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Abstract 

Several model-based seasonal adjustment diagnostics are currently being incorporated into X-13-ARIMA-

SEATS, a new hybrid seasonal adjustment program under development at the U.S. Census Bureau. These 
diagnostics have been implemented in the Ox programming language, and this paper discusses various 
aspects of the implementation. The diagnostics are normalized quadratic forms in the data, and roughly 
correspond to intra- and inter-component variation. 

Disclaimer This report is released to inform interested parties of research and to encourage discussion. 
The views expressed on statistical issues are those of the author and not necessarily those of the U.S. Census 
Bureau. 

1 Introduction 

A natural way to assess the quality of signal extraction is to check the spectrum of the estimated noise 
for residual signal. However, it is difficult to quantify any given form of assessment without making further 
assumptions about the process. One approach is to stipulate a model for the data, and gauge the degree to 
which the spectrum for the estimated noise deviates from what the model predicts. In the model-based signal 
extraction scenario such an approach – formulated in the time domain – is presented in Maravall (2003), 
which first proposed a single statistic that would quantify the goodness of signal extraction. Maravall’s 
diagnostic was earlier incorporated into SEATS, the widely-used model-based seasonal adjustment program 
of Gómez and Maravall (1994), but wasn’t documented until Maravall (2003). The basic concept of the di-

agnostic was modified and studied in Findley, McElroy, and Wills (2004), adapting the idea for finite sample 
signal extraction. The concept of the intra-component diagnostic is to measure the variation of an estimated 
component, assessed through a variance estimate of the appropriately “differenced” signal extraction esti-
mate, and compare this quantity to what we would expect if our model were true. The inter-component 
diagnostic assesses variability between estimated components in the same manner. Extreme values of the 
statistic indicate model inadequacy – and hence filter inadequacy – with respect to the component model 
for the desired signal. Findley et al. (2004) discuss the basic theory of the new signal extraction diagnostics, 
and describe the results of simulation and empirical studies, while McElroy (2005b) expands and generalizes 
these ideas, providing asymptotic results. The paper at hand relates the implementation of these methods in 
the Ox (Doornik, 1998) program SigDiagObj.ox, utilizing the SsfPack function suite (Koopman, Shepherd, 
and Doornik, 1999). 
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Findley, et al. (2004) principally dealt with simple seasonal models, and focused on the irregular compo-

nent. The current implementation considers a greater variety of components, and a broader class of models. 
In particular, we consider data decompositions of the form 

Yt = St + Tt + It, (1) 

where the data is Yt, the seasonal is St, the trend-cycle is Tt, and the irregular is It. The program Sig-

DiagObj.ox conducts four basic operations: estimation, decomposition, signal extraction, and diagnostic 
calculation. This paper discusses each of these steps in some detail, illustrated through the series of U.S. 
Retail Sales of Shoe Stores data from the monthly Retail Trade Survey of the Census Bureau, from 1984 to 
1998, which will be referred to as the “shoe” series. 

2 Estimation 

In order to do model-based signal extraction, it is necessary to specify models for each of the components. 
We will follow the canonical decomposition approach of Hillmer and Tiao (1982), and so we start with a 
Seasonal ARIMA (SARIMA) model for monthly data Yt, after suitable Box-Cox transformations: 

φ(B)Φ(B12)(1 − B)
d
(1 − B12)

D 
Yt = θ(B)Θ(B12)²Y 

t t = 1, 2, · · · , n (2)

where φ(z), Φ(z), θ(z), and Θ(z) are polynomials with roots outside the unit circle of the complex plane, 
ensuring an invertible representation for the differenced data. Here ²Y 

t is a white noise innovation sequence. 
We allow for d nonseasonal differences and D seasonal differences. Currently the program works with d, D ≤ 1 
but not both zero; this is not a real restriction in practice, since these differencing orders allow for a fairly 
wide range of nonstationary processes. The assumed component models are given as follows: 

Φ(B12)U(B)
D

St = θS (B)²t
S (3) 

φ(B)(1 − B)
d+D

Tt = θT (B)²T 
t 

It = ²t
I , 

where the various ² t sequences are independent white noise. As above, the MA polynomials θS (z) and θT (z) 
are chosen so as to guarantee an invertible representation. The nonseasonal AR polynomial is associated 
with the trend-cycle component Tt, and the seasonal AR goes with the seasonal component. The polynomial 
U(z) = 1+ z + z2 + · · · + z11 achieves seasonal differencing, and satisfies 1 − z12 = U(z)(1 − z). The irregular 
component is assumed to be white noise. The canonical decomposition method begins by estimating all the 
parameters (including the innovation variance σ2 ) of the data model (??). 

²Y The most popular estimates 
are computed by the method of maximum likelihood, whose implementation in SsfPack implicitly assumes a 
joint Gaussian distribution for the data. SigDiagObj.ox uses SsfPack’s estimation method, which maps the 
SARIMA model (??) into State Space Form, and maximizes the likelihood using state space methods. This 
is numerically efficient and stable, and is to be preferred over more direct approaches. One limitation is that 
SigDiagObj.ox will not select model orders for the user – one must know ahead of time what SARIMA model 
orders are desired. Essentially, the user specifies the differencing orders (d, D) and a collection of initial 
parameter values, which implicitly determine the SARIMA model orders (p, P, q, Q) for the autoregressive 
and moving average polynomials. 
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One is also able to fix all of the parameters with user-selected values. This facility is useful for testing a 
priori defined filters (i.e., model-based filters whose parameters are not determined by the data, but rather by 
the user) on the data. One snag of the Hillmer-Tiao method is that some SARIMA models are inadmissable 
in the sense that they do not possess a decomposition. By overwriting certain parameter values, the user 
may be able to impose an admissible model on the data. 

Example Suppose we specify a SARIMA(1, 1, 1)(0, 1, 1)12 model for the logged shoe series. We obtain 
the following data model via estimation: 

(1 − .15B)(1 − B)(1 − B12)Yt = (1 − .67B)(1 − .35B12)²Y , σ2 = .00095t ²Y 

This is accomplished through calling InitParams (< .6 >, <>, < −.6 >, < −.5 >, 0, < 1, 1 >) – which specifies 
the model and initializes the parameters – and Estimate(), which uses maximum likelihood estimation to 
produce parameter estimates. More detailed information on InitParams is provided in its documentation 
within SigDiagObj.ox. 

3 Decomposition 

We first stipulate component models according to (??), a process that involves assigning all the “left-

hand” operators of (??) to the left-hand sides of the component models. These left-hand operators include 
the AR operators and the differencing operators; for the latter, it is important that the factors are distributed 
uniquely, so that the differencing polynomials for each component are relatively prime. This is a prerequisite 
of the model-based signal extraction theory – see McElroy (2005a). The MA operators for the component 
models are then determined according to the canonical decomposition method of Hillmer and Tiao (1982), 
implemented through the Ox routine gendecomp.ox of Aston and Koopman (2003). 

The gendecomp.ox function operates in the same manner as the code in SEATS for producing canonical 
decompositions, although our implementation is somewhat more simplistic. By associating all nonseasonal 
AR operators with the trend, we essentially define a trend-cycle component, which is more simply referred 
to as the trend. In contrast, SEATS will often generate a fourth cycle component that is an ARMA process, 
with certain of the nonseasonal AR factors associated to it. We have chosen to lump the trend and cycle 
together, which seems to be a reasonable approach given our principal objective of assessing the quality of 
seasonal adjustments. If one is further interested in cyclical behavior, a four-component decomposition could 
be attempted, though this may encounter problems of admissability. 

Example In the shoe series, the AR(1) operator is associated with the trend: 

U(B)St = (1 + 1.26B + 1.06B2 + .84B3 + .58B4 + .35B5 + .15B6 

− .03B7 − .14B8 − .26B9 − .25B10 − .42B11)²S
t , σ2 

²S 

(1 − .15B)(1 − B)
2
Tt = (1 − .46B − .96B2 + .49B3)²T

t , σ²
2 
T = .000053 

= .00012

It = ²t
I , σ²

2 
I = .00023 

The above results were produced by calling the Decompose() function; the PrintComponents() function may 
be used to output the models to the screen. 

3 

http:gendecomp.ox
http:gendecomp.ox
http:SigDiagObj.ox


4 Signal Extraction 

We adopt the model-based, finite sample approach to signal extraction. The various estimates can be 
produced through a state space smoother, implemented for example in SsfPack, but we produce the filter 
matrix directly utilizing formulas in McElroy (2005a). This is necessary for our subsequent calculations of 
the diagnostics themselves – see Findley et al. (2004). For each of the three components – trend, seasonal, 
and irregular – we produce the appropriate signal extraction matrix, each of whose rows corresponds to the 
time-dependent filter for the corresponding time point. In other words, the ith row of the filter matrix F 
consists of the filter coefficients that, when applied to the data Yt, produce an estimate of the signal at time 
i. For example, if estimating the seasonal we have 

ˆFY = S = E[S|Y ], 

0 0 
where Y = (Y1, Y2, · · · , Yn) and S = (S1, S2, · · · , Sn) is the seasonal. In this stage of the program, we 
produce the filter matrix F and the signal estimate Ŝ. 

There are six quantities considered as possible signals of interest. These represent appropriately differenced 
components or combinations of such as follows: 

U(B)
D

St, (1 − B)
d+D

Tt, It 

U(B)
D

(St + It), (1 − B)
d+D

(Tt + It), (1 − B)
d
(1 − B12)

D
(St + Tt) 

The basic intra-component diagnostics are sample autocovariances – computed at various lags – of the differ-

enced signal estimates, which means that we first estimate the differenced signals U(B)
D

St, (1 − B)
d+D

Tt, 
etc., and then compute the lagged average of squares. If u denotes a vector of estimates for a differenced 
signal, then u0u/n gives the lag zero sample autocovariance, assuming mean zero. If we let L be a lag matrix 
(of dimension equal to the length of u) with Lij equal to 1 if i = j + 1 and 0 otherwise, then u0Lhu/n is a 
quadratic form that yields the lag h estimate of the autocovariance (h is a non-negative integer). 

The inter-component diagnostics are sample cross-covariances, computed for six pairings of components: 
S, I; S, T ; S, T I; T, I; T, SI; and T S, I. We have a similar calculation, but now it involves two vectors u and 
v, containing estimates for two diverse differenced signals. An additional complication is that u and v could 
have different lengths (e.g., the irregular has length n but differenced trend has length n − (d + D)). Based 
on theoretical considerations, it is appropriate to trim the longer vector of its first values such that the two 
vectors have the same length; call this ṽ if v was the longer vector. Then u0 ṽ/n gives the cross-covariance 
estimate. 

Example In order to compute the signal extraction filters, we first call buildDiffMatrices() and then 
buildCovMatrices(), which construct the differencing and covariance matrices that will be needed. Then 
ExtractSignals() computes the filters and applies them to the data. Below in Figure 1 is a picture of the 
trend-cycle estimate in the shoe series together with the data. 
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Figure 1: Logarithm of U.S. Retail Sales of Shoe Stores, with Trend-Cycle estimate 
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5 Diagnostic Calculation 

The diagnostics mentioned above provide a measure of variation in an estimated signal. Under the Null 
Hypothesis that our model for Yt is correct, we can compute the mean and variance of this diagnostic and 
thereby construct a standardized diagnostic. Further details are developed in McElroy (2005b); here we 
discuss the interpretation and application of the diagnostics. 

The standardized diagnostic is asymptotically normal under some mild conditions, and hence large positive 
or negative values indicate rejection of the specified model, whether this was generated through estimation 
or a priori methods. Since some of the diagnostics may be significant while others are not, the extreme 
values indicate model inadequacy only in certain portions of the data’s spectrum. Roughly speaking, a 
significant diagnostic indicates that the spectral density of the differenced data Wt = (1 − B)

d
(1 − D

B12) Yt 

is poorly modelled at the frequencies corresponding to the component of interest. For example, an extreme 
value of the trend diagnostic indicates poor modelling (and hence filtering) of the low frequencies, whereas 
an extreme value of the seasonal diagnostic would show poor modelling of the six seasonal frequencies. This 
interpretation is not completely rigorous – the diagnostics need to be further modified for that to happen. 
It is also difficult to interpret positive versus negative values of the diagnostic; it is safer to stick to the 
two-sided alternative. See McElroy (2005b) for a discussion. 

The final output of the program includes the p-values for a two-sided test along with the standardized 
diagnostics, for each of the six signals defined above. Significant p-values indicate that adjustment to the 
model may be needed to improve signal extraction. 
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Example We call the function ComputeLagDiagnostics(h) with h = 0, 1, 12 and obtain the following 
output: 

Table 1. Auto-covariance Diagnostics with p-values 
Signal Lag Zero p-value Lag One p-value Lag Twelve p-value 

Irregular −0.423 .336 0.226 .411 0.648 .258 
Trend 0.088 .465 −1.168 .121 0.631 .264 

Seasonal −0.043 .483 −0.058 .477 0.214 .415 
Trend-Irregular −0.467 .320 0.697 .243 0.458 .324 

Seasonal-Irregular −0.082 .467 0.019 .492 0.101 .460 
Trend-Seasonal −0.213 .416 0.450 .326 −0.171 .432 

These diagnostics indicate adequacy of the filters, since none of the p-values are significant. For cross-

covariance, we call the function ComputeCrossDiagnostics() and obtain: 

Table 2. Cross-covariance Diagnostics with p-values 
Signal Pair Diagnostic p-value 

Seasonal, Irregular 0.637 .262 
Seasonal, Trend −0.853 .197 

Seasonal, Trend-Irregular −1.412 .079 
Trend, Irregular 1.067 .143 

Trend, Seasonal-Irregular −0.345 .365 
Trend-Seasonal, Irregular 0.738 .230 

Again, the high p-values indicate model adequacy with respect to filtration. 

No-Ends In Findley, McElroy, and Wills (2004), a further adjustment to the diagnostic is suggested, 
namely to trim the beginning and ends of each vector of estimates u, and adjust the statistical normalization 
appropriately. In that paper, it was proposed that this “no-ends” version would eliminate irritating end 
effects that interfered with the finite sample performance of the diagnostic. SigDiagObj.ox can also produce 
the “no-ends” version of the above diagnostics (not shown here). 

6 Conclusion 

The program SigDiagObj.ox performs SARIMA model estimation, canonical decomposition, signal extrac-

tion, and diagnostic calculation, given a model specification. Current implementation assumes a decompo-

sition into seasonal, trend-cycle, and irregular; we hope to generalize this to four components if practicable. 
Also, the constraints on the differencing orders d and D make the current program easier to apply; future 
work will focus on addressing these constraints in the interest of making the program more broadly ap-

plicable. The incorporation of these diagnostics into X–13–ARIMA–SEATS will allow their testing upon 
hundreds of series at once, facilitating a large-scale empirical study. Also under development is a version 
of SigDiagObj.ox that allows for a separate “transient” component, which can model a separate cycle or a 
sampling error component, for example. This new version, called Hybrid.ox, was designed to be an extension 
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of the diagnostics to handle series with sampling error, such as those encountered at the Bureau of Labor 
Statistics. 
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