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INTRODUCTION  

Title 13, U.S.C., Section 9 and the newly adopted CIPSEA of 2002 impose heavy financial fines and prison penalties for a 
public disclosure of sensitive statistical information. Currently, complementary cell suppression procedures are mostly used 
by statistical agencies to protect sensitive tabular data from disclosure. It is generally believed that the linear programming 
(LP) based complementary cell suppression procedures offer the best protection from wrongful disclosure of statistical 
information. In recent years LP-based automated audit procedures have been advocated and are being used to ensure the 
adequacy of protection offered by cell suppression patterns.  LP-based lower and upper bounds for suppressed tabular cells 
are typically used to determine the adequacy of disclosure control measures.  This paper identifies limitations of 
conclusions drawn using LP-based audit procedures. We utilize commonly used analytical procedures to demonstrate the 
relative ease with which statistical disclosure of sensitive tabular data could occur. We conclude by providing additional 
safeguard measures required to avoid such disclosures.  
 
 
 
CURRENT  PRACTICE 
 

 

 

 

 

 

The complementary cell suppression methods, as currently practiced by national statistical offices (NSO), enable data users 
to determine a multi-dimensional solution space surrounding the “incomplete” tabulation available in the public domain.  
Linear programming (LP) based lower and upper bounds on the withheld tabular cells are used to establish the boundaries 
for the solution space. 

NSOs are required to ensure that the real complete table containing sensitive cells is well hidden inside the solution space a 
safe distance away from the edges of the solution space.  The solution space typically contains multiple feasible solutions 
that satisfy the equality constraints associated with the complete real table structure.  

Feasible solutions residing close to the edges of the solution space tend to yield poor estimates of the values of withheld 
cells.  On the other hand, feasible solutions located away from the edges of the solution space and toward the “centroid” of 
the solution space tend to be of better quality and more closely resemble the hidden real complete table. This phenomenon 
has the potential to cause the disclosure of sensitive tabular data protected by complementary cell suppression methods. 

Typically in an attempt to minimize the information loss, NSOs are under pressure to avoid over protection of sensitive 
tabular cells. The over protection of sensitive tabular cells results in an increase in the size of the solution space.  

As per current practice, the solution space is expected to be “just right” in size. Smaller than a minimum required solution 
space, determined by LP-based lower and upper bounds, is known to be unacceptable. Larger than a minimum required 
solution space, determined by LP-based lower and upper bounds, is thought to cause unnecessary information loss. As a 
result, in recent years much of the efforts in tabular data protection area have been concentrated in keeping the cell 
suppression related solution space to a bare minimum.  

 1

mailto:Ramesh.Dandekar@EIA.DOE.gov
http://mysite.verizon.net/vze7w8vk/


     
 
 
 
 

 

 

CURRENT TOOLS 

Optimization Technology Center of Northwestern University and Argonne National Laboratory at  
http://www-unix.mcs.anl.gov/otc/Guide/faq/  describes linear programming tools as follows: 

“Two families of solution techniques are in wide use today. Both visit a progressively improving series of trial solutions, 
until a solution is reached that satisfies the conditions for an optimum. Simplex methods, introduced by Dantzig about 50 
years ago, visit "basic" solutions computed by fixing enough of the variables at their bounds to reduce the constraints Ax = 
b to a square system, which can be solved for unique values of the remaining variables. Basic solutions represent extreme 
boundary points of the feasible region defined by Ax = b, x >= 0, and the simplex method can be viewed as moving from 
one such point to another along the edges of the boundary. Barrier or interior-point methods, by contrast, visit points 
within the interior of the feasible region. …….” 
 

 

The increased potential for statistical disclosure of the withheld sensitive tabular data is directly related to the basic 
property of interior-point methods to visit points within the interior of the feasible region, where the real complete table 
containing sensitive tabular cells resides.  

We use the following simple illustrative example supplied by Prof. Jordi Castro http://www-eio.upc.es/~jcastro/  to further 
clarify the difference in the working of two families of LP solvers. 
 

 

 

 
 

min 0 
st.  x1 + x2 + x3 = 3 
x1, x2, x3 > = 0 

Interior point methods will provide the solution   x1 = x2 = x3 = 1 

The simplex methods will provide some xi = 3, the other two xj = 0. 
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A knowledgeable individual can easily exploit the working knowledge of interior-point methods to obtain “high quality” 
additive point estimates for missing tabular cells by (1) not specifying the objective function (or by using a dummy 
objective function) and (2) capturing the first feasible solution that satisfies the tabular data equality constraints. A 
moderately sized solution space, in combination with the tendency of interior point methods to the visit interior of the 
feasible region, will always ensure high precision estimates. These estimates are most likely to cause the statistical 
disclosure of withheld sensitive cells.        
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ILLUSTRATIVE EXAMPLE 
 

 
 
 

 

 

 

In Table 1 we have used the 3-D tabular data example from Dandekar/Cox (2002) paper available from  
http://mysite.verizon.net/vze7w8vk/ to illustrate the severity of the disclosure problem associated with current SDL 
practice. The table contains 24 sensitive cells.  The table is protected by using 44 complementary cell suppressions. Table 2 
shows the LP-based lower and upper bounds for the 24 sensitive cells. The p percent rule (p=10%) was used to identify the 
sensitive cells. Except for two minor violations for sensitive cell #6 and #18, the suppression pattern associated with the 44 
complementary cells fully satisfies the current requirement for “safe table”.       

STATISTICAL ESTIMATION 

Typically, statistical estimates for missing table cell values can be derived by using 1) additive point estimates 2) method of 
averages and 3) peak densities associated with frequency distributions. The last two methods, by themselves, do not provide 
additive tabular estimates. However, when combined with the controlled tabular adjustment (CTA) method of 
Dandekar/Cox (2002), the last two methods are capable of providing additive tabular estimates. 

We have used the interior-point based, PCx linear programming solver available from http://www-
fp.mcs.anl.gov/otc/Tools/PCx/ to illustrate the severity of the disclosure problem resulting from statistical estimates for 
sensitive table cells. 

Table 3 provides additive point estimates for missing sensitive cells1 by using the conventional simplex method and the 
PCx solver. The null-objective function was used to derive the additive point estimates. Three of the simplex estimates and 
14 of the PCx estimates violate protection level for the sensitive cell causing statistical disclosure. These findings are 
consistent with the properties associated with the two families of solution techniques as described on the Argonne National 
Laboratory web site above. 
 

 

 

 
 

Table 4 provides statistics based on averages from 138 LP solutions obtained by using the PCx software.  Half of the LP 
solutions (sixty-nine) were for a minimization of the objective function. The remaining LP solutions were for a 
maximization of the objective function. Sixty-eight solutions in each group were obtained by using only one variable in the 
objective function. One solution in each group included all the sixty-eight variables in the objective function.  Sixteen of 
the twenty-four averages are within the prohibited protection range causing the statistical disclosure of 16 sensitive cells. 

Table 5 uses the outcome from the same 138 LP solutions to generate the frequency distribution of estimates for missing 
sensitive cells.  The table contains three lines of output for every sensitive cell. The first line in the table displays the true 
cell value of the sensitive cell (714 for the first sensitive cell) and the LP-based audit range (409 for the first sensitive cell).  

In the next two lines we divide the audit range into ten equal intervals and summarize the frequency count resulting from 
the 138 LP runs. The first line shows the actual count, while the second line shows the interval values associated with the 
count. For the first sensitive cell, the peak density of 97 is within the sixth interval ranging from 697 to 738. The 
comparison of the location of the peak of the density function relative to the true cell value reveals statistical disclosure for 
almost all of the twenty-four sensitive cells. 

TARGETING THE CENTROID OF THE SOLUTION SPACE 
 
Knowing that the real complete table is typically hidden some where in the vicinity of the centroid of the solution space, a 
knowledgeable individual can also use any general purpose LP solver (not necessarily interior point solver) to derive “high 
precision” additive point estimates for the suppressed tabular cells.    Related mathematical formulation requires that each 
suppressed tabular cell ( Xestimate ) be represented by three  variables in the tabular data equality constraints, namely  Xcentroid, 
Yplus and  Yminus . 

                                                 
1 Space limitations prohibit us from providing values for non-sensitive tabular cells. 
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Where Xcentroid  = 0.5 * Xlower_LP_bound   + 0.5 * Xupper_LP_bound ,  

 Xestimate    =   Xcentroid  + Yplus  -  Yminus          and 

Yplus and  Yminus     are minimal plus or minus corrective adjustments required to ensure additivity of tabular cells  

An individual with advanced computation skills could even go further and use either random Monte Carlo simulations or 
some sophisticated stratification scheme to obtain density functions (and peak density values) for the missing table cell 
values by using the following simple equation: 

Xcentroid  = R * Xlower_LP_bound   + ( 1.0 – R ) * Xupper_LP_bound 

Where R = Random Number between zero and one 

If the individual further decides to restrict the search for the feasible solution, say to within a 10 percentile range around the 
centroid of the solution space, then the values for the random number could be restricted to within 0.4 and 0.6 to achieve 
that objective. 

CONCLUSIONS AND RECOMMENDATIONS 

As a result of the easy access to the interior-point methods, such as PCx software tool, the LP-based lower and upper 
bounds of tabular data cell suppression patterns can no longer be used alone to judge the adequacy of the cell suppression 
pattern.  

Conventional statistical analytical measures such as additive point estimates, method of averages and peak density values 
associated with frequency distributions, in combination with interior point methods, could be used with trivial efforts to 
cause a statistical disclosure of sensitive tabular data.   

Contrary to current belief, over protection of the sensitive tabular data reduces the possibility of statistical disclosure 
resulting from use of interior point LP solvers. As a result, the over protection of sensitive tabular data is no longer an 
undesirable property of cell suppression pattern.  

The current practice of using relatively small size cells as complementary suppression cells has a tendency to produce 
tighter LP bounds with sharp peak density functions. Therefore, this practice should be used with caution.  

Use of cost functions such as reciprocal of cell value or log(cell value)/cell value to develop complementary cell 
suppression pattern targets large size cells. Complementary cell suppression pattern based on these functions has a 
tendency to produce wider protection intervals with flatter density functions. For this reason, these cost functions should be 
given a serious consideration. 

With new technical challenges arising from the easy access to interior point methods, NSOs might want to explore the 
possibility of switching form the complementary cell suppression methods to other tabular data protection methods.   

Emerging methods such as synthetic tabular data, which also is referred to as controlled tabular adjustment (CTA), offers 
sensitive tabular data required protection from disclosure without disclosing the solution space associated with the CTA 
pattern. The lack of complete information pertaining to the solution space associated with CTA pattern eliminates the 
possibility of the outside user deploying standardized external procedures to estimate true value for sensitive cells on a 
massive scale.  
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Abstract:  Complementary cell suppression is used for statistical 
disclosure limitation in tabular data, especially for magnitude data such 
as aggregate economic statistics.   Cell suppression results in missing 
data, which complicates and can thwart thorough analysis.  Suppressed 
entries can be replaced by interval estimates of their hidden values, but 
this too presents analytical challenges and can distort additivity to 
totals.  Complementary cell suppression is an NP-hard computational 
problem.  Even under optimal suppression, a data intruder can estimate 
expected values of suppressed entries, and often these estimates are 
close to original values.  We introduce a new concept, synthetic tabular 
data, for limiting disclosure of sensitive information presented in 
tabular form.  Synthetic tabular data is relatively easy to generate and 
provides significantly more information and flexibility than tables 
subject to suppression.  The accuracy of synthetic cells is easy to 
control, making them useful for dissemination of statistical information. 
Keywords:  statistical disclosure limitation, statistical confidentiality  

1.  INTRODUCTION 
Statistical disclosure occurs when released statistical data permit close 
approximation of sensitive information pertaining to an individual 
respondent or unit of analysis.  A tabulation cell whose value closely 
approximates sensitive individual data is a sensitive cell. A cell is 
sensitive if its value equals the total for some statistic of data for 
only one or two respondents.  Furthermore, if two respondents dominate 
the cell total, viz., the total contribution of all but the two largest 
contributors represents only a small fraction of the largest 
contribution, then the second largest can subtract its contribution from 
the cell total to obtain a narrow estimate of the largest.  Values of 
sensitive cells must be protected, viz., obscured to the point that 
estimates of this sort of sensitive individual data are sufficiently 
imprecise.  Federal Committee on Statistical Methodology (1994) provides  
an overview of statistical disclosure and disclosure limitation methods. 
Procedures to protect sensitive cells in tabular data have evolved over 
the last four decades.  From the very beginning national statistical 
offices realized that simply withholding the value for sensitive cells 
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was insufficient to protect sensitive information in tables containing 
marginal totals. Complementary cell suppression (Cox 1980, 1995) was 
introduced and practiced by statistical offices to protect sensitive 
cells from disclosure through manipulation of additive relationships in 
statistical tables.  Complementary cell suppression is aimed at assuring 
that exact interval estimates (lower and upper bounds) of the value of 
each suppressed sensitive cell are at a safe distance from the actual 
cell value, viz., lie within an interval at least as broad as that 
defined by predetermined protection limits (Cox 2001).  (A 
generalization, range protection, allows protection limits to vary while 
enforcing a minimum distance between them.)  In the largest-second 
largest contributor scenario, these limits equal a few percent of the 
largest contribution below and above the cell value.  Cox (1981) provides 
a theory and algorithms for computing protection limits. 
 

 

 

Early approaches to complementary suppression were based on linear 
equations (Fellegi 1972) and later linear programming (Sande 1984).  
Several approaches exploited properties of two-dimensional tables, e.g., 
assuring at least two suppressions in each row or column containing 
suppressions (Cox 1980) and network models for complementary cell 
suppression (Cox 1987, 1995), but, although efficient, such approaches do 
not generalize from two-dimensional to multi-dimensional tables or from 
simple hierarchies to complex aggregation structures (Cox and George 
1989).  Complementary cell suppression has been shown to be an NP-hard 
problem (Kelly et al. 1992), even for one-dimensional tables, making the 
existence of a computationally efficient, optimal method unlikely.  
Recent approaches are based on integer linear programs and branch-and-cut 
methods from integer programming (Fischetti and Salazar 2000). 
Tables with suppressions are difficult to analyze.  In lieu of 
suppressing cell values, it has been suggested, e.g., by Gordon Sande, 
that suppressions be replaced by their exact interval estimates.  This is 
a step in the right direction, but is still demanding computationally and 
does not go sufficiently far in assuring ease-of-use for disclosure-
limited tabular data.  By using commonly practiced missing data 
techniques, e.g., iterative proportional fitting (Bishop et al. 1975) and 
the E-M algorithm (Little and Rubin 1987), probabilistic estimates for 
suppressed tabular cells can be computed, sometimes with great accuracy, 
sharply reducing the effectiveness of complementary cell suppression for 
statistical disclosure limitation. A third approach, introducing 
multiplicative noise into the underlying microdata (Zayatz et al. 2000), 
has been offered but not pursued.     
In this paper, we demonstrate a new and different approach to limiting 
disclosure from sensitive tabular data cells.  The method applies equally 
to two-dimensional tables as to multi-dimensional or linked tables, and 
to hierarchical as well as to complex tabular structure.   We completely 
discard notions of complementary suppression and interval data and in 
their place advocate the use of synthetic tabular data to disseminate 
statistical information presented in tabular form.  The essence of this 
approach is to replace each sensitive value with a value at a sufficient 
distance from the true value, and to adjust nonsensitive cell values 
minimally to restore additivity to totals.  This method completely 
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eliminates information loss associated with complementary suppression 
procedures, restores analytical tractability, requires a fraction of the 
computational resources required by complementary cell suppression 
methods, and offers multiple alternative outputs through choice among 
several objective functions satisfying a wide variety of requirements 
meaningful to national statistical offices.  This concept permits 
extension in various directions—theoretical, computational, and practical 
implementation.  Examination of these opportunities is begun here. 
 

 
 

 

 

 

Section 2 presents the underlying concept of synthetic tabular data and a 
precise mathematical formulation for the associated computational 
problem.  This is a mixed integer linear programming problem involving 
binary variables.  Because such problems are difficult to impossible to 
solve computationally, a heuristic is provided for assigning the binary 
variables, leaving only a linear program to be solved.   Section 3 
illustrates the method in three dimensions, and two examples based on 
complex linked tabular structure are presented in Section 4. Each of 
these examples is compared to an optimal or near-optimal suppression 
solution.  The use and selection of heuristics is examined through 
extensive simulation in Section 5. The question of what it means to 
protect sensitive cells is reexamined in Section 6, leading potentially 
to less distortion of original data.  Concluding comments are provided in 
Section 7.  

2. SYNTHETIC TABULAR DATA:  CONCEPT AND MATHEMATICAL 
FORMULATION 

The objective in generating synthetic tabular data is to closely mimic 
the original tabular data, subject to obscuring sensitive cell values to 
a sufficient extent.  The underlying concept is simple:  The value of 
each sensitive cell is replaced by a synthetic value selected to be at a 
safe distance away from the true cell value. As a starting point, we set 
this distance to be either the sensitive cell’s lower or its upper 
protection limit; alternatives are examined in Section 6.  Some or all of 
the nonsensitive cell values are then adjusted from their true values by 
as small an amount as possible to restore additivity to totals within the 
tabular system. 
Within our framework, adjustments to nonsensitive cell values can be 
controlled in various ways.  Selected nonsensitive cells, e.g., zero 
cells, can be exempted from change. Adjustments can be confined to within 
meaningful limits such as sampling variability.  One of several linear 
objective functions can be used to measure and assure minimum deviation. 
Tabular data systems with marginal entries can be represented by their 
system of equations in matrix form:  MX = 0.  Column vector X represents 
the tabulation cells of the system; x* represents the original data. 
Matrix M is the aggregation matrix representing the tabular structure 
among the cells.  The entries of M are –1, 0 or +1:  each row of the M 
corresponds to one aggregation (tabular equation) in which “+1” denotes a 
contributing internal cell and “–1” a marginal cell.  With this notation, 
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the mathematical structure of optimal synthetic tabular data is specified 
below by a mixed integer linear programming (MILP) formulation, analogous 
to that introduced in Cox (2000). 
 

 
 
Notation

i  =  1, …, p:  denote the p sensitive cells 
i  =  p+1,…, n: denotes the n-p nonsensitive cells 
Ii =   binary (zero/one) variable denoting selection of the  

lower/upper limit for sensitive cell i = 1,…,p 
  LPROTECTi = lower deviation required to protect 

sensitive cell i = 1,…,p 
  

 
 

 

 
    
 

 

 
 

    

 

UPROTECTi = upper deviation required to protect sensitive 
cell i = 1,…,p  

  yi
  y

+ = positive adjustment to cell value i 
i

  UB
- = negative adjustment to cell value i 

Bi i
  c

, LB  = upper/lower cell bounds on change to cell i 
i  =  cost per unit change in cell i  

MILP for Optimal Construction of Synthetic Tabular Data 

Min ∑ ci  ( yi+ + yi-  )  
Subject to: 

 
For i = 1,…, n: 

M (  y + –  y -  ) = 0 
0  ≤  yi+  ≤  UBi 
0  ≤  yi-   ≤  LBi  
 

For i = 1,…, p: 

yi+    ≥  LPROTECTi  * Ii 
yi-     ≥  UPROTECTi   * ( 1 – Ii  ) 

After solution of the MILP, the synthetic tabular data t = (ti) is given 
by:  ti = x*i  + yi+ - yi- .  Except as noted below, costs ci  are 
nonnegative, which implies that yi+ yi- = 0, viz., adjustment in a 
specific direction is indicated.  
Five different cost functions are commonly used. They are: (1) constant, 
(2)log(1 + value), (3) value, (4) 1/(1+value), and 
(5) log(1+value)/(1+value), where ‘value’ denotes the cell value.   
In general, mixed integer linear programming formulations are suitable 
only to solve small problems. We introduce a simple heuristic for 
selecting the binary I-variables, thereby reducing the problem to a 
linear programming formulation, which in practice can be efficiently 
solved for large and complex tabular structures. 
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The heuristic choice of assignment of sensitive cells to their 
lower/upper bound can be made in several ways.  To illustrate our method, 
we introduce the following simple heuristic. 
 

• Arrange all the sensitive cells in the table in an increasing 
order of magnitude of the cell values. 

• Using an alternating sequence, assign value zero or one to the 
binary constant associated with each sensitive cell. 

• When the marginal cell is sensitive and there are multiple 
internal sensitive cells, the direction of change of the marginal 
cell is reset to the net direction of change among the internal 
sensitive cells (when such exist). 

• Any heuristic choice runs the risk of creating an infeasible 
problem.  To ensure feasibility, we assign very high cost to 
adjustment of the sensitive cell in the opposite direction. 

 
Other possible variations on the heuristic include:  assign all sensitive 
cells to their lower (or upper bound), and, assign directions of change 
randomly.  More complicated heuristics are also possible.  In Section 5 
we conduct a sensitivity analysis on the outputs based on these 
variations. As illustrated in Section 5, choice of heuristic appears to 
have minimal effect on quality and usefulness of the results. 
 
 
 
3.  ILLUSTRATION: THREE-DIMENSIONAL TABLE 
We illustrate the method for a hypothetical three-dimensional table, 
containing 10 columns, 6 rows and 4 levels.  Our table contains 191 non-
zero cells, of which 24 cells are sensitive cells.  It is customary, but 
not in all cases necessary, to exempt zero cells from change as, e.g., 
some zero cells are structural zeroes.  We do so here.  For simplicity, 
we assume symmetric protection, viz.,   LPROTECTi = UPROTECTi = PROTi.  
This is also customary. 
 

 
 
 

 

The location of the sensitive cells, their cell values and required cell 
protection limits are illustrated in Table 1. 

          Table 1:  Sensitive Cells and Protection Limits 
|  Col Row Lev Val Prot|  Col Row Lev Val Prot|  Col Row Lev Val Prot| 
|  === === === === ====|  === === === === ====|  === === === === ====| 
|   2   1   1  714   39|   2   1   2  539   59|   2   4   3  644   35| 
|   4   1   2   70    7|   4   1   3  614   34|   4   2   2  786   87| 
|   4   2   3  928   51|   4   4   2  382   42|   4   6   2 1238   17| 
|   5   1   1  140    7|   6   2   2 1074   59|   6   3   2  544   30| 
|   7   1   3  549   61|   7   3   2  631   70|   7   5   2  726   40| 
|   7   5   3  134    7|   8   1   3   92   10|   8   4   2 1050   58| 
|   8   5   1  664   36|   8   5   4  664   36|   9   2   1 1042   57| 
|   9   3   3  820   91|   9   5   2 1598   88|   9   5   4 1598   88| 
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Using traditional complementary cell suppression techniques, following 
Kelly et al. (1992) and Zayatz (1992), our test example requires 39 
complementary suppressions to protect 24 sensitive cells, displayed in 
Table 2.  The complementary cells are marked by a symbol c next to the 
cell value, and the sensitive cells are marked by symbol w. In addition, 
gray shades identify suppressed cells to emphasize the numeric values 
hidden from display.  The complementary cell suppression in this example 
results in significant information loss, reducing the usefulness and 
usability of the table useless for many practical applications. 
 
To generate a synthetic table that mimics Table 2 while limiting 
disclosure as specified in Table 1, we use the procedure described in 
Section 2.  We choose costs equal to the cell value (3), which has the 
effect of targeting smaller nonsensitive cells for adjustment. This 
choice is arbitrary but in keeping with, e.g., past practice for U.S. 
Economic Censuses (Cox 1980, 1995). The cell value adjustments are such 
that resulting table is additive in all the dimensions and at the same 
time the published estimates for the sensitive cells are at one of the 
outer limits of their protection range.  
   Table 2:  Cell Suppression—(10x6x4)Table

    
6764   714w 3356  4067c  140w   --  3932  1478c   -- |20451 
1994c   --  5593    --  3022  3504c   --  3220  1042w|18375  
3744c   --  3708    --  3678c 2502c   --    --    -- |13632  
2810c10632c   --  2445c   --    --  2313  2978  7548c|28726  
3682    --    --    --  4667  1988c 1748   664w   -- |12749  
------------------------------------------------------------- 
18994 11346 12657  6512 11507  7994  7993  8340  8590|93933  
   

 

  --   539w   --    70w   --  7472   715c 3832    -- |12628  
2253c   --  4948   786w  472  1074w 1830  5030    -- |16393  
 640c   --   986    --    --   544w  631w   48c  750c| 3599  
1334c   --  1016   382w 3175  3302c 3803  1050w   -- |14062  
1648  2814    --    --    --  2102c  726w   --  1598w| 8888  
------------------------------------------------------------- 
5875  3353c 6950  1238w 3647 14494  7705  9960  2348 |55570  
 
 --  3552c  3476   614w 1916c 1131   549w   92w 1772 |13102  
 --    --   3222   928w   --    --   308c  429    87c| 4974  
4145   --     --  3692  2115c 4196   414c 3804c  820w|19186  
5995  644w    --    --  2410  1677c   --  1912c 4134c|16772  
2016    --    --  2212  2826  1627c  134w   --    -- | 8815  
------------------------------------------------------------ 
12156 4196c 6698  7446c 9267  8631  1405  6237  6813 |62849  
6764  4805  6832  4751  2056  8603  5196  5402  1772 |46181  
4247   --  13763  1714  3494  4578  2138c 8679  1129c|39742  
8529   --   4694  3692  5793  7242  1045c 3852c 1570c|36417  
10139 11276 1016  2827  5585  4979  6116  5940 11682 |59560  
7346  2814    --  2212  7493  5717  2608   664w 1598w|30452  
------------------------------------------------------------- 
37025 18895 26305 15196 24421 31119 17103 24537 17751 212352  
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Table 3 summarizes the cell locations and magnitude of the controlled 
adjustments to true cell values. We have highlighted sensitive cells, in 
addition to marking them with symbol w, so that readers can easily verify 
that adjustments to sensitive cells are at either of their respective 
otection limits.   pr

   
           Table 3:  Controlled Adjustments to (10x6x4)Table 

 

   

   

   

 

 

        --    39w   --   -41    -8w   --    --    10    -- |   --  
        --    --    --    --    18    13    --    26   -57w|   --  
        --    --    --    --     8    -8    --    --    -- |   --  
        --   -35    --   -42    --    --    20    --    57 |   --  
        --    --    --    --    --    -5    41   -36w   -- |   --  
     ============================================================= 
        --     4    --   -83    18    --    61    --    -- |   --  
        --   -68w   --     7w   --    --    61    --    -- |   --  
        --    --    --    87w  -18   -59w   --   -10    -- |   --  
        --    --    --    --    --    30w  -70w  -48    88 |   --  
        --    --    --    42w   --   -80   -20    58w   -- |   --  
        --    19    --    --    --   109   -40w   --   -88w|   --  
     ============================================================= 
        --   -49    --   136w  -18    --   -69    --    -- |   --  
        --    10    --    34w    8    --   -61w  -10w   19 |   --  
        --    --    --    51w   --    --  -164   -16   129 |   --  
        --    --    --   -33    -8   -22    70    84   -91w|   --  
        --    35w   --    --    --    80    --   -58   -57 |   --  
        --    --    --  -105    --   -58   163w   --    -- |   --  
     ============================================================= 
        --    45    --   -53    --    --     8    --    -- |   --  
        --   -19    --    --    --    --    --    --    19 |   --  
        --    --    --   138    --   -46  -164    --    72 |   --  
        --    --    --   -33    --    --    --    36    -3 |   --  
        --    --    --    --    --    --    --    --    -- |   --  
        --    19    --  -105    --    46   164   -36w  -88w|   --  
     ============================================================= 
        --    --    --    --    --    --    --    --    -- |   --  

After applying the linear programming controlled adjustments to the 
original table, synthetic Table 4 results. Once again, we highlight the 
sensitive cells for ease of understanding. In a real application only the 
synthetic values are published. Depending on the accuracy of the data, 
statistical offices might attach to the cost function quality indicators 
designed to select cells of lower quality for adjustment, or for larger 
adjustment.  Alternatively, the LB and UB could be based on sampling or 
measurement error.  This is discussed further in Section 5.    
In synthetic Table 4, true values are published for 106 cells. For the 
remaining 85 cells, published cell values are adjusted sufficiently from 
their true values to protect the sensitive cell values from disclosure 
within their protection interval. Most of the cell values of the marginal 
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cells are unaffected in the synthetic table, and the table is additive in 
all dimensions. 
 
                  Table 4:  Synthetic (10x6x4)Table  

  

   

   

   

 
 

 

 

 

      6764   753  3356  4026   132    --  3932  1488    -- |20451  
      1994    --  5593    --  3040  3517    --  3246   985 |18375  
      3744    --  3708    --  3686  2494    --    --    -- |13632  
      2810 10597    --  2403    --    --  2333  2978  7605 |28726  
      3682    --    --    --  4667  1983  1789   628    -- |12749  
     ------------------------------------------------------------- 
     18994 11350 12657  6429 11525  7994  8054  8340  8590 |93933  
        --   471    --    77    --  7472   776  3832    -- |12628  
      2253    --  4948   873   454  1015  1830  5020    -- |16393  
       640    --   986    --    --   574   561     0   838 | 3599  
      1334    --  1016   424  3175  3222  3783  1108    -- |14062  
      1648  2833    --    --    --  2211   686    --  1510 | 8888  
     ------------------------------------------------------------- 
      5875  3304  6950  1374  3629 14494  7636  9960  2348 |55570  
        --  3562  3476   648  1924  1131   488    82  1791 |13102  
        --    --  3222   979    --    --   144   413   216 | 4974  
      4145    --    --  3659  2107  4174   484  3888   729 |19186  
      5995   679    --    --  2410  1757    --  1854  4077 |16772  
      2016    --    --  2107  2826  1569   297    --    -- | 8815  
     ------------------------------------------------------------- 
     12156  4241  6698  7393  9267  8631  1413  6237  6813 |62849  
      6764  4786  6832  4751  2056  8603  5196  5402  1791 |46181  
      4247    -- 13763  1852  3494  4532  1974  8679  1201 |39742  
      8529    --  4694  3659  5793  7242  1045  3888  1567 |36417  
     10139 11276  1016  2827  5585  4979  6116  5940 11682 |59560  
      7346  2833    --  2107  7493  5763  2772   628  1510 |30452  
     ------------------------------------------------------------- 
     37025 18895 26305 15196 24421 31119 17103 24537 17751 212352  

4.  ILLUSTRATION:  MULTI-DIMENSIONAL LINKED TABLES 
The procedure of Section 2 for generating synthetic tabular data is 
applicable to all multi-dimensional or multi-dimensional linked tables.  
We next provide the overall performance statistics for synthetic tables 
based on two test examples of multi-dimensional linked tables. 
The first test example consists of two five-dimensional linked sections 
of a six-dimensional table (6x4x16x4x4x4).  The table contains 1254 non-
zero cells. Of these, 1089 cells are nonsensitive and 165 cells are 
sensitive. Fischetti and Salazar (2000) determined that the optimum 
complementary cell suppression results in 419 suppressed cells, amounting 
to 34% of total non-zero cells. 
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The second example consists of four five-dimensional linked sections of a 
nine-dimensional table (4*29*3*4*5*6*5*4*5).  The table contains 1141 
non-zero cells, of which 831 cells are nonsensitive and 310 cells are 
sensitive.  Fischetti and Salazar (2000) determined that the optimum 
complementary cell suppression results in 491 suppressed cells, which is 
43% of total non-zero cells. 
 

 

 

The synthetic tables generated by using these two test examples provide 
additive tables containing cell values for all the non-zero cells in the 
original test examples. In Table 5 we summarize the overall performance 
statistics of change from nonzero true value by ten different percent 
change from true value categories. We use five different cost functions 
that are commonly used in tabular cell protection to demonstrate five 
different possible formulations for synthetic tables. 

 
From Table 5 it is clear that, by proper selection of the cost function, 
controlled adjustments could be targeted to specific nonsensitive cell 
categories. Irrespective of the choice of the cost function, 
approximately 75% of the nonzero cell values in the first test case and 
50% of the nonzero cell values in the second test case are altered within 
less than 1% of their true cell value. The synthetic cells undergoing 
changes in excess of 5% of true cell value are typically sensitive cells, 
which are otherwise blocked from publication using the complementary cell 
suppression method.   
The quality of cell-level information from the synthetic table could be 
conveyed to data users by using different strategies. As an option, a 
quality indicator, such as g (good), f (fair), and p (poor) could be 
assigned to each synthetic cell to inform the data user of the level of 
accuracy of information contained in each synthetic cell.  Other options 
include: (1) providing overall percent accuracy of the published 
information, or (2) dividing the cells in multiple size categories and 
providing overall percent accuracy for each size category separately.     
 
We have used only five basic cost functions to demonstrate the synthetic 
data generation technique in the linear programming environment.  There 
is of course a wide spectrum of cost functions available to potential 
practitioner of synthetic tables.  An advantage of the synthetic tabular 
framework is that with modest effort several approaches could be tried  
and the “best” selected. 
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   Table 5:  Number of Cells by Percent Change1
2 Sections Of Six-Dimensional Linked Table  

_________________________________________________________________________________________ 
|               |  C o s t   F u n c t i o n   U s e d   I n   O p t i m i z a t i o n  | 
| Percent change|            |             |             |             |                | 
|   from true   |  constant  |  log(value) |    value    |  1/value    |log(value)/value| 
|     value     |            |             |             |             |                | 
|_______________|____________|_____________|_____________|_____________|________________| 
|    .00-   .10 | 691{ 55.3%}| 716{ 57.5%} |  749{ 60.4%}|  720{ 57.5%}|  687{ 54.8%}   | 
|    .10-   .50 | 189{ 70.4%}|  154{ 69.8%}|  120{ 70.1%}|  231{ 75.9%}|  254{ 75.1%}   | 
|    .50-  1.00 |  91{ 77.7%}|   72{ 75.6%}|   37{ 73.1%}|   47{ 79.6%}|   56{ 79.6%}   | 
|   1.00-  1.50 |  38{ 80.7%}|   27{ 77.8%}|   41{ 76.4%}|   22{ 81.4%}|   28{ 81.8%}   | 
|   1.50-  2.00 |  22{ 82.5%}|   33{ 80.4%}|   22{ 78.1%}|   14{ 82.5%}|   14{ 82.9%}   | 
|   2.00-  5.00 |  52{ 86.6%}|   52{ 84.6%}|   63{ 83.2%}|   47{ 86.3%}|   42{ 86.3%}   | 
|   5.00- 10.00 |  73{ 92.5%}|   88{ 91.7%}|   98{ 91.1%}|  119{ 95.8%}|  100{ 94.3%}   | 
|  10.00- 15.00 |  58{ 97.1%}|   56{ 96.1%}|   51{ 95.2%}|   51{ 99.8%}|   69{ 99.8%}   | 
|  15.00- 30.00 |  19{ 98.6%}|   24{ 98.1%}|   30{ 97.7%}|    2{100.0%}|    3{100.0%}   | 
|  30.00-100.00 |  17{100.0%}|   24{100.0%}|   29{100.0%}|    0{100.0%}|    0{100.0%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
|               |            |             |             |             |                | 
|  Unchanged    |            |             |             |             |                | 
|    cells      | 390{ 31.2%}|  422{ 33.9%}|  651{ 52.5%}|  319{ 25.5%}|  257{ 20.5%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
 
 

 
 
  

                         

4 Sections Of Nine-Dimensional Linked Table 
_______________________________________________________________________________________ 
|               |c o s t   f u n c t i o n   u  s e d   f o r   o p t i m i z a t i o n | 
| Percent change|            |             |             |             |                | 
|   from true   |    const   |  log(value) |    value    |  1/value    |log(value)/value| 
|      value    |            |             |             |             |                | 
|_______________|____________|_____________|_____________|_____________|________________| 
|    .00-   .10 | 431{ 38.1%}|  397{ 35.1%}|  494{ 44.0%}|  320{ 29.3%}|  333{ 29.9%}   | 
|    .10-   .50 |  96{ 46.6%}|  134{ 46.9%}|   33{ 46.9%}|   46{ 33.5%}|   69{ 36.1%}   | 
|    .50-  1.00 |  59{ 51.8%}|   48{ 51.2%}|   27{ 49.3%}|   23{ 35.6%}|   46{ 40.3%}   | 
|   1.00-  1.50 |  35{ 54.9%}|   23{ 53.2%}|   29{ 51.9%}|   23{ 37.7%}|   27{ 42.7%}   | 
|   1.50-  2.00 |  33{ 57.8%}|   29{ 55.8%}|   13{ 53.0%}|   25{ 40.0%}|   15{ 44.0%}   | 
|   2.00-  5.00 |  85{ 65.3%}|   90{ 63.7%}|   86{ 60.7%}|   83{ 47.6%}|   90{ 52.1%}   | 
|   5.00- 10.00 | 256{ 87.9%}|  259{ 86.6%}|  212{ 79.5%}|  242{ 69.7%}|  266{ 76.0%}   | 
|  10.00- 15.00 |  55{ 92.8%}|   64{ 92.3%}|   57{ 84.6%}|   60{ 75.2%}|   62{ 81.6%}   | 
|  15.00- 30.00 |  32{ 95.6%}|   45{ 96.3%}|   58{ 89.8%}|   81{ 82.6%}|   59{ 86.9%}   | 
|  30.00-100.00 |  50{100.0%}|   42{100.0%}|  115{100.0%}|  190{100.0%}|  146{100.0%}   | 
|_______________|____________|_____________|_____________|_____________|________________| 
|               |            |             |             |             |                | 
|  unchanged    |            |             |             |             |                | 
|  cells        | 353{ 31.2%}|  329{ 29.1%}|  453{ 40.3%}|  287{ 26.3%}|  302{ 27.1%}   | 
|_______________|____________|_____________|_____________|_____________|________________|

1 The numbers in the parentheses are cumulative percentages associated 
with the cell count. 
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5.  USE AND SELECTION OF A HEURISTIC 
 

 

 

 
 

A precise mathematical formulation for generating synthetic 
tabular data, as a mixed integer linear program, was provided in 
Section 2.  Also in Section 2, we proposed replacing optimal 
selection of direction for change of sensitive cells (the integer 
portion of the MILP) by a simple heuristic, thus reducing the 
computational problem to a linear program. It is appropriate to 
examine two questions: 

- Is optimal selection of direction for change of sensitive 
cells necessary, or, can a heuristic be used?  

- How does this heuristic compare with other potential 
heuristics? 

5.1 Optimal Vs. Heuristic Selection of Direction for Change
 

 

 

If a mathematical optimization is computable, the optimization 
will produce one or more solutions that are provably “best” with 
respect to the constraints and objective function(s) specified in 
the mathematical formulation.  The purpose of constructing an 
optimal solution is not, however, necessarily its actual use.  
Mathematical constraints typically only approximate real-world 
conditions.  Mathematical formulations typically incorporate only 
a subset of actual conditions and criteria, and often are only 
approximations, with the result that optimal solutions only 
approximate fully “best” solutions.  Likewise, two solutions that 
differ in objective function value for practical purposes are 
often indistinguishable.  In many situations, therefore, 
demonstration of an optimal solution is valuable primarily from 
the standpoint of establishing a “gold standard” against which 
other solutions or outcomes can be compared.  
This is true in the synthetic data framework.  An optimal solution 
to the MILP of Section 2 does not necessarily exhibit 
distributional properties identical to those of the original data, 
and therefore is not guaranteed to produce equivalent results for 
every conceivable statistical analysis. (This, incidentally, is 
equally, if not more, true for cell suppression or interval data.)  
Conversely, a synthetic data set that, say, is within measurement 
error of original data is arguable equivalent to the original, 
regardless of objective function value.  The mathematical 
constraints and objective function specified in Section 2 are 
designed to produce a synthetic result close to original data, but 
at some point there is no practical distinction between two 
similar solutions.  Consequently, a fully optimal solution is not 
required to generate useable synthetic tabular data. 
How then to proceed?  Based on sampling and other measurement 
error, an estimated standard error can be computed for each 
tabulation cell.  Within our linear programming model, it is a 
simple matter to further constraint the controlled adjustments (y-
variables) to within, say, two standard errors of original data. 
Any two such solutions differing by no more than two standard 
errors are for all practical purposes equivalent.  Using an 
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appropriate heuristic to select direction of change, run the 
linear program.  If at least one feasible solution exists, then an 
acceptable synthetic tabular data set has been found.  In general, 
the relatively large number of nonsensitive cells will ensure 
feasibility.  In the next subsection, we examine and compare 
different possible choices of heuristic. 
 

  
 

 

5.2 Effect of Choice of Heuristic
A simple heuristic for selecting directions of change for 
sensitive cells was presented in Section 2, based on sorting the  
sensitive cells and assigning lower/upper protection to each in an 
alternating manner.  Other heuristics are possible.  In this 
subsection we illustrate and compare selection heuristics. 
There are several obvious choices, including: the alternating 
heuristic of Section 2, referred to as “Plus/Minus”; for each 
sensitive cell, selecting the lower bound direction (viz., I = 0), 
referred to as “Minus”; for each sensitive cell, selecting the 
upper bound direction (viz., I = 1), referred to as “Plus”; and, 
for each sensitive cell, selecting the direction randomly, 
simulated 100 times.  The evaluation statistics are:  total  
change (controlled adjustments); total of original cell values 
affected by change; average change by value; number of cell 
values changed; average percent change in cell value; and, total 
percent change in cell value.  The results, based on Table 3, are 
presented in Table 6. 
     

              Table 6 :  Comparison of Heuristics for Table 3 
                   (“Change” measured by absolute value) 
 
                   Comparison of Plus/Minus, Minus and Plus Heuristics 
 
          Quantity   Affected      Average   Number   Average  Tot.%Chng. 
        Changed (1)  Quantity (2)  Change   of Cells % Change  (=(1)÷(2))  
Plus/Minus  4364.      221980.    51.34118     85     8.63305     1.96594 
Minus       4460.      177172.    58.68421     76     8.76424     2.51733        
Plus        4370.      210424.    52.65060     83     7.61722     2.07676        
 
               Random Selection of Direction—Statistics for 100 Simulations  
              
 Mean       4046.      217252.    47.92028     85     6.95427     1.87373        
 Std. Dev.   431.       18767.     4.94445      4     1.35592      .23795        
 Min.       3058.      168143.    38.02299     73     3.76409     1.36656        
 Max.       5336.      264115.    62.77647     93    10.68496     2.55154        

 
The first half of Table 6 reveals that the base heuristic works slightly 
better than the two extreme choices.  The second half of the table 
provides statistics on 100 simulations in which the magnitude of 
protection level for sensitive cells was exactly the same as the base 
case, but the direction of adjustment to sensitive cells was selected 
randomly.  Based the mean and standard deviation over the 100 trials, it 
does not appear that random selection offers measurable improvement over 
the base case.  Moreover, minimum values associated with all six 
“statistical change” measures were associated with six different 
simulations. Furthermore, none of the 100 offered convincing improvement. 
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From these modest analyses, we conclude that it is unlikely that a “best” 
heuristic can be found.  Indeed, this actually is a strength of the 
synthetic tabular framework, because the relatively low computational 
cost associated with producing one or more sets of synthetic tabulations 
with respect to a single heuristic facilitates experimentation with 
multiple heuristics.  The “best” simulated data set can then be selected 
from an array of candidates based on appropriate criteria including 
expert judgment. 
 
 

 

 

  

 

6.  INTERPRETING CONFIDENTIALITY PROTECTION IN THE 
     SYNTHETIC DATA CONTEXT 
Synthetic tabular data alters original data.  The degree of distortion is 
determined by the number of sensitive cells and required changes to 
sensitive cell values.  Based on the cell suppression paradigm, in the 
model of Section 2 these changes are set equal to the protection 
deviations PROTi, viz., each sensitive value is forced to one of its 
protection limits.  This is necessary under cell suppression because 
allowing estimation of the cell value within a narrower range is by 
definition not permissible.  However, a more flexible interpretation of 
protection is possible in the synthetic data framework, as follows. 
If a tabulation cell represents data from only one respondent, then the 
cell value is a point estimate of the contribution of the respondent.  It 
would be unwise to select a synthetic value too close to the true value, 
and therefore use of PROTi is appropriate.  Similarly, if the cell 
contains data for precisely two respondents, then either can subtract its 
value from the published cell value and use the result as a point 
estimate of the contribution of the other.  Therefore, full protection 
makes sense in this situation as well. 
However, when a small number of respondents (but more than two) dominate 
the cell value, the disclosure problem for synthetic tabular data is less 
clear, as illustrated by the following example. 
Assume that disclosure is defined as allowing the second largest to 
estimate the contribution c of the largest to within k-percent of its 
value.  Given a sensitive cell with largest contribution c and second 
largest contribution d, assume that the total contribution e of the 
remaining respondents (respondents 3, 4, … etc.) equals q-percent of the 
largest contribution, viz., e = c(q/100) with q < k.  Then, from Cox 
(1981), PROTi = c(k – q)/100.  A synthetic value s is published in lieu 
of the true cell value c + d + e.  The second largest contributor (the 
intruder) subtracts its contribution d from synthetic value s, obtaining 
a point estimate s – d of the contribution of the largest.  This estimate 
is imprecise, for two reasons.  First, the intruder cannot account 
precisely for the total contribution e of the remaining respondents.  
Second, the intruder does not know whether the synthetic value s lies 
below or above the true cell value, or how close.  Even assuming that the 
intruder can estimate e to within 100-perecent of its value, viz., within 
the interval [0, 2e], the intruder still only has a range of point 
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estimates [s – d – 2e, s – d] of c that may not even contain the actual 
contribution c. 
  

 

 

           
          

 

 
 
 

 

 

This makes it reasonable to consider relaxing the requirement to force 
each synthetic sensitive value all the way to one of its protection 
limits.  This clearly is a policy decision, requiring further analysis 
based on actual sensitive data.  To illustrate the effects of this 
relaxation, we simulated going only “half-way” in Table 3.  Namely, 
having selected the direction of change for a sensitive cell value using 
the Minus/Plus heuristic, we randomly select the adjustment to sensitive 
cell i within the range [Proti/2, Proti] using a uniform distribution, 
simulated 100 times.  The results are presented in Table 7. 
   Table 7:  Smaller Protection Level Selected Randomly—100 Simulations  
  (NewProti = Uniform [Proti/2, Proti]); Direction Random as in Table 3) 
          Quantity   Affected    Average     Number   Average  Tot.%Chng.        

Changed    Quantity    Change     of Cells % Change  (=(1)÷(2))
 Mean      3429.      214193.    40.71679     84     6.82568     1.60473        
 Std. Dev   236.       10677.     3.29047      3      .73915      .13342 
 Min.      2866.      186637.    33.71765     77     5.17424     1.33369 
 Max.      3952.      237620.    51.32468     91     8.61083     1.97567        
Comparing Table 7 with the first row of Table 6, it is clear that less 
distortion results, with protection still assured. 

7.  CONCLUDING COMMENTS 
Synthetic tabular data offers a more attractive option for disseminating 
tabular data containing sensitive information than conventional 
complementary cell suppression.  Complementary cell suppression results 
in a significant amount of information loss, irrespective of how close 
one gets to optimum suppression.  The overall information generated by 
complementary cell suppression fails to compare favorably to synthetic 
tabular data both in completeness and usability.  Complementary cell 
suppression is a computationally demanding, and optimal suppression is an 
NP-hard problem, whereas the computational effort required to generate 
synthetic tables is minimal.  This allows the statistical office to 
generate multiple synthetic data scenarios and select the most favorable 
based, among other criteria, on expert judgment. 
In this paper we introduced the concept of synthetic tabular data and 
provided a simple heuristic combined with linear programming methods for 
generating synthetic tabular data. Illustrations for multi-dimensional 
and linked tables were provided.  Alternatives for selecting direction 
for change were examined and compared.  A more flexible interpretation of 
confidentiality protection in tabular data was examined. 
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Computational techniques, such as iterative proportional fitting and the 
EM algorithm, could also be used to generate synthetic tabular data.  
Such methods are useful, e.g., when all internal cells are suppressed or 
unavailable and must be estimated from marginal totals.  However, in 
actual practice, not all marginal totals are fixed and such methods are 
likely to provide estimates unacceptably close to sensitive cell values. 
 

 

  

 
 
 

 
 

 

Heuristics presented in this paper could be extended or replaced.  In 
general, and for actual purposes, however, the methods presented here 
will result in practical, usable tabular data, and provide a basis for 
specialized approaches tailored to particular data.  We compared several 
reasonable computational heuristics and found that they produced 
essentially equivalent results. 
Having established a conceptual, practical and computational basis for 
synthetic tabular data, we examined the question of what constitutes 
adequate protection for a sensitive cell.  In the synthetic data setting, 
a more flexible, data-enhancing interpretation emerged.  This will 
require further practical simulation and examination from a policy 
standpoint by statistical offices. 
In summary, synthetic tabular data reproduces original data as closely as 
possible, subject to confidentiality requirements, and offers 
considerable flexibility for preserving original values and for providing 
disclosure protection at less cost in terms of computational requirements 
and distortion of true values.  The synthetic tabular framework offers 
advantages both to data producers and data users not possible under the  
more restrictive complementary cell suppression regimen. 

DISCLAIMER  
The material presented herein has been reviewed and approved by the 
Centers for Disease Control and Prevention for publication.  It is solely 
the work of the authors and should not be interpreted as representing the 
policies or practices of the Centers for Disease Control and Prevention, 
the Energy Information Administration, or any other organization. 
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