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Abstract

We consider the problem of specifying the design-based error covariance structure in small area modeling with survey data
because of too many unknown design parameters. As a compromise, it is customary to treat the estimated covariance as
known although undesirable because of its instability, i.e., relative variance of this estimate could be high, and as a result, it
could cause serious underestimation of variance of estimates. To alleviate this problem, one can either model the estimated
error covariance structure in addition to the main task of modeling the estimated small area estimates (SAEs), or smooth the
estimated covariance by only specifying its mean function. We advocate smoothing over modeling the error covariance
because of strong simplifying assumptions needed in modeling the error covariance structure of estimated covariance of
SAEs, and because practitioners, in general, prefer to take the least assumptions in modeling path philospphy. In practice,
smoothing may work quite well as supported by the recent work of Singh, You, and Mantel (2005) who used the well known
property of constant deff (design effect) over suitable subgroups of estimates to smooth the error covariance in modeling
direct estimates from the cross-sectional and longitudinal data obtained from the Canadian Labour Force Survey. In this
application, however, cross-sectionally the small areas were treated as strata, i.e., cross-sectionally, the error covariance was
diagonal. This is rather restrictive because small areas or domains need not be strata. Moreover, using optimal estimating
functions (EFs) of Godambe and Thompson (1986) for estimating model parameters, it can be shown that even when small
areas are strata, additional summary statistics (in particular, the estimated domain count if it is not constant) for each domain
or area should be used besides the direct SAEs, and thus the error covariance becomes necessarily nondiagonal. Use of EFs
was also advocated by Singh, Folsom, and Vaish (2002, 2003) to define approximate EF-based Gaussian likelihood (EFGL)
for obtaining efficient SAEs under a HB (hierarchical Bayes) framework. In this paper, we propose the idea of using g-deff
(generalized design effect), defined earlier by Rao and Scott (1981) in the context of categorical data analysis, to deal with
the case of nondiagonal error covariance. Simulation results for SAEs based on a linear mixed model show that the EFGL
method with the proposed smoothing works quite well in general, and provides improved coverage of confidence intervals in

particular.
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1. Introduction

In any modeling problem, one needs to specify the mean function and the error covariance structure under a semi-parametric

approach based on first two moments. In the case of modeling direct domain total estimates {¢,,:d =1,...,D } of small areas
(see e.g., Fay and Herriot, 1979) from surveys, special problems arise in specifying the error covariance structure ¥, because
it depends on too many unknown quantities (e.g., the first and second order inclusion probabilities for the nonsampled units)

that are not estimable. However, since an approximately unbiased estimate I}, of ¥, may be available, it is customary (see

A

Rao, 2003, pp. 76) for such models to treat V, as known. For large samples, such an assumption is, of course, commonly

made. However, for small samples n, , this is clearly not desirable because like the direct point estimates ¢, , , the direct
variance estimates I;;( . are also subject to instability, and so treating I}t( o as known may cause serious underestimation of
variance of SAEs. As an alternative, one may want to model ¥, as well in addition to t, . which renders the SAE problem

even more compounded as variance of I}, now involves unknown third and fourth order sample inclusion probabilities.
Under certain simplifying assumptions about the design, and the superpopulation model, the problem can, however, be

simplified, see e.g., the use of Wishart distribution for Vt by Otto and Bell (1995). Nevertheless, in practice, it would be

desirable to make rather weak assumptions about I}t that seem plausible, because practitioners, in general, prefer to take the

path of least assumptions in modeling.

In trying to model I}t( . under weak assumptions, it may be useful to first observe that the problem of modeling the mean of
I}, is lot simpler than that of the error covariance structure, i.e., modeling the variance of I}, . If the goal is to find a stable or

smoothed estimate I}, of ¥V, without incurring too much bias, then one can simply specify the mean function for I}t and leave
the covariance function unspecified, and then estimate parameters of the mean function by analogy with ordinary least

squares. The smoothed estimate V, is treated as known or may be allowed to depend on mean parameters of the model for

t,q- Itisadvocated in this paper that smoothing might provide a reasonable practical compromise between the two extremes

of modeling or no modeling of I}, .

In this paper, we propose the use of generalized design effect (g-deff) considered earlier by Rao and Scott (1981) in the

context of categorical analysis of survey data. G-deffs are defined as the eigen-values (4,’s) of the matrix product
V"'V, where V" is the error covariance under a suitable working assumption such as that of simple random sampling design
or that the design is ignorable for the superpopulation model under consideration. In the case of diagonal I}t (i.e., when the
small areas can be treated as strata), Singh, You and Mantel (2005) used the well-known property of constant deff

V) / V,: o ) over suitable subgroups of direct estimates to smooth I}, by assuming that I},* is stable. More specifically, in the



context of the Canadian Labour Force Survey with partial overlapping samples over six months for each panel, they
considered the combined longitudinal and cross-sectional data set of direct small area estimates for which the matrix ¥, now

becomes block diagonal where each block is a 6x6 matrix corresponding to each area. Now under the weak and rather
plausible assumption of constant deff over six months for each area, and common fixed-lag correlations over areas and time,
they got improved results over the alternative smoothing methods described in You, Rao, and Gambino (1999). However, the
above method has some limitations: first, the nonnegativity of the smoothing matrix is not ensured when fixed lag

correlations are replaced by averages over time and areas; second, for the more general case of areas not necessarily being
strata as in the case of demographic domains, the matrix I}t becomes non-block-diagonal and it is not clear how the simple

assumption of constant correlations can be applied to smooth the off-diagonal terms. In all these cases, however, the proposed

method of g-deff can be used wherein the eigen-values are averaged over suitable subgroups to reduce their instability.

For the problem of SAE modeling with direct estimates {7, ,:d =1,..,D }, one can think of an implicit underlying
superpopulation model at an aggregate level for the outcome variable y for each unit & in domain d ; here the aggregate
level model signifies that all the model covariates are at the area or domain (d ) level. Conditional on the covariates, the
model under the joint randomization of design (7 ) and superpopulation model (&, this is conditional on any random effects
in the model) can be expressed for d =1,...,D as

ta =T +ey,d,T

v,d v.d

) = NdAy,d
Ay,d = A;,dﬂ"‘nd + N;lzkgdk ~ A;,dﬂ+ Na =Hy a4
e, ~N(©O,V,,); n,~N(0,0,)
gdk ~ (030-3)’ Nl;lzkgdk ~ 0

(1.1)

(1.2)

where T, , is the finite population total of y for area d ; N, is the known total count for area d which we will also denote as
T, , , the total for the count variable c taking value 1 or 0 depending on whether the unit is in domain d or not; N is of course
the whole population count; 4, , is the vector of domain-d averages for the p -vector of auxiliary variables x ; Lis a
p-vector of fixed parameters, and 7, is the random effect corresponding to domain d assumed to be normal with mean
0 and variance o*j ; e, 1s the sampling or observation error in the estimated domain total and assumed to be normal with

mean 0 and variance V.

() » and independent of 77, but may or may not be independent over d , and &, is the superpopulation

model error whose contribution to the small area total or average is negligible compared to other terms because N, is
assumed to be large. The model error &, has mean 0 and variance o but is not necessarily assumed to be normal although
¢, 418 assumed to be approximately normal due to central limit theorem provided #, is sufficiently large. Note that x, ,is the
superpopulation mean parameter of y given 4, ,and is the limit of the corresponding finite population parameter 4, ,as

N, > oo.



Now, the problem of smoothing I}t gets more complicated if one considers the above superpopulation model explicitly and

the issue of optimal sample summary statistics to be used for estimating model parameters. In fact, the usual choice of

summary statistics {7, ,:d =1,...,D } is somewhat ad hoc. Using Godambe and Thompson (1986), it can be shown (see next
section) using census estimating functions that for aggregate level modeling, the optimal set of summary statistics is
{y,=(, 4t ,):d=1..D}. Here it is assumed that ¢, is not constant (i.e., not equal to N,) as is typically the case in

practice, else the usual set of summary statistics {7, , :d =1,...,D } becomes optimal. Thus the error covariance Vw( o for each

d becomes a 2x2 matrix and the resulting overall matrix Vw necessarily nondiagonal requiring a more general smoothing

method such as the proposed one.

Further, in the case of unit-level superpopulation model, the problem of smoothing I}W becomess considerably more involved

because of additional summary statistics that enter in the picture from the theory of EFs. Note that Singh, Folsom, and Vaish
(2002, 2003) proposed estimating function-based Gaussian likelihood (EFGL) methodology in a hierarchical Bayes
framework to generalize the usual SAE modeling of Fay and Herriot (1979) at the aggregate level to unit level modeling in
the interest of efficiency gains obtained from using more detailed information. However, they didn’t specify the summary

statistics explicitly. In this paper, the vector iy of optimal summary statistics is specified explicitly which makes it

computationally easier to use g-deff for smoothing the error covariance structure I}W under unit-level modeling.

In Section 2, we consider first the general problem of modeling with survey data, and then the choice of appropriate finite

population parameters in the context of SAE modeling and the corresponding sample summary statistics. We consider both
aggregate and unit level modeling and identify the problem of instability of I}W in each case for the corresponding vector v .
In the next section 3, we review the application of usual deff in the generalized variance function modeling, and its use for
smoothing I}, when it is diagonal. We next describe the proposed method of g-deff for smoothing nondiagonal I}t or I}W. In

Section 4, we present a simulation study for the linear mixed superpopulation model and show how EFGL-smothed compares
with EFGL-unsmoothed. In the simulation study, the case of aggregate level modeling was, however, not considered

although it follows readily from the general case by replacing the unit-level covariate value x, with the domain level average

value A4, for each unit k in domain d . Finally, Section 5 contains summary and some concluding remarks.

2. Modeling with Survey Data

The difficulty in modeling survey data is well known in view of the two basic results of Godambe (1955, 1966): first, the
nonexistence of uniformly minimum variance unbiased estimate in a suitable linear class which causes difficulty in using a
semiparametric approach, and second, likelihood being flat for the unseen (i.e., nonselected population units) given the seen

and thus making it difficult to use the likelihood approach either in a frequentist or a Bayesian framework. The main reason



underlying these problems that distinguish survey modeling from mainstream statistics is that there are too many finite
population parameters to cope with if one identifies each unit’s characteristic as a parameter of interest. The reality is that in
practice we are not interested in characteristics at the unit level, but instead we need to define suitable finite population
quantities corresponding to a group of units. For the difficult but realistic problem of nonignorable designs for a given
superpopulation model, this can be done using census EFs (i.e., assuming the sample is the census, see, e.g., Binder, 1983)
which depend, of course, on the model parameters to be estimated. Alternatively, Pfeffermann and Sverchkov (1999, 2003)
proposed an elegant use of weighted likelihood approach for survey data. However, they require modeling of sampling
weights which may not be desirable for practitioners who prefer the route of least assumptions in modeling as mentioned

earlier. Using the idea of EFs, Godambe and Thompson (1986) showed how optimal EFs can be obtained under joint 7¢& -
randomization. Thus for the aggregate level superpopulation model conditional on covariates A4, , and random effects 7,
Yk :A;,dﬁ"'nd +éy (2.1)
the optimal EFs for (7, ) are
¢1](d) = Zk Vu _A):‘,dﬂ —N )Wy = foa— (A;,dﬂ +1, )tc,d
Py = Zd Zk A4,y _A;,dﬁ —N )Wy = Zd At~ Zd A4 (A.;,dﬁ 04

where w, are the sampling weights, and for each domain d, k varies from 1 to n,. It follows that the summary statistics

(2.2)

{w, =4t ) d=1.,D} wheret , = z:' YaWairbea = ZZ" w, =N, , corresponding to the finite population quantities
{(7,,,T,,):d=1,..,D } form an optimal set for estimating the parameters (77, #) . This is an interesting finding which came

about by working with EFs under the superpopulation model. In contrast, with the traditional area-level model, one starts

directly with ¢ , as an estimate of the parameter of interest 7, , =N,4, , =~ N,(4;,B+n,), in which case it is easy to
overlook the utility of the other summary statistic ¢, , because the domain-level covariates N,and 4, , are assumed to be

known.

The aggregate-level model (1.1) can be generalized for the enlarged summary statistics y,by introducing unknown

incidental parameters p, defined as the limit of N, /N as N — oo . The model with all the parameters is given by

t,,=Np,u,,+e,
v.d 1y,d v.d (23)
g™ Np,p. .+ €a= Np, + €.q
where u, , =4, ,p+n,, 4., =1.The sampling errors for ¢, , in equations (1.1) and (2.3) do not change because Np, = N,, .
Observe that the introduction of incidental parameters p, (although not of direct interest) is bit of an artifact but has the

desired effect of engaging ¢, , in estimating the parameters (f,7,) as implied by EFs. However, unlike EFs, in the model

(2.3), the data is separable from the parameters in that the mean function on the right hand side consists of only nonrandom

covariates and unknown parameters. As a result, it becomes easier to apply the proposed method of g-deff for smoothing

I}W unlike I}¢ corresponding to (2.2). Note that I}¢ involves the mean parameters and so smoothing would be required at each



cycle of MCMC in using EFGL. With model (2.3), the smoothing of I}W is done only once before starting the cycles of
MCMC. However, unlike EFGL with ¢, here the model’s mean function is nonlinear in the enlarged parameter set
{B.n,,p,,d =1,...,D} which would be computationally more demanding than the linear case. However, in the MCMC
cycles for finding conditional posteriors, model mean turns out to be linear in (/,77,) given p, and so no new calculations

are required except that there would be more steps in each MCMC cycle because of incidental parameters.

Next for unit-level modeling, (2.3) can be modified as follows:
¢n(d) = Zk(ydk Xy BN )Wy = N _t.i',dﬂ_tc,d?]d
Py = Zd Zk X Ve =X B=1) Wy = Ly — Lo+ Zd Leally

The optimal summary statistics  for estimating (/,7,) are obtained as {¢ ,,t_,.t.,.t, .t} With somewhat self-explanatory

y.d> x,d>"c,d > xy > xx

2.4)

new notations for certain estimated population totals. In this case, the unit-level model for this new set of summary statistics

can be expressed with the new set of incidental parameters {p,, s, ,, 4.} as:

La® diﬂy,d te,,
t.s®Np,+e,
La®Np s, +e, (2.5)

txy ~ N(/uvcx'lg + Zd pdlux,dnd ) + exy,d
txx' = Nluxx' + exx'

where, as defined earlier, 4 ,is the limit of 4 ,as N, ->oand p_,is similarly defined. As in the case of aggregate-level,

although the model (2.5) is now nonlinear because of incidental parameters, model mean turns out to be linear for computing
conditional posteriors, and so no new computational complexity is involved except that there are more steps in MCMC cycles

because of extra parameters. It may be noted that for unit-level modeling, the covariates x, ’s are typically taken as
categorical (such as demographic group indicators) because the domain totals T, , or averages 4, , required for each variable

may only be available in practice for domain counts or proportions for each covariate category.

Often, in practice, one may be interested in nonlinear modeling. Although it seems difficult to define optimal summary

statistics for general nonlinear models at the unit level, it is indeed possible with categorical x's. Suppose, / denotes the
I" cell obtained by completely cross-classifying all the x -categories, and N, denotes the known population count for d -

subdomain. It can be shown from EFs that the optimal summary statistics  now are {¢, ...t} but there are too many

t yor N ., because the total number of cross-classified / -categories can be very large. While it may be tempting to use all

c,dl
these summary statistics by introducing a large number of corresponding incidental parameters p,, it is best to avoid
modeling with very unstable summary statistics. A compromise may be to collapse ¢, , over / to reduce the set of summary

statistics. In doing so, we will only need to introduce unknown incidental parameters p, as before, but we will also need to

assume that the values of p, relative to p, are known. This is a rather innocuous assumption because P (=pu/p,) can



be well approximated by the corresponding known finite population quantity N, /N, . Now that the modeling problem is

formulated in terms of the summary statistics ¥ , we can turn to the question of smoothing Vw before model fitting using the

EFGL method mentioned earlier.
3. Proposed Method of Smoothing I}W using g-deff

First we review the use of Deff for generalized variance function (GVF) modeling.

3.1 Deff for GVF modeling

Suppose ¥, is a D x1 diagonal matrix, and let y, be the design effect for the domain-d SAE, i.e., 7, =V, / VV;’( o - Inview
of the fact that the design effects y, are often approximately constant over a suitable set of statistics, a simple type of GVF

modeling assumes that the mean of V), is proportional to ¥, where the covariate ¥, is taken to be approximately

(d)

known. As mentioned earlier, V'

(@ 1s estimated under the assumption of simple random sampling or that the design is

ignorable for the model and that the estimate 17;( o 1s assumed to be stable. So for the GVF model with d =1,...,D,

Vowr ="V +a 3.1
where the error covariance structure is not specified, the mean parameter y can be estimated by the average of 7, over

domains where 7, = AW( " / I};( « - The smoothed estimate of 7, is then obtained as I}W( o= 7919;( .- I it does not seem

y()
reasonable to assume that the deff is constant over all areas, then one can compute separate estimates of y for subgroups of
areas for which the constant deff assumption seems plausible. Note that V(;( . may depend on the mean parameters

{f.,n,} of the small area model as in the case of binary data, and then the smoothed variance estimate can also be allowed to

depend on unknown mean parameters. When dealing with discrete data, this is clearly a desirable feature.

3.2 GVF-type Modeling for Non-diagonal VW

The above GVF modeling to smooth Vw is not applicable when I}W is nondiagonal because the concept of deff is not defined

for off-diagonal terms of covariances. In this case, using the concept of g-deff (see e.g., Rao and Scott, 1981) defined as

eigen-values (4,,k =1,...,K ) of V;“ V,, K being the dimension of vector y , we can write a GVF-type model as

vec(I}V) = Z,/ 4 vec(zk q,9,)+vec(e,) (3.2)
where ‘vec’ notation is used to signify that columns of the matrix are stacked one above the other, the second sum is over the
j™" subgroup of summary statitics, and the first sum is over all subgroups. The above model is motivated by the matrix result
for a pair of real symmetric matrices with at least one of them being positive definite (cf: C.R. Rao, 1973, pp.41) which states

that there exists a nonsingular matrix Q such that (here the pair of matrices are V, and V,; ),



’ K ’
V,=0A0' =) Aaq.q, 53)
* ! K ’ ’
V,=00'=> 4.4,

where A =diag(4,), and g, is the k" column of Q. It follows from (3.3) that if I}W* as well as Zf’ q,9, for each selected

A

subgroup of areas are stable, then the instability of Vw can be overcome by smoothing the estimated eigen-values A, over

subgroups. Note that the eigen-values are nonnegative for a nonnegative definite real symmetric matrix. Thus as with deff, if

the estimated g-deffs are averaged over suitable subgroups (j=1,...,J) as defined by the GVF-type model (3.2), the

smoothed estimate of v, is obtained as

v, =24, 44) (3.4)

In the actual application of g-deff for smoothing, it may be better to avoid the effect of possibly different scaling of direct

estimates on eigen-values. To do this, smooth parts of I}W expressed as a sandwich given by

v, =diagV, ) R(P)diag(\[V, ) (3.5)
where R(p)is the correlation matrix in the middle, and p denotes the estimated vector of K (K —1)/2 correlations. Now we
can use the deff-based GVF (equation 3.1) to smooth the left and right parts of the sandwich, while for the middle part, the g-

deff based GVF (equation 3.2) can be used to extract the smoothed correlation vector p from the corresponding smoothed

matrix R (this need not be a correlation matrix), and then obtain VW as

V, = diag\V,q, ) R(D)diag(\[V,)) (3.6)
Some additional benefits of using the above sandwich form for smoothing are that it allows for more freedom in choosing

parameters for smoothing because we have K deffs and K eigen-values based on the matrix R(p) as opposed to only

K eigen-values or g-deffs based on the matrix I}W , and that the two outside parts of the sandwich can be allowed to depend

on model mean parameters as mentioned earlier under section 3.1. Note that in the g-deff based smoothing (3.4), it is not

clear how one can make the eigen-value or the eigen-vector depend on unknown mean parameters.
3.3 Aggregate-level vs. Unit-level Modeling

Finding eigen-values and eigen-vectors for g-deff based smoothing could be computationally difficult if the dimension X is
large. For the aggregate-level modeling, I}W is typically block-diagonal, and so the proposed method of g-deff is not too

complicated computationally. However, for unit-level modeling, it remains nondiagonal because of summary statistics

(obtained from EFs for fixed parameters) that aggregate over all areas. In these situations, one can take advantage of certain

patterns that typically arise in I}W . Observe that the small areas or domains can often be grouped in practice into strata or

superstrata, and then I}W can be partitioned as



I?—AB 3.7
W_B'C ()

where A is a high dimensional block diagonal matrix corresponding to domain or strata-level summary statistics, and C is a

low dimensional matrix corresponding to summary statistics aggregated over all domains. Now decompose I}V, as

A B (4 0] » I 0O
. =H Lo |H, O H=| (3.8)
B C O C-BA'B -B'A" 1

where C—B'A™'B is expected to be stable, and the effect of instability of the matrix H on I}W is expected to be subsumed in
that of the matrix A4 because covariance of the transformed vector Hy turns out to be block-diag {4,C —B'A™'B}. So it is
probably sufficient to just smooth A to obtain A (using the g-deff idea) which being block-diagonal is not computationally
demanding, and then obtain I}W from the decomposition in (3.8) wherein the matrices H and C —B'A™'B are not modified or

smoothed.
4. Simulation Study

We design our study along the lines of Singh, Folsom, and Vaish (2003) which is based on Pfeffermann et al. (1998).

Consider a universe of d =1,/ , D strata (small areas) where D =100 and let N, denote the number of population members
in stratum-d . In this simulation experiment, we set N, = N, (1+exp(u,)) where N, is a constant and u, is obtained by

truncating u, ~ N(0,0.2) at +40.2 . For simplicity, we consider a single covariate super-population linear mixed
model y, =B, +x, B +n,+¢, where B, =05, g =1, n,~N(0,02), ¢, ~N(,1), and k=1,/ ,N,. The covariate
x, =v,+06, where v, ~N(0,0.1) ando, ~N(0,1). We generate M =150 population level data sets with common x,
and N, where N, ’s are generated using N, =3000. Note that the substratum sizes vary over the 150 populations. We selected
a sample from each of these populations so that the design was nonignorable. To select a sample with nonignorable design,

we stratify the stratum-d population into two substrata Q,, with &, >0and Q, withe, <0. LetN,

d+ >

N,_ denote the

sizes of these substrata andn,, , n,_denote the sizes of the simple random samples selected without replacement from these

100

strata, respectively. Note that the substratum sizes vary across populations. We have N =Z i

N, and

100 . . . .
n =z ,o1a wheren, =n,_+n,, . For 150 populations, we generate the corresponding 150 samples. In our simulation

experiment, (n,,,n,_)=(2,10), (5,15) , so that we have common sample sizes from each area.

The results in this paper for the EFGL-unsmoothed method are not directly comparable to those in the Singh, Folsom, and

Vaish (2003) paper because here we are using the version of EFGL based on the summary statistics  which consists of
{t, 45t a>tyot )5 1,18 excluded because it is constant and equal to N, for the stratified SRS design. Note that the simpler

case of aggregate-level modeling was not considered in this limited simulation study. Also, we didn’t consider the sandwich



-type g-deff method (3.5) for smoothing I}W but used the initial g-deff method (3.4). To avoid computational complexity, we
used the smoothing based on the decomposition (3.8) where A is a block diagonal matrix of 100 blocks, each of dimension

2x2 corresponding to each small area, and C—B'A"'B is only a 2x2 matrix. In order to use EFGL under a HB framework,

. ) . . 2 . .
customary priors for  and o, were chosen as (estimation of the parameter o, was not considered as it was not needed)

B~U(R), o ~1G(vy/2, 0 [2) @.1)

2

where o
o

=.01, a small positive number, and v, =3, the smallest possible integral value greater than 2 which gives a

practically meaningful interpretation of the posterior mean of [a,? |77] obtained as a weighted average

EI:O'; |77] =(D(zd77§/D)+(v0 —2)0'50 )/(D+v0 -2) 4.2)

The results from the simulation study are presented in Tables 1 and 2. In terms of point estimation and Standard deviation,
both methods (EFGL-u for unsmoothed, and EFGL-s for smoothed) perform very similarly as seen from Table 1. However,
in terms of coverage probabilities and length of prediction intervals, the unsmoothed method EFGL-u starts showing

deterioration as seen from Table 2. It is expected that variance of SAEs would suffer from downward bias due to
underestimation of their variances by regarding I;'V, or its smoothed version I}W as known. However, it is interesting to note

that for smaller sample sizes, there is marked difference between the coverage probability and interval width between the
smoothed and unsmoothed methods and smoothing is seen to correct in the right direction. Nevertheless, when sample sizes

for small areas are rather low as seen in the lower half of Table 2, even after smoothing, there is significant undercoverage of
prediction intervals. This suggests that I;'W is still not sufficiently smooth and perhaps collapsing of small areas with similar

random effects as suggested in Singh, Folsom and Vaish (2003) might alleviate this problem. In future, this and other issues

related to the performance of smoothing methods for other choices of area sample sizes will be investigated further.
5. Summary and Concluding Remarks

In this paper we considered the problem of smoothing the error covariance in small area modeling of survey data. This
problem has been around for quite some time. The proposed method of smoothing the error covariance based on deff and g-
deff provides a simpler alternative to other methods including modeling the error covariance, and seemed to perform well in a
limited simulation study. An important consideration in using the proposed method is that similar to GVF modeling, the
underlying assumptions are quite mild; this is likely to be attractive to practitioners. An interesting finding of the simulation
study was that although smoothing seemed to help correct underestimation of variance of SAEs, it may not be sufficient for
areas with very small sample sizes. In future, it would be interesting to see if suitable collapsing of areas would help to
provide a sufficiently stable smoothed estimate of error covariance as well as help in justifying the normal approximation for
summary statistics. We also note that the basic idea of covariance smoothing proposed in this paper is applicable to other

SAE problems as well involving spatial and temporal modeling.



Finally, it is interesting to note that the use of GVF was also identified by Eltinge et. al (2002) in trying to stabilize the
covariance matrix in the context of quadratic-score type tests for model checks in analysing survey data, and considered their
relationships with Rao-Scott corrections to chi-square tests. However, they didn’t consider the use of g-deff in GVF-type

modeling that seems to provide a simple but important approach for the problem of SAE considered in this paper.
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Table 1: Average Posterior Mean and Standard Deviation for Model Parameters: Nonignorable Sample
Design
(1g45m4-) = (5,15)

. Average Posterior
Parameter Average Posterior Mean Standard Deviation
(True
Value) EFGL-u EFGL-s EFGL-u EFGL-s
By (0.5) 0.4927 0.4933 0.0478 0.0477
ﬂl(l'o) 0.9984 0.9983 0.1225 0.1226
o;f (0.2) 0.1970 0.1963 0.0320 0.0320
(ng4,nq-)=(2,10)
. Average Posterior
Parameter Average Posterior Mean Standard Deviation
(True
Value) EFGL-u EFGL-s EFGL-u EFGL-s
By (0.5) 0.4816 0.4790 0.0505 0.0504
ﬂl(l.()) 0.9852 0.9839 0.1011 0.1030
072 (0.2) 0.2048 0.1980 0.0347 0.0345

Table 2: 95% Coverage Probability and Ratio of Prediction Interval (PI) Widths: Nonignorable Sample
Design
(nd+’nd—) = (5915)

Percentiles and Coverage Probability Ratio of Average PI Widths
Means EFGL-u EFGL-s EFGL-s/EFGL-u
over Small Areas
75% 0.9333 0.9533 1.02
Mean 0.9183 0.9386 1.01
25% 0.9000 0.9267 1.00

(ng4,n-) = (2,10)

Percentiles and Coverage Probability Ratio of Average PI Widths
Means EFGL-u EFGL-s EFGL-s/EFGL-u
over Small Areas
75% 0.8433 0.8833 1.06
Mean 0.8252 0.8659 1.06

25% 0.8067 0.8467 1.04
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