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Abstract

To limit disclosure risks, one approach is to release partially synthetic, public use microdata sets.

These comprise the units originally surveyed, but some collected values, for example sensitive values at

high risk of disclosure or values of key identifiers, are replaced with multiple imputations. This article

presents and evaluates the use of classification and regression trees to generate partially synthetic data.

Two potential applications of CART are studied via simulation: (i) generate synthetic data for sensitive

variables; and, (ii) generate synthetic data for variables that are key identifiers.

1 Introduction

When releasing public use microdata, statistical agencies employ a variety of techniques to limit disclosures,

including swapping data, recoding variables, and adding noise to values (see Willenborg and de Waal, 2001).

Unfortunately, these techniques can distort relationships among variables in the data set and complicate

estimation for the user, for example requiring non-standard, likelihood-based analyses (Little, 1993) or

measurement error models (Fuller, 1993).
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An alternative approach with the potential to circumnavigate these problems is to release multiply-

imputed, synthetic public use microdata, as proposed by Rubin (1993). In this approach, the agency (i) 

randomly and independently samples units from the sampling frame for each synthetic data set, and (ii) 

imputes unknown data values for units in the synthetic samples using models fit using the original survey 

data and possibly other information. This can protect confidentiality, since identification of units and their 

sensitive data can be difficult when the released data are not actual, collected values. And, with appropriate 

imputation and estimation methods developed by Raghunathan et al. (2003) and Reiter (2003c)–based on the 

concepts of multiple imputation (Rubin, 1987)–the approach can allow data users to obtain valid inferences 

using standard, complete-data statistical methods and software. For general discussions of fully synthetic 

data approaches, see also Fienberg et al. (1996, 1998), Dandekar et al. (2002a,b), and Reiter (2003b, 2002). 

Although there are potentially great benefits to releasing fully synthetic data (see Raghunathan et al., 

2003; Reiter, 2003b), generating plausible synthetic data for all variables may be difficult in practice. Instead, 

agencies can release multiply-imputed, partially synthetic data sets comprising a mix of actual and imputed 

values, as suggested by Little (1993). This is currently being done by the U.S. Federal Reserve Board 

for public-use data from the U.S. Survey of Consumer Finances. They replace monetary values at high 

disclosure risk with multiple imputations, then release these imputed values and the unreplaced, collected 

values (Kennickell, 1997). A partially synthetic approach also has been used by Abowd and Woodcock 

(2001) to protect data in longitudinal, linked data sets. They replace all values of some sensitive variables 

with multiple imputations, but leave other variables at their actual values. A third example is the SMIKe 

algorithm of Liu and Little (2002), which simulates multiple values of key identifiers for selected units. 

Partially synthetic approaches are appealing because they promise to maintain many of the benefits 

of fully synthetic data–protecting confidentiality while allowing users to make inferences without learning 

complicated statistical methods or software–with decreased sensitivity to the specification of imputation 

models. Still, imputation models must be specified, a task that can be daunting in surveys with hundreds of 
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variables, some with distributions not easily modeled with standard parametric tools. It may be advantageous 

to use nonparametric methods to generate imputations. 

This paper presents and evaluates the use of classification and regression trees (Breiman et al., 1984), 

typically abbreviated as CART, for generating partially synthetic data. The paper is organized as follows. 

Section 2 reviews the notation and methods of inference for partially synthetic data developed by Reiter 

(2003a). Section 3 reviews CART and suggests how it might be used for generating synthetic data. Section 

4 presents results of simulation studies that use CART (i) to simulate selected units’ values of potentially 

sensitive variables, and (ii) to simulate selected units’ values of variables that are key identifiers. The 

simulations illustrate the validity of inferences for a variety of descriptive and model-based estimands, as 

well as the disclosure risks of the released data. 

2 Description of partially synthetic data 

To describe partially synthetic data, we use the notation of Reiter (2003a), repeated nearly verbatum here. 

“Let Ij = 1 if unit j is selected in the original survey, and Ij = 0 otherwise. Let I = (I1, . . . , IN ). Let Yobs 

be the n × p matrix of collected (real) survey data for the units with Ij = 1; let Ynobs be the (N − n) × p 

matrix of unobserved survey data for the units with Ij = 0; and, let Y = (Yobs, Ynobs). For simplicity, we 

assume that all sampled units fully respond to the survey. Let X be the N × d matrix of design variables 

for all N units in the population, e.g. stratum or cluster indicators or size measures. We assume that such 

design information is known approximately for all population units. It may come, for example, from census 

records or the sampling frame(s). 

The agency releasing synthetic data, henceforth abbreviated as the imputer, constructs synthetic data 

sets based on the observed data, D = (X, Yobs, I), in a two-part process. First, the imputer selects the values 

from the observed data that will be replaced with imputations. Second, the imputer imputes new values 

to replace those selected values. Let Zj = 1 if unit j is selected to have any of its observed data replaced 

3 

Page 9 



with synthetic values, and let Zj = 0 for those units with all data left unchanged. Let Z = (Z1, . . . , Zn). 

Let Yrep,i be all the imputed (replaced) values in the ith synthetic data set, and let Ynrep be all unchanged 

(unreplaced) values of Yobs.... The values in Ynrep are the same in all synthetic data sets. Each synthetic data 

set, di, is then comprised of (X, Yrep,i, Ynrep, I, Z). Imputations are made independently for i = 1, . . . , m 

times to yield m different synthetic data sets. These synthetic data sets are released to the public (Reiter, 

2003a, p.).” 

When using parametric imputation models, the Yrep,i should be generated from the Bayesian posterior 

predictive distribution of (Yrep,i|D, Z). In this article, we generate the Yrep,i from a series of CART models 

fit using the units with Zj = 1. These models are described in Section 3.2. 

Inferences about some scalar estimand, say Q, are obtained by combining results from the di. Specifically, 

suppose the data analyst estimates Q with some point estimator q and estimates the variance of q with some 

estimator v. For i = 1, . . . , m, let qi and vi be respectively the values of q and v in synthetic data set di. 

It is assumed that the analyst determines the qi and vi as if di was in fact collected data from a random 

sample of (X, Y ) based on the actual survey design used to generate I. The following quantities are needed 

for inferences for scalar Q: 

m 
X 

q̄m = qi/m (1) 
i=1 
m 

X 
bm = (qi − q̄m)2/(m − 1) (2) 

i=1 
m 

X 
v̄m = vi/m. (3) 

i=1 

The analyst then can use q̄m to estimate Q and 

Tp = bm/m + v̄m (4) 
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to estimate the variance of q̄m. When n is large, inferences for scalar Q can be based on t-distributions with 

−1degrees of freedom νp = (m − 1)(1 + r )2, where rm = (m−1bm/v̄m). In many cases, a normal distribution m 

provides an adequate approximation to the t-distribution because rm is small. Derivations of these methods 

are presented in Reiter (2003a). Extensions for multivariate Q are presented in Reiter (2003c). 

3 CART models for generating partially synthetic data 

In this section, we propose the use of CART models to generate the Yrep,i. We first provide some background 

on CART and existing proposals for using CART models to impute missing data. 

3.1 Background on CART 

CART models (Breiman et al., 1984) are a flexible tool for estimating the conditional distribution of a 

univariate outcome given multivariate predictors. Essentially, the CART model partitions the predictor 

space so that subsets of units formed by the partitions have relatively homogeneous outcomes (Chipman 

et al., 1998). The partitions are found by recursive binary splits of the predictors. The series of splits can be 

effectively represented by a tree structure, with leaves corresponding to the subsets of units. An example of 

a tree structure for a univariate outcome Y and two predictors, X1 and X2, is presented in Figure 1. Units 

with X1 ≥ 2 fall in the leaf labeled L1, regardless of their value of X2. Units with X1 < 2 and X2 ≥ 0 fall in 

the leaf labeled L2, and units with X1 < 2 and X2 < 0 fall in the leaf labeled L3. Such trees can be grown 

using algorithms like the one in the software package S-Plus (Clark and Pregibon, 1992). 

A common strategy for finding trees is to fit one with a large number of leaves, and then prune the tree 

according to some optimality or complexity criteria. For example, if the tree in Figure 1 is deemed too large 

or too complex, the branch to the leaves L2 and L3 can be cut, so that the resulting tree has only two leaves, 

L1 and what was formerly the root of L2 and L3. Pruned trees typically do not predict the values in the 

observed data as well as larger ones, but they may be more robust to overfitting than larger ones. 
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Figure 1: Example of a tree structure 

As a method of estimating conditional distributions, CART models have some potential advantages 

over parametric models. First, CART modeling may be more easily applied than paramteric modeling, 

particularly for continuous data that are truncated or not smooth. Second, CART models can capture non-

linear relationships and interaction effects that may not be easily revealed in the process of fitting parametric 

models. Third, CART provides a semi-automatic way to fit the most important relationships in the data, 

which can be a substantial advantage when there are many potential predictors. Primary disadvantages of 

CART models relative to parametric models include difficulty of interpretation, discontinuity at partition 

boundaries, and decreased effectiveness when the data follow relationships easily captured by parametric 

models (Friedman, 1991). 

Because of their nonparametric nature, CART models have been proposed to impute missing data 

(Barcena and Tussel, 2000; Piela and Laaksonen, 2001; Conversano and Siciliano, 2002). These propos-

als primarily use the leaves of trees as imputation classes, assuming the data are missing at random (Rubin, 

1976). As an example, suppose a single variable Y has data missing at random. A tree is grown using the 

observed outcomes, Yobs, and all other variables as predictors, then pruned to some desired size. Units with 

missing Y are placed in appropriate leaves of the tree according to their predictor values, and imputed values 

of Y are then drawn randomly from the Yobs in the corresponding leaves. 
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It is not clear how to implement the CART approach when data are missing for multiple variables. 

Imputations from single-variable trees can fail to reflect relationships among the imputed variables. For 

example, imputation of missing Ya and missing Yb from trees approximating f(Ya|X) and f(Yb|X) assumes, 

possibly incorrectly, conditional independence between Ya and Yb. One approach is to impute from chains 

of single-variable trees conditional on previous imputations (Conversano and Siciliano, 2002). For example, 

first impute missing values of Ya using its single-variable tree fit on X , then impute missing values of Yb 

using its single-variable tree fit on X and the filled in Ya, then impute missing values of Yc after filling 

in missing values of Ya and Yb, etc. Such conditional approaches are related to the sequential imputation 

algorithms of Van Buuren and Oudshoorn (1999) and Raghunathan et al. (2001) for parametric modeling. 

To this author’s knowledege, there have not been published evaluations of the repeated-sampling properties 

of inferences from multiply-imputed data sets generated from such chained CART models. 

Single variable trees can be employed for missing multivariate categorical data. All levels of the r missing 

categorical variables are combined into one variable with K = Πr
i ni levels, where ni is the number of levels 

for categorical variable i (Barcena and Tussel, 2000). Unfortunately, this can be computationally infeasible 

when K is large. 

With any of these approaches, and regardless of the number of variables with missing data, a key issue 

is how to prune the tree. Pruning the tree too much may result in non-homogeneous imputation donors, 

so that the imputations are not drawn from plausible conditional distributions; essentially, the imputation 

classes are too broad. Insufficiently pruning the tree may lead to over-fitting the observed data, resulting 

possibly in inferences with larger variances. Given the usual advice for multiple imputation of accepting 

variance to avoid bias (Rubin, 1987), it may be preferable to use larger trees for imputation purposes. To 

this author’s knowledge, this conjecture has not been substantiated with research. 
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3.2 Generation of Yrep,i from CART models 

We now turn to considering CART models for generating partially synthetic data sets, di = (X, Yrep,i, Ynrep, I, Z), 

using values of the observed data, D = (X, Yobs, I). The proposed CART algorithm for imputing Yrep,i is 

layed out in Section 3.1, and motivation for its specification is presented in Section 3.2. 

3.2.1 Algorithm for imputations 

Let Y(1) be the variable in Y that has the largest number of values to be replaced, and let Y(k) be the variable 

in Y that has the kth largest number of values to be replaced. Let Z(k) = 1 for all units having Y(k) replaced. 

For each Y(k), we fit the tree of Y(k) on (X, Y
−(k)), where Y 

−(k) is all variables in Y except Y(k), using the 

values in D. Label these trees Y(k). Whenever practical, only units with Z(k) = 1 are used to grow Y(k). For 

example, when Z(k) = 1 only for units with Y(k) > 100, 000, the imputation model should be fit using only 

those units in D with Y(k) > 100, 000. 

When two or more variables have the same number of values to be replaced, the order of the variables 

is selected as follows. First, just to avoid introducing additional notation, assume the variables are assigned 

a random ordering. The Y(k) are fit for each of these variables. Let P(k) be the depth in Y(k) of the first 

split on one of these other variables. If none of these other variables appear in Y(k), define P(k) = ∞. Now, 

re-order the variables in decreasing order of the P(k) to obtain the order of imputations. Figure 2 illustrates 

this procedure for two variables, Ya and Yb. Because Yb appears higher up in Y(a) than Ya appears in Y(b), 

the P(b) > P(a), and we impute Yb before Ya. 

At its largest, each Y(k) can have exactly one leaf for every unit with Z(k) = 1. Imputing data by sampling 

from leaves of maximal trees results in di = D for all i, which obviously fails to protect confidentiality if D 

is not releasable. The maximal trees must be pruned so as to preserve as much as possible the relationships 

in D, while limiting disclosure risks. For continuous Y(k), we propose pruning until the observed values in all 

leaves have variance larger than some imputer-defined threshold. For categorical Y(k), we propose pruning 
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Figure 2: Example of ordering of imputations when two variables have equal numbers of replaced values. 
Here, Yb is imputed before Ya. 

trees so that no one value of Y(k) appears in any leaf more than an imputer-specified percentage of the time. 

Additional protection can be obtained by requiring a minimum number of units in each leaf of the tree. 

Once trees are pruned to satisfy disclosure criteria, imputations are generated sequentially using the 

pruned trees, beginning with Y(1). Let L1w be the wth leaf in the pruned Y(1), and let Y L1w be the nL1w(1) 

values of Y(1) in leaf L1w. In each L1w in the tree, we generate a new set of values by drawing from Y L1w 
(1) 

using the Bayesian bootstrap (Rubin, 1981, and described in Section 3.2). When Y(1) is categorical, these 

sampled values are the replacement imputations, Y(1)rep,i, for the nL1w units that belong to L1w. When Y(1) 

is continuous, we take an additional step to avoid purposefully releasing real values of Y(1). In each leaf, we 

estimate the density of the bootstrapped values, for example by using a Gaussian kernel density estimator 

(Wegman, 1972). Then, for each unit, we sample randomly from the estimated density in that unit’s leaf 

using an inverse-cdf method. We allow the support of the estimated density to stretch from the smallest to 

the largest value of Y(1). The sampled values are the Y(1)rep,i. 

Imputations are next made for Y(2) using the same procedure. To maintain consistency with the Y(1)rep,i, 

units’ leaves in Y(2) are located using Y(1)rep,i in place of Y(1). Occasionally, some units may have combi-

nations of (X, Y
−(1,2), Y(1)nrep, Y(1)rep,i) that do not belong to one of the leaves of Y(2). For these units, we 

search up the tree until we find a node that contains the combination, then treat that node as if it were the 
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unit’s leaf. Once each unit’s leaf is located, values of Y(2)rep,i are generated using the Bayesian bootstrap 

and kernel density procedure used to impute Y(1). Imputing any Y(k) follows the same process: we place 

each unit in the leaves of Y(k) based on their values in (X, Y
−(1,2,...,k−1), Y(1,2,...,k−1)nrep, Y(1,2,...,k−1)rep,i), 

then impute using the Bayesian bootstrap and kernel density procedure. 

Each released, partially synthetic data set di = (X, Ynrep, Yrep,i, I, Z). The process is repeated indepen-

dently m times, and these m data sets are released to the public. 

3.2.2 Motivation for algorithm 

When fitting the Y(k), only units with Z(k) = 1 are used to grow the tree. This helps ensure the estimated 

conditional distributions for the Y(k) are in the space of Y(k) where data need to be replaced. For example, 

when replacing incomes only when they are greater than $100,000, all imputed incomes must be at least 

$100,000 if inferences for the population mean income are to be potentially valid. Using trees grown from 

observed data that include units with incomes below $100,000 may result in imputed incomes below $100,000, 

which may lead to biased estimates. As another example, when replacing some outcome only for certain small 

subpopulations (e.g., replace incomes for single Native American males), the imputations should be drawn 

from that sub-population’s outcome distribution. A tree grown using units outside the sub-population may 

not accurately capture the outcome distribution in the small sub-population. As a result, the imputations for 

the sub-population would not be consistent with the corresponding distribution of outcomes in the observed 

data. 

It may be necessary for practical reasons or disclosure limitation purposes to use units with Z(k) = 0 

when growing some Y(k). For example, there may be insufficient number of units with Z(k) = 1 to fit an 

accurate tree model from only those units. Or, the values of Y(k) for the units with Z(k) = 1 may not be 

sufficiently varied, so that disclosure criteria for pruning the trees cannot be satisfied. 

Imputations are made from sequential CART models. Essentially, the Y(k) estimate f(Y(k)|X, Y
−(k), Z(k)). 
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All Y 
−(k) are predictors so that as much information as possible is used for imputations, which helps to 

maintain consistency in relationships. For example, suppose there are two strongly related variables to be 

replaced, Y(a) and Y(b), , and Y(a) has many more values to be replaced than does Y(b). Including Y(b) as 

a predictor when fitting Y(a), and vice-versa, appropriately results in imputations that reflect dependencies 

between Y(a) and Y(b) (assuming Y(a) splits on Y(b) and Y(b) splits on Y(a)). On the other hand, fitting 

Y(a) without including Y(b), or vice-versa, inappropriately produces imputations that reflect conditional 

independece of Y(a) and Y(b), at least for some units. 

Variables are ordered for sequential imputation by the number of values to be replaced, going from largest 

to smallest. This helps preserve relationships for variables with smaller numbers of values to be replaced. 

To illustrate, consider two variables, Y(a) and Y(b), where a < b, and Z(a) = 1 for all units with Z(b) = 1. 

Suppose Y(a) is a strong predictor of Y(b) for the units with Z(b) = 1, so that Y(b) contains splits on Y(a). 

Further, suppose that there are many units with Z(a) = 1 and Z(b) = 0, and that Y(b) is not a strong 

predictor of Y(a) for these units. The Y(a), dominated by the units with Z(a) = 1 and Z(b) = 0, may not 

not contain splits on Y(b). If so, when Yb is imputed before Ya, the imputations for units with Zb = 1 will 

reflect conditional independence between Ya and Yb implied in Y(a). On the other hand, imputing Ya before 

Yb avoids this problem. 

When two or more variables have equal values of Z(k), the trees are fit in decreasing order of P(k), as 

illustrated in Figure 2. Essentially, this aims to impute the variables in decreasing order of dependency on 

each other. This helps preserve the strongest relationships among the Y(k) in the imputations. To illustrate, 

consider the example in Figure 2, in which Y(b) appears in Y(a) before Y(a) appears in Y(b), so that b < a. The 

trees indicate that Y(b) is a stronger predictor of Y(a) than Y(a) is of Y(b). Setting b < a passes this relationship 

on to the imputations, whereas setting a < b results in imputations that reflect a weaker relationship between 

Y(a) and Y(b) than those implied by the trees. 

The above examples illustrate some drawbacks to using sequential, single-tree CART models. First, 
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sequential CART models cannot guarantee relationships will be preserved, even when conditioning on all 

variables and choosing the order judiciously. Second, the imputations may not and probably will not come 

from legitimate joint probability density functions. The examples of the previous paragraphs illustrate this 

problem. Third, the imputations can be sensitive to the ordering of the sequence. 

Once the trees are fit and pruned, Bayesian bootstraps and, for continuous data, kernel density estimators 

are used to generate imputations. The Bayesian bootstrap draws values of some variable Y from a donor 

pool of selected values of the observed data. Let Yelig be the n0 × 1 vector of values of that make up the 

donor pool. Let nrep be the number of values to be drawn. The Bayesian bootstrap proceeds as follows. 

1. Draw (n0 − 1) uniform random numbers. Sort these numbers in ascending order. Label these ordered 

numbers as a0 = 0, a1, a2, . . . , an0−1, an0 = 1. 

2. Draw nrep uniform random numbers, u1, u2, . . . , uj , . . . , unrep . For each of these u, impute Yelig,j when 

aj−1 < u ≤ aj . 

The Bayesian bootstrap incorporates the additional uncertainty in the conditional distributions in each leaf 

due to having only a sample of values in each leaf. Sampling values from Yelig directly, i.e. the usual 

bootstrap, underestimates this uncertainty. Arguments for preferring the Bayesian bootstrap can be found 

in Rubin (1987, Chapter 4). 

For continuous data, we take the additional step of drawing values from an estimated density, fit using 

the bootstrapped values and a kernel density estimator. Values are drawn from the estimated density by the 

inverse cdf method. As stated previously, the primary reason for drawing from the density estimator rather 

than releasing the bootstrapped values is to avoid releasing real data values. The support of the density in 

each leaf Lkw stretches from the largest to the smallest value of Y(k) to allow for a wider range of possible 

values, which can help protect confidentiality. Additionally, this avoids assigning zero probability mass to 

values outside the range of observed values in each leaf. To ensure the density can be reasonably estimated, 
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Table 1: Description of variables used in the empirical studies 

Variable Label Range 
Sex X male, female 
Race R white, black, American Indian, Asian 
Marital status M 7 categories, coded 1–7 
Highest attained education level E 16 categories, coded 31–46 
Age (years) G 0 – 90 
Child support payments ($) C 0, 1 – 23,917 
Social security payments ($) S 0, 1 – 50,000 
Household alimony payments ($) A 0, 1 – 54,008 
Household property taxes ($) P 0, 1 – 99,997 
Household income ($) I -21,011 – 768,742 

the imputation algorithm must require that the bootstrapped values within any Lkw are not all identical. 

To reduce variance, the algorithm should require a minimum number of observed units in each Lkw. In the 

simulations in Section 4, ten observations are the minimum. Imputers can evaluate the sensitivity of their 

imputations to alternative minimum values. 

4 Simulation studies 

This section illustrates the performance of these sequential CART models using genuine data. All CART 

models are fit in S-Plus using the algorithm of Clark and Pregibon (1992). The first set of simulations mimics 

replacing sensitive variables and the second set mimics replacing key identifiers. Both simulations are based 

on a subset of public release data from the March 2000 U.S. Current Population Survey. The data comprise 

ten variables measured on 51,016 heads of households. The variables, displayed in Table 1, were selected 

and provided by statisticians at the U.S. Bureau of the Census. Similar data are used by Reiter (2003b) to 

illustrate and evaluate releasing fully synthetic data. 

Marital status, M , has seven types: M = 1 for married civilians with both spouses present at the home; 

M = 2 for married people in the armed forces with both spouses present at the home; M = 3 for married 

people with one spouse not present at the home; M = 4 for widowers; M = 5 for divorced people; M = 6 for 
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separated people; and, M = 7 for people who never have been married. Highest attained education level, E, 

increases from 31 to 46 in correspondence with years of schooling. As examples, E = 31 represents highest 

educational attainments of less than first grade; E = 35 represents highest educational attainments of ninth 

grade; E = 39 represents a high school degree; E = 43 represents a bachelor’s degree; E = 44 represents a 

master’s degree; E = 45 represents a professional school degree; and, E = 46 represents a doctoral degree. 

Marginally, there are ample numbers of people in each sex, race, marital status, and education category. 

Many cross-classifications have few or zero people, especially those involving minorities with M 6∈ {1, 7}. Out 

of the 51,106 people, there are 33,076 who have positive property taxes, 12,021 who receive social security 

payments, 1,677 who receive child support payments, and 206 who receive alimony payments. There are 132 

households with negative income, 582 with zero income, 5371 households with incomes at least $100,000, 

and the remainder with incomes between 0 and $100,000. The negative incomes are legitimate values: some 

households actually report paying out more money than they took in over the year. The distributions of 

positive values for all monetary variables are right-skewed. 

4.1 Simulating sensitive variables 

Imputers may decide to replace selected units’ values of sensitive variables with multiple imputations, then 

release the imputed and unreplaced values. This typically does not reduce the risks of re-identifications, but 

it can limit the risks of attribute disclosures. We mimic this strategy by considering S, I, C, and A to be 

sensitive, replacing S for all people with S > 0, I for all people with I > 100, 000, C for all people with 

C > 0, and A for all people with A > 0. Other values are not replaced and are released in all di. 

Each observed dataset, D, comprises n = 10, 000 randomly sampled households from the 51,106 house-

holds. There are m = 5 synthetic data sets generated for each D. Each di is generated using the CART 

models outlined in Section 3, with sequential order of imputation S − I − C − A. The trees are pruned 

so that in each leaf the values have variance greater than 0.1. This essentially requires the ten (or more) 
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Table 2: Simulation results when imputing sensitive variables: Simple estimands 

95% CI Coverage 
Estimand Q Avg. q̄5 Observed Synthetic 

Average income 52632 53351 94.6 67.4 
Average social security 2229 2229 94.6 94.5 
Average child support 139 136 93.7 94.0 
Average alimony 41 42 91.3 91.1 
% of households with income > 200,000 2.10 2.34 94.8 69.1 
% of households with social security > 10,000 10.53 10.27 94.2 87.6 
Coefficient in regression of alimony on: 

Intercept 4315 6537 89.2 84.4 
Income .14 .074 64.1 68.8 

Coefficient in regression of alimony on: 
Intercept 9846 10157 90.8 92.4 
Child support .078 .054 95.7 97.4 

Coefficient in regression of social security on: 
Intercept 2999 2988 93.1 93.0 
Income -.015 -.014 94.2 92.4 

observed values in each leaf not to be identical. In these data, the trees are almost never pruned, allowing 

us to illustrate, for all practical purposes, the highest attainable utility for this population when using the 

CART algorithm to simulate these variables. 

Table 2 and Table 3 summarize the results of 1000 runs of the simulation for a variety of estimands. 

Inferences are made using the methods of Section 2. In Table 2, the regressions include A on I and A on 
√ 

S for units with A > 0, and S on I for all units. In Table 3, the regression involving S uses only people 
√ 

with S > 0 and G > 54; the regression involving C uses only people with C > 0; and, the regression 

involving log(I) uses only people with I > 0. For all estimands, the finite population correction factor is used 

when determining the variances v. Reported statistics include the population values Q, the averages of the q̄5 

√ 
across the 1,000 simulations, and the percentages of observed data 95% confidence intervals (qobs ±1.96 vobs) 

and synthetic data 95% confidence intervals that cover their corresponding Q. 

For most estimands, the averages of the synthetic point estimates are close to their corresponding Q, 

and the coverages of synthetic 95% confidence intervals are reasonably close to the coverages for the cor-
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Table 3: Simulation results when imputing sensitive variables: Model estimands 

95% CI Coverage 
Estimand Q Avg. q̄5 Observed Synthetic 

√ 
Coefficient in regression of C on: 

Intercept -93.28 -59.09 93.3 77.3 
Indicator for sex=female 13.30 1.74 96.8 42.9 
Indicator for race=black -9.69 -6.72 96.6 94.9 
Education 3.37 2.84 93.2 89.2 
Number of youths in house √ 2.95 1.50 93.4 82.3 

Coefficient in regression of S on: 
Intercept 79.87 82.87 94.7 92.4 
Indicator for sex=female -13.30 -12.84 95.2 92.5 
Indicator for race=black -5.85 -4.62 94.9 89.0 
Indicator for race=American Indian -7.00 -5.28 94.2 97.9 
Indicator for race=Asian -3.27 -2.09 90.1 98.2 
Indicator for marital status=married in armed forces 2.08 -0.51 92.7 89.9 
Indicator for marital status=widowed 7.30 6.47 94.1 89.7 
Indicator for marital status=divorced -0.88 -1.07 94.7 93.4 
Indicator for marital status=separated -5.44 -4.64 96.0 97.9 
Indicator for marital status=single -1.54 -0.92 92.4 92.6 
Indicator for education=high school 5.49 5.52 95.9 95.9 
Indicator for education=some college 6.77 7.01 94.0 95.1 
Indicator for education=college degree 8.28 8.85 92.8 93.6 
Indicator for education=advanced degree 10.67 10.71 90.8 94.0 
Age 0.21 0.17 94.7 89.5 

Coefficient in regression of log(I) on 
Intercept 4.92 4.88 92.5 90.8 
Indicator for race=black -0.17 -0.17 95.5 95.0 
Indicator for race=American Indian -0.25 -0.25 87.5 87.8 
Indicator for race=Asian -0.0064 -0.0080 92.6 93.4 
Indicator for sex=female 0.0035 -0.00090 97.6 96.9 
Indicator for marital status=married in armed forces -0.028 -0.030 95.4 95.7 
Indicator for marital status=widowed -0.015 -0.017 95.4 95.7 
Indicator for marital status=divorced -0.16 -0.17 93.4 93.5 
Indicator for marital status=separated -0.24 -0.24 88.1 88.9 
Indicator for marital status=single -0.17 -0.18 92.5 92.5 
Education 0.11 0.11 92.9 90.8 
Indicator for household size > 1 0.50 0.50 91.1 91.0 
Interaction for females married in armed forces -0.52 -0.52 91.9 92.1 
Interaction for widowed females -0.31 -0.30 96.9 97.0 
Interaction for divorced females -0.31 -0.30 94.1 93.3 
Interaction for separated females -0.52 -0.52 90.8 90.6 
Interaction for single females -0.32 -0.31 93.9 93.7 
Age 0.044 0.044 93.5 93.5 
Age2 -0.00044 -0.00044 93.9 93.7 
Property tax 0.000037 0.000040 56.5 57.7 
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Table 4: Attribute disclosure limitation in simulation of imputing sensitive variables 

Variable Min. 1st Quartile Median 

RMSE 
S 175 1445 2317 
I 2138 20453 37664 
C 200 1179 1915 
A 1020 3040 5627 
RelRMSE 
S .02 .16 .25 
I .02 .15 .26 
C .08 .37 .57 
A .17 .41 .65 

responding observed data intervals. Several estimands–in particular average income, percentage of incomes 
√ 

above $200,000, and the coefficient of sex in the regression involving C–have poor synthetic data confidence 

interval coverages even though the observed data intervals have near 95% coverage. This results from biases 

in the q̄5, stemming from imputation models that do not perfectly reflect relationships in the data. 

To assess attribute disclosure risks for each Y(k), we assume the intruder would estimate unit j’s outcome 
Pm

Y(k),j by averaging the unit’s replaced values, Ŷ(k),j = Y(k)rep,ij . We then calculate the root mean i=1 

squared error (RMSE) and relative root mean squared error (RelRMSE) of this estimator for each unit: 

v 
u m 
u

X 
RMSE(k),j = t(Y(k),j − Ŷ(k),j )2 + (Y(k)rep,ij − Ŷ(k),j )2/((m − 1)m) (5) 

i=1 

RelRMSE(k),j = RMSE(k),j /Y(k),j (6) 

For any data set, the distributions of the RMSE(k),j and RelRMSE(k),j across all units with replaced 

values can be examined to ensure sufficient variability in the imputations. Table 4 displays averages across 

the 1000 simulation runs of various summaries of the distributions of these quantities. Median RelMSEs 

are typically 25% or more, suggesting imputations for most units have a wide range of uncertainty. When 

imputers require larger errors, stricter disclosure criteria can be used to prune the trees. 
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4.2 Simulating key identifiers 

Imputers may decide to replace selected units’ values of key identifiers with multiple imputations. This 

approach aims to reduce the risks of re-identifications. We mimic it by considering G, M , X , and R to be 

key identifiers, and replace their values for the same set of units specified in Section 4.1. Other values are 

not replaced and are released in all di. 

As before, each D comprises n = 10, 000 randomly sampled households, and there are m = 5 synthetic 

data sets generated for each D. The sequential order of imputation is G − M − X − R, which is decreasing 

in the P(k). The tree for G, treated as a continuous variable, is pruned so that the observed ages in each leaf 

have variance greater than 0.1. Imputed ages are rounded to the nearest integer. The trees for M , X , and R 

are pruned so that the observed values in each leaf are not identical. This guarantees a non-zero chance for 

each unit that its imputed values will differ from the ones in D. There is hardly any pruning of the age tree, 

but the sex and race trees are pruned by typically about 33% to meet the disclosure criteria. The marital 

status tree typically is pruned only slightly. 

Table 5 summarizes the results of 1000 runs of the simulation for estimands like those in Table 3. A few of 

the indicator variables from Table 3 are collapsed to speed up the simulations. Inferences for the averages of 

S, I, C, and A are not reported because they are identical to the observed data inferences. As a replacement, 

the average education level of black females is reported. For most estimands, the averages of the synthetic 

point estimates are close to their corresponding Q, and the coverages of the synthetic and observed data 
√ 

95% confidence intervals are reasonably similar. The coefficient of sex in the regression involving C again 

has poor synthetic data confidence interval coverage, indicating that the relationship between sex and C is 

not easily captured using CART models. 

To assess re-identification risks when releasing these partially synthetic data sets, we assume the intruder 

follows a simple strategy for guessing true values of the simulated key identifiers. For marital status, sex, 

and race, the intruder uses the most frequently occurring value among that unit’s imputations. When all 
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Table 5: Simulation results when imputing key variables 

95% CI Coverage 
Estimand Q Avg. q̄5 Observed Synthetic 

Avg. education for married black females √ 39.44 39.49 95.0 94.3 
Coefficient in regression of C on: 

Intercept -93.28 -84.77 94.1 92.7 
Indicator for sex=female 13.30 4.84 95.7 68.5 
Indicator for race=black -9.69 -4.39 95.2 84.0 
Education 3.37 3.35 93.8 93.6 
Number of youths in house √ 2.95 2.59 92.5 91.5 

Coefficient in regression of S on: 
Intercept 79.50 83.11 93.7 88.0 
Indicator for sex=female -13.34 -12.37 93.6 82.0 
Indicator for race=black -6.04 -5.70 94.6 94.1 
Indicator for race=American Indian -7.12 -4.27 93.3 96.1 
Indicator for race=Asian -3.22 -2.00 90.5 96.7 
Indicator for marital status=widowed 7.37 6.47 94.0 87.7 
Indicator for marital status=divorced -0.79 -0.83 93.4 95.8 
Indicator for marital status=single -1.46 -0.07 94.0 93.8 
Indicator for education=high school 5.51 5.36 96.4 96.2 
Indicator for education=some college 6.78 6.56 94.5 93.9 
Indicator for education=college degree 8.31 8.12 92.9 93.4 
Indicator for education=advanced degree 10.72 11.14 91.2 90.7 
Age 0.22 0.16 93.9 87.5 

Coefficient in regression of log(I) on 
Intercept 4.92 4.93 92.4 92.7 
Indicator for race=black -0.17 -0.17 93.5 92.5 
Indicator for race=American Indian -0.25 -0.24 88.6 90.7 
Indicator for race=Asian -0.0064 -0.0015 91.5 90.7 
Indicator for sex=female 0.0035 -0.0030 96.0 94.0 
Indicator for marital status=married in armed forces -0.028 -0.11 94.4 88.6 
Indicator for marital status=widowed -0.015 -0.083 95.8 80.0 
Indicator for marital status=divorced -0.16 -0.16 92.1 92.3 
Indicator for marital status=separated -0.24 -0.23 87.6 89.9 
Indicator for marital status=single -0.17 -0.17 92.1 94.3 
Education 0.11 0.11 94.3 93.7 
Indicator for household size > 1 0.50 0.50 92.7 92.7 
Interaction for females married in armed forces -0.52 -0.40 91.0 84.6 
Interaction for widowed females -0.31 -0.25 97.0 86.3 
Interaction for divorced females -0.31 -0.29 93.0 94.0 
Interaction for separated females -0.52 -0.48 89.2 89.8 
Interaction for single females -0.32 -0.30 92.0 91.4 
Age 0.044 0.043 94.4 93.6 
Age2 -0.00044 -0.00043 94.8 95.1 
Property tax 0.000037 0.000040 51.7 52.0 
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five of a unit’s imputations are unique, the intruder picks one at random. Using this strategy, typically an 

intruder matches exactly the martial status, sex, and race in 53% of the units with replaced data. For age, we 

consider two intruder strategies: (i) use the most frequently occurring value among the unit’s imputed ages, 

and (ii) use the average of the unit’s imputed ages. Using the first strategy, typically .002% of the intruder’s 

guesses match exactly on all four key identifiers. Using the second strategy, typically 2.6% of the guesses 

match on all four key identifiers. With either strategy, about 12.5% of the guesses have, simultaneously, 

exact matches on marital status, sex, and race, and ages within two years of the age in the observed data. 

Clearly, simulating age accounts for most of the disclosure protection. 

CART imputations for key identifiers can be sensitive to the disclosure criteria. For the categorical 

variables, requiring leaves not to have more than 90% of any one value typically results in pruned sex and 

race trees with just a handful of splits, producing conditional independences in the imputations. Using the 

90% criterion to generate synthetic data, four of the synthetic 95% confidence intervals have less than 1% 

coverage, and five have between 1% and 50% coverage. The gains in disclosure protection are not large: 

2.2% of units match on all four characteristics as compared to 2.6%, and 46% match on all characteristics 

but age as compared to 53%. These reductions in disclosure risk are not worth the large sacrifices in utility. 

5 Concluding Remarks 

The simulations in this article suggest that CART models have promise as a method for generating partially 

synthetic data sets. The primary drawback of the approach is the sequential nature of the imputations, which 

can introduce conditional independence structures into the released data. This issue also affects the use of 

CART models, or any sequential imputation scheme, for imputation of missing data. Further research would 

help quantify the sensitivity of inferences from multiply-imputed data sets to the ordering of the variables 

used in the sequential imputations. 

This article represents some initial results on the use of CART models for imputations, and it suggests 
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topics for future research. The potential advantages of CART models over parametric models could be quan-

tified, at least somewhat, by simulation studies comparing CART-generated and parametric imputations in 

a realistically complex partially synthetic setting. It also would be informative to investigate the payoffs 

to using Bayesian approaches to generating trees (Denison et al., 1998a; Chipman et al., 1998, 2000). Ad-

ditionally, there may be some advantage to using multivariate adaptive regression splines (Friedman, 1991; 

Denison et al., 1998b) to build trees instead of CART algorithms. 
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