensional 
data. For higher dimensional data we would 
use a measure of cluster size. We shall fnd that 
the length of the minimal spanning tree is a 
convenient measure. 

The next modifcation of the microaggregation 
technique is to deliberately have some groups 
be larger than fv e, or even six, in order to 
reduce the total within group spread. The count 
of groups might decrease but allow for lower 
total within group spread. When there is a 
large gap in the data, we would like it to be 
between groups rather than within some group, 
if this is consistent with our overall objectives. 
This has been suggested. Methods to achieve it 
have been proposed and experiments have 
been done to demonstrate that it is a sensible 
suggestion. The proposed methods, based on 
genetic algorithm minimization of total within 
group variance, require much computer time to 
achieve their results [2]. We will demonstrate 



   

direct methods requiring smaller amounts of 
computer time. The corresponding techniques 
in higher dimensions lead to problems well 
known to be computationally diffcult. Our 
frst interest will be in whether the higher 
dimensional results are useful. Only if they 
prove to be useful would it be worth pursuing 
the question of how to reduce their computa-
tional cost. The problems may also be of inde-
pendent interest to those studying algorithm 
complexity issues. 

When we seek groups that have small within 
group spread there are elementary observa-
tions that are obviously true for univariate 
data. Any two groups will not be interleaved. If 
they were interleaved, then groups with 
smaller spreads could be obtained by exchang-
ing members to remove the interleaving. A 
group of size greater than or equal to ten can 
be broken into two groups so that we will only 
observe groups with sizes from fv e to less than 
ten. These observations are problematic in 
higher dimensions. One might defne two 
groups to be disjoint if their convex hulls do 
not overlap but it is easy to construct examples 
where this defnition is not compatible with 
keeping the group size small. 

2. Clustering Approach 

Viewing forming microaggregations as a clus-
tering problem is very natural. However, it 
does not readily lead to an optimal solution 
although it provides useful insights. As an 
approximation technique it is quite useful. For 
one dimension we may readily construct a 
cluster tree in which the sorted data values are 
the external leaves of the tree. The frst cluster 
would be of the two data items with the small-
est gap between them. The node joining these 
two data points would be labeled with the mid-
point of the gap separating them, which is also 
their average in this simple case. The following 
clusters would be of the two data points, the 
data point and the cluster or the two clusters 
with the smallest gap between them. In each 

case the new node would be labeled with the 
midpoint of the gap. Eventually there will be a 
single large cluster containing all the data 
points. This is a bottom up procedure. A top 
down procedure would start with the sorted 
data and the gaps to form two clusters by using 
the midpoint of the largest gap to separate the 
data into two subclusters. We would repeat this 
within each cluster until all the clusters are of 
size one. However we construct it, the cluster 
tree will represent the data. When we seek to 
form the microaggregations we will discover a 
difference between clustering and microaggre-
gation. We may fnd a cluster of an adequate 
size to form two micro aggregations but the 
subclusters violate the microaggregation size 
requirements. One of the subclusters may be 
too small while the other is of an acceptable, if 
slightly large, size. This problem occurs when 
the largest gap in the cluster is too close to one 
of the cluster ends and we must reorganize the 
internal structure of the cluster to match the 
microaggregation requirements. The top down 
procedures can be redefned to ignore large 
gaps which are too close to the end points of 
the current cluster. With this redefnition we 
will have a procedure which avoids large gaps 
and permits variable size microaggregates. We 
will later see that it is an effective approximate 
procedure. 

The top down procedure could be organized to 
follow the cluster groupings in the form of a 
recursive partitioning process or to follow the 
gap sizes in the form of a greedy algorithm. 
Recursive partitioning is the basis of the com-
mon quicksort algorithm where an internal 
value is used to separate the current partition 
into smaller and larger values by moving the 
entries. For microaggregation, the initial data 
would already be sorted so that the gaps can be 
easily determined. The largest gap within a 
partition can be identifed and the subpartitions 
determined with no need for any data moving. 
Gaps near the endpoints of a partition can be 
ignored so the partitions are always suitable 



 

for forming microaggregations. The process of 
fnding the largest gap in the current partition 
is essentially that of quicksort if it were to be 
used to sort the gaps. There is no data moving 
involved as we are trying to determine which 
gaps are boundaries between the microaggre-
gation groups. If the gaps are sorted before 
starting, a processing sequence of the parti-
tions can be based on using the largest gap not 
yet processed. Here, the next gap to be pro-
cessed can be anywhere in the data rather than 
just within the active partition of the recursive 
procedure. If a gap is too close to a partition 
endpoint it is ignored. This sequence of pro-
cessing of the partitions follows the structure 
of a greedy algorithm. The recursive partition-
ing algorithm would examine the unsorted 
gaps repeatedly while the greedy algorithm 
would examine the sorted gaps only once. 

We may also learn about the limitations of the 
clustering notions by examining alternate data 
sets that are equivalent under the clustering 
procedures. All of the clustering decisions are 
based on the comparison of gaps. A new set of 
gaps, with a reference data point, will defne a 
new data set. For example, we could defne the 
new gaps to be 1 plus a small positive multiple 
of the given gaps with a reference point of 1 as 
the smallest value. This new data set would be 
the integers with a small perturbation but with 
unchanged gap comparisons. For small pertur-
bations the microaggregation groups would all 
be of size fv e. However the clustering based 
groupings could be quite different. 

For two or more dimensions the sorting based 
procedure can not be applied. The ability to 
judge adjacency by sorting and examining 
gaps is lost. In one dimension there are two 
adjacent points, except at the ends. In more 
dimensions there are many adjacent points and 
even the number of adjacent points may vary 
considerably. To form clusters in a bottom up 
fashion we would join the two points which 
are closest, as we did in one dimension. We 
would then join two points, a point and a clus-

ter or two clusters as our next step. If they were 
already in the same cluster then we would not 
join them again. This is a complication that 
does not arise in one dimension. This process 
would be repeated until all the points have 
been joined into a single cluster. This process 
is the well known Kruskal algorithm for fnd -
ing the minimal spanning tree. There is a cor-
responding top down procedure for fnding the 
minimal spanning tree in which we repeatedly 
remove the longest connection. We do not 
remove connections which would lead to two 
components. This alternate algorithm requires 
more steps than does the Kruskal algorithm so 
is rarely used or even described. Both require a 
sorted list of all the connections as input data. 
Tarjan[5] provides a generalized proof for 
greedy algorithms that covers both these algo-
rithms and many other variants. Partitioning 
the minimal spanning tree is one of many clus-
tering algorithms. It may not satisfy the size 
requirements of the microaggregation prob-
lem as we have seen in the one dimensional 
case. Rather we would use the top down proce-
dure with the requirement that the removal of a 
connection should not create a subcluster 
which is too small to be a microaggregate. We 
would start this procedure with all the connec-
tions as, in general, the fnal set of connections 
is not contained in the minimal spanning tree. 
This would usually be more data than we 
would like so we would choose a triangulation 
which includes the minimal spanning tree, 
such as the Delaunay triangulation. For two 
dimensional data the total number of connec-
tions in the Delaunay triangulation is a small 
multiple of the number of data points. A 
Delaunay triangulation in two dimensions can 
be determined at a low cost comparable to 
sorting the data on one of its coordinates, 
which is the frst step in the standard algo-
rithms. Some of the fnal groupings may be 
larger than twice the microaggregation size. 
There will be a single central point with sev-
eral groups, each too small to be a microaggre-
gate, surrounding it. The number of 
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Large group postprocessed into 2 groups 

surrounding groups is limited by the geometry 
of crowding, so that the regular hexagon is a 
boundary case in two dimensions. An illustra-
tion of this is would be fv e pairs of points 
around a central point. After a postprocessing 
stage this would become two microaggregates, 
one of fv e points consisting of two pairs and 
the central point and the other of six points 
consisting of three pairs which have been 
joined. A more awkward example would be 
three groups of size three around a central 
point. The postprocessing can be done with the 
optimization technique discussed below. 

3. Optimization Approach 

To treat the microaggregation problem as an 
optimization problem we will need both an 
objective function, to choose between various 
sets of microaggregations, and a model, with 
constraints, to defne possible sets of microag-
gregations. We can model the problem by hav-
ing two data points be in the same 
microaggregation if the connection between 
them is chosen as shown by a value of 1 for its 
indicator function. The objective function 
would be the total length of all selected con-
nections. In one dimension this is relatively 
simple as each point has two connections, 
except the two end points with one connection. 
For groups of size fv e or greater we would 
require that at least four consecutive connec-
tions be made before a connection could be 
absent. Such a condition would be xi+1 + xi+2 
+ xi+3 + xi+4 + xi+5 ≥ 4. The number of such 
conditions is limited by the number of data 
points. We would need minor modifcations to 

this at the end points. If we avoid technical 
issues such as connections of zero or the same 
length, we will have solutions in which the 
indicator variables assume values of zero or 
one when they are only assumed to be continu-
ous on the interval from zero or one. The opti-
mal solutions can be obtained with linear 
programming with reasonable cost. 

For two or more dimensions the optimization 
problem is more diffcult to solve. The connec-
tion structure of the groups is more complex 
than is the structure in one dimension. The 
structure has many similarities to the structure 
of the traveling salesman problem, which has 
been used to develop many techniques in oper-
ations research. A comparable development is 
beyond the scope of the current work. Finding 
a solution for smaller problems will allow us to 
judge the quality of the approximate method 
that was developed above. The extreme case of 
exactly one group may be expressed as an opti-
mization problem. This is the optimization for-
mulation for the minimal spanning tree. This 
formulation requires that the total number of 
connections selected be the number of links in 
the spanning tree, which is one less than the 
number of data points, and that there be no 
loops in the selected connections. This last 
condition must be true for all subsets of the 
data. For n data points, there are 2n subsets. 
This formulation is impractical to use if all the 
conditions must be expressed before starting 
the computation. Very few of the conditions 
are required in any particular example so an 
initial trial solution is found. Conditions are 
added to eliminate any loops which are found. 
The newly added conditions may allow some 
of the earlier conditions to be dropped. The 
process is repeated until the trial solution is 
free of loops. A different example would 
require a different set of conditions. However 
in practice this iterative formulation is not used 
because the minimal spanning tree problem 
has very effcient solutions which directly use 
its special structure. 



 

We are seeking multiple spanning trees for dis-
joint subsets of the data. We could use discrete 
optimization with our conditions of a lower 
limit on the size of the subsets and the condi-
tions that the spanning trees have no loops. 
Discrete optimization is typically slow as it 
often is based on very generalized methods 
used to guide an underlying continuous opti-
mization. Much of discrete methods research 
is directed at exploiting the properties of the 
problem under study to guide a continuous 
optimization method to fnd the discrete solu-
tion. The frst diffculty we notice about the 
microaggregation problem is that we do know 
how many spanning trees we are trying to con-
struct. If we knew this we could ask what hap-
pens as we modify our objective function to 
successively merge the group spanning trees, 
perhaps with some reorganization, until we 
arrive at the minimal spanning tree for all the 
data. When we try to apply continuous optimi-
zation to fnd the spanning trees of many 
groups we encounter fractional values. This is 
not surprising as the same phenomena arises in 
the traveling salesman problem and is 
addressed by the so called comb inequalities. 
The fractional values are not an issue for the 
full minimal spanning tree problem. We 
observe that if we decrease the number of 
groups, by increasing the numbers of connec-
tions that are to be selected, we will have no 
fractional values at some point even though we 
have only used conditions to ensure no loops 
and minimal group size. We will obtain some 
number of unmerged groups and of merged 
groupings. The merged groupings defne 
smaller subproblems that can be addressed by 
the same methods. The calculation of the ine-
quality systems for specifc small examples 
suggests that this reduction will always work 
although general proofs are not available. 

We would like to have stronger conditions 
which will allow us to fnd both more and 
smaller subproblems at each stage of out pro-
cessing. The smallest example of fractional 

values would be three points joined with con-
nections of weight 1/2. The most elementary 
condition is that every point should be con-
nected to some other point. The equation for 
this would be that the sum of all connections to 
a point should sum to 1 or more. Two connec-
tions of weight 1/2 satisfes this condition. The 
condition that the three points should not form 
a loop requires that the sum of the three indica-
tors should be 2 or less, which is met in this 
case by the fractional weights. We want the 
internal connections to sum to 2, unless there 
are also connections from three points to other 
points. If the value we choose for the limit is 2 
then we are permitting a group of size three. In 
fact we do not want such small groups so the 
test value must be 3 to keep the group size up. 
We can add up all the connections from the 
three points, being careful to avoid using the 
connections between the points twice. The 
condition of avoiding the double counting of 
the internal connections makes these condi-
tions stronger than just adding all the connec-
tions to the three points. (In practice we will 
have variables representing the sum of all con-
nections to a point so we can sum these and 
subtract the double counted connections to 
construct more compact equations for the opti-
mization software.) We would certainly apply 
this condition to any isolated group of size 
three that was observed. We could also search 
for triples of points which violate the condi-
tion. We have constructed a new set of condi-
tions directed at removing fractional values 
from the continuous optimization, or a cut in 
the operations research usage. This cut has two 
uses of either extending a group which is too 
small or of helping eliminate fractional values. 
Such a cut could be used to extend an isolated 
group of size two. It could also be used for 
groups of size four which could either be 
extended or help have fractional values elimi-
nated. It could also be applied to larger groups 
except it would no longer have its test value 
increased to extend the group size above the 
minimum group size. 



         

A working search procedure would be to apply 
several sets of conditions until a new fraction 
free group has been identifed and the set of 
conditions is not changing. The conditions 
would be those for no loops, for no small iso-
lated groups and for no fractional values in 
cuts of size two and three. If a new group has 
been found we separate it out and start over on 
the smaller problem. If the condition set stops 
changing with no new group found then we 
would increase the order of the cut being used. 
There are many higher order cuts which we 
would prefer not to have to use. This reserves 
the additional power of the higher order cuts 
for the smaller problems which can be isolated 
with the lower order cuts. 

4. Reference Approach 

Microaggregation was originally defned by 
sorting and grouping. In one dimension the 
defnition is both pragmatic and effective. We 
have provided two enhanced methods; one an 
approximate or heuristic method and the other 
an exact method. The extension of the original 
defnition to two or more dimensions is some-
what problematic. 

The problem of fnding groups of size two, or 
exact matching, is a very well studied problem 
in operations research. The data is the distance 
between points or the cost of a connection in 
some graph. The optimal exact matching prob-
lem is now a classical problem which was used 
to develop many methods and has been subject 
to many improvements with the best algo-
rithms being very effcient, low order polyno-
mial, but somewhat elaborate. The extension to 
groups of size three is mostly notable for its 
discovery that the problem is qualitatively 
harder. It is called X3C (Exact 3 Cover) in the 
list of well known NP Complete problems. The 
extensions to larger groups will not lead to eas-
ier problems. The operations research methods 
will tend to avoid long connections as the 
infuence of any connection extends to all 
matching through the objective function. 

To follow the style of the one dimensional sort-
ing method, we would like a method which is 
based on comparisons without the global bal-
ancing of the numerical procedures. In the 
sorting method we take an extreme point and 
collect the points which are closest to it into a 
group and repeat until all points have been 
assigned to a group. The extreme points would 
be on the convex hull of the data points. In two 
dimensions the chosen extreme point could be 
defned by the point on the convex hull which 
subtends the most acute angle along the con-
vex hull. For higher dimensions we would use 
solid angle or its extensions. The points to be 
grouped with the extreme point could be its 
nearest neighbors. This is a procedure which is 
based on comparisons and effected by the local 
points only. It can be readily implemented as 
convex hull and nearest neighbor computations 
can be implemented at low cost. The procedure 
will tend to squeeze around empty regions 
rather than just reach across them as is 
required in one dimension. It may also leave 
isolated points so the groups may not well sep-
arated. 

5. Examples 

We have three sets of procedures that can be 
applied to data. The one dimensional proce-
dures have corresponding procedures for two 
or more dimensions. A simple indicative 
example serves to illustrate the differences 
within the one dimensional procedures. The 
example data are 1000 values from a random 
number generator supplied with a Fortran 
compiler with its default starting value. The 
idealized version of this data would have each 
of the 1000 values centered in its own equal 
sized panel for all gaps of size 0.001. For a 
group size of fv e, the total width of all groups 
would be 0.8. The reference technique pro-
duces results much as the idealized data would 
indicate. The approximate technique has been 
successful in avoiding the larger gaps with a 
reduced group count. The optimal technique 
has improved the grouping with a slightly 



    

decreased total width and a slightly increased 
group count. The observed data are: 

Count Total Width 
Reference 200 0.79 
Approximate 164 0.63 
Optimal 170 0.62 

The methods for two or more dimensions are 
analogs of the one dimensional procedures. 
The methods are illustrated for two dimensions 
and readily extended to more dimensions. The 
test data in 1000 points distributed uniformly 
in the unit square. The data are displayed in 
Figure 1 below. (1000 data points in a small 
display may exceed the reproduction process 
capabilities used for this note. Multiple gener-
ation copies are unlikely to be successful.) If 
the points were placed on a uniform grid and 
connected the total connection length would be 
1000 * (1/) = 31.62 when the approximation is 
made that the grid fts exactly. A minimal span-
ning tree of the data can be constructed and has 
a length of 20.55. The minimal spanning tree is 
shown in Figure 2 below.  The poor approxima-
tion illustrates the extent to which it is possible 
with the extra freedom to move in two dimen-
sions to fnd paths around the gaps in the data. 
A natural comparison value for microaggrega-
tions would be 4/5 * 20.55 = 16.44. The refer-
ence groups are given in Figure 3 below, the 
approximate groups in Figure 5 below and the 
optimal groups in Figure 6 below.  A hybrid 
process to use the approximation methods to 
fnd gross groupings with the optimization 
methods used for the fnal details was also 
tried. The gross groupings were approximate 
microaggregations of minimal size 25. Each of 
these gross groups were then reduced to multi-
ple optimal microaggregations of minimal size 
fv e. The results for this hybrid calculation 
were 163 groups with a total length of 16.03 as 
shown in Figure 4 below.  We see that the 
approximate, hybrid and optimal solutions 
have sizes that are consistent with avoiding the 
longer connections in the minimal spanning 
tree as the groups are formed. The reference 
groups are larger than the minimal spanning 

tree approximation would suggest. The 
observed data are: 

Count Total Length 
0.8 * MST 16.44 
Reference 200 18.28 
Approximate 155 16.18 
Hybrid 163 16.03 
Optimal 168 15.90 

6. Conclusion 

The univariate microaggregation technique can 
be extended to allow for varying group size. 
This permits the groups to be chosen for 
greater within group homogeneity. An approxi-
mation algorithm, which is a modifcation of 
the usual quicksort algorithm, will produce 
data dependent microaggregations at a cost 
comparable to sorting the data. The quality of 
the grouping found is less than that obtained 
by use of optimization techniques. The differ-
ence in quality between the approximation and 
the optimization result is pleasantly small. The 
optimization based solution is not diffcult to 
achieve but may be awkward for some organi-
zations. The robustness of the observation on 
the quality of the approximation should be 
tested by more extensive experimentation with 
both artifcial and real data. 

The univariate methods have natural exten-
sions to two or more dimensions. The underly-
ing notion of adjacency is both simple and 
natural in one dimension and easily imple-
mented by sorting. For two or more dimen-
sions the notion of adjacency is natural but 
simplicity and ease of implementation are lost 
as sorting is not well defned. Standard tech-
niques from computational geometry can be 
adapted to the microaggregation problem. An 
approximation method, which is a modifca -
tion of a minimal spanning tree algorithm, is 
quite effective. Unfortunately it requires two 
stages of processing as it can generate over 
sized groups. The two stages can be used to 
advantage to obtain a better approximation by 
using the optimization based second stage to 
process small local problems. The approxima-



 

tion method is effective but provides less qual-
ity in grouping than does the optimization 
based method. The optimization problem is not 
one of the standard problems which has been 
addressed by computational geometry. Further 
elaboration of the techniques for fnding the 
optimal microaggregates both in the complete 
problem and in the post processing phase for 
the oversize groups from the approximate 
method is indicated. The robustness of the 
observation on the quality of the approxima-
tion should be tested by more extensive experi-
mentation with both artifcial and real data. 

The use of computational geometry techniques 
to determine variable size data directed micro-
aggregations is useful. The univariate tech-
niques can be easily implemented. The 
techniques for two dimensions are more diff -
cult to implement with the approximate tech-
nique readily implemented but requiring a 
second phase of the more diffcult optimization 
technique. The optimization technique is suit-
able for small groups but is not, without further 
development, for direct use on larger fles. The 
extension to higher dimensions pose no addi-
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tional diffculties beyond those of triangulation 
in higher dimensions.

7. References
[1] Defays, D., Nanopoulos, P., (1993), “Panels of enter-
prises and confdentiality: the small aggregates 
method”, in Proceedings of 92 Symposium on Design 
and Analysis of Longitudinal Surveys, Ottawa: Statistics 
Canada, 195-204. 
[2] Mateo-Sanz, J. M., Domingo-Ferrer, J. (1999), “A 
Method for Data-Oriented Multivariate Microaggrega-
tion”, Proceedings of Statistical Data Protection ’98, 
Luxembourg, Offce for Offcial Publications of the 
European Communities, pp. 89-99. 
[3] Sande, G. (1996), “Putting Blurred Data in an SOI 
Context”, lecture notes, Confdentiality Workshop for 
Internal Revenue Service / Statistics Of Income, Wash-
ington, DC. 
[4] Strudler, M., Oh, H. L. and Scheuren, F. (1986), 
“Protection of Taxpayer Confdentiality with Respect to 
the Tax Model,” Proceedings of the Section on Survey 
Research Methods, American Statistical Association, 
Alexandria, VA, pp. 375-381. 
[5] Tarjan, R. E. (1983), “Data Structures and Network 
Algorithms,” CBMS-NSF Regional Conference Series 
in Applied Math, 44, SIAM, Philadelphia.

http:points20.55


1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 0.8 

Figure 3: Reference Microaggregates 
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Figure 4: Approximate Microaggregates 
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Figure 5: Hybrid Microaggregates 
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Figure 6: Optimal Microaggregates 
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