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Abstract

It is straight forward to analyze data from a single multinomial table. Speci¯cally, for the
analysis of a two-way categorical table, the common chi-squared test of independence between the
two variables and maximum likelihood estimators are readily available. When the counts in the
two-way categorical table are formed from familial data (clusters of correlated data), the common
chi-squared test no longer applies. We note that there are several approximate adjustments to
the common chi-squared test. For example, Choi and McHugh (1989, Biometrics 45, 979-996)
showed how to adjust the chi-squared statistic for clustered and weighted data. However, our main
contribution is the construction and analysis of a Bayesian model which removes all analytical
approximations. This is an extension of a standard multinomial-Dirichlet model to include the
intra-class correlation associated with the individuals within a cluster. We have used a key formula
described by Altham (1976, Biometrika 63, 263-269) to incorporate the intra-class correlation.
This intra-class correlation varies with the size of the cluster, but we assume that it is the same
for all clusters of the same size for the same variable. We use Markov chain Monte Carlo methods
to ¯t our model, and to make posterior inference about the intra-class correlations and the cell
probabilities. Also, using Monte Carlo integration with a binomial importance function, we obtain
the Bayes factor for a test of no association. To demonstrate the performance of the alternative
test and estimation procedure, we have used data on activity limitation status and age from the
National Health Interview Survey and a simulation study.
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1. Introduction 

It is a common practice to use two-way categorical tables to present survey data. In this 

situation it is assumed that the cell counts in the r £ c table follow a multinomial distribution. 

However, because of strati¯cation and clustering the joint distribution of the cell counts is no longer 

multinomial. Thus, the standard chi-squared statistic no longer has a chi-squared distribution, and 

therefore the test based on the multinomial distribution may be inadequate. It is standard practice 

to make an adjustment to the standard chi-squared statistic, but in general the accuracy of this 

adjustment is not well understood, and one can not estimate the cell probabilities based on this 

adjustment. We propose a Bayesian alternative which is based on the Bayes factor to obtain a test 

for association between the two categorical variables. Our Bayesian method also provides posterior 

distributions for the cell probabilities. 

Several authors have recognized inaccuracy in the analysis when the usual chi-squared test is 

applied to correlated \multinomial" data. E®orts to correct for spurious in°ation in such tests 

have been based on two approaches. The design-based approach provides inference with respect 

to the asymptotic sampling distribution of estimates over repetitions of the sample design (Fellegi 

1980, Holt, Scott and Ewings 1980, Rao and Scott 1981, 1984, Bedrick 1983, and Fay 1985). 

For example, Rao and Scott (1981) investigate the e®ects of strati¯cation and clustering on the 

asymptotic distribution of Pearson's chi-squared statistic for goodness of ¯t and independence. 

They propose new measures called generalized design e®ects. See also Rao and Scott (1984) who 

generalized the results of Rao and Scott (1981) to multi-way categorical tables. The model-based 

approach postulates a probability distribution to model the sample data (Altham 1976, Cohen 

1976, Brier 1980, Fienberg 1979, and Choi and McHugh 1989). For example, Choi and McHugh 

(1989), applying the probabilistic development in Altham (1976), shows how to adjust the standard 

chi-squared test statistic when there is an intra-class correlation. 

The National Center for Health Statistics (NCHS) uses the National Health Interview Survey 

(NHIS) to collect data on chronic and acute conditions, doctor visits, hospital episodes, disability, 
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household and personal information, and other special aspects of health of the U.S. population. 

One of the variables we use in the NHIS is activity limitation status (ALS), a measure of long-

term disability resulting from chronic conditions since 1957. ALS is de¯ned as inability to carry 

out the major activity for one's age-sex group such as working, keeping house or going to school; 

restriction in the amount or kind of major activity; or restriction in relation to other activities 

such as recreational, church and civic interests. ALS is typically classi¯ed into three categories: 

\unable to perform major activity", \limited in kind/amount major activity and in other activities" 

and \not limited (includes unknowns)" ranging from severe individuals to individuals unnecessary 

to classify. The relation between age and activity limitation status is of interest. In the health 

interview survey, information (i.e., chronic disease and impairment) for each household member 

about the major activity she/he usually performed during the 12 months prior to interview is 

requested by the interviewer. There is possibly a positive association between ALS and age, and to 

study this association three age groups (under 56 years, 56-70 years and more than 70 years) are 

used. The analysis is complex because one can expect an intra-class correlation within households. 

Let njk denote the number of individuals in the jth row and kth column of the r£ c categorical 
P P P P c r r ctable. Also let nj¢ = k=1 njk; j  = 1; : : : ; r, n¢k = j=1 njk; k  = 1; : : : ; c, n = j=1 k=1 njk 

and ejk = nj¢n¢k=n; j = 1; : : : ; r;  k  = 1; : : : ; c. Then, Pearson's chi-squared statistic, under 

independence of the row and column classi¯cation, is 

Xr cX 
Xu = (njk ¡ ejk)

2 =ejk: 
j=1 k=1 

If the responses from the individual members are independent and identically distributed, then 

asymptotically (as n ! 1) Xu ! Â2(r¡1)(c¡1), a chi-squared random variable with (r ¡ 1)(c ¡ 1) 

degrees of freedom. In practice, the validity of the chi-squared test depends on (a) the magnitude 

of the expected values ejk and (b) whether the cell counts (njk; j  = 1; : : : ; r;  k  = 1; : : : ; c) follow a  

multinomial distribution given the sample size n (i.e., the individual responses are independent and 

identically distributed). In (a) the test is valid if the ejk are larger than 5, and clearly the only way 

to achieve this is to increase the sample size subject to cost. In (b) when there is correlation among 
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the members (e.g., familial correlation), the asymptotic distribution of Xu is no longer Â2 
(r¡1)(c¡1), 

and the estimates of the cell proportions can be inaccurate. The problem about the asymptotic 

distribution has received much attention, but the problem about the inaccuracy of the estimates 

of the cell proportions has received virtually no attention. In this paper we address both problems 

simultaneously within a Bayesian framework when there are familial count data. 

We describe one solution that has been proposed for the problem about the asymptotic distri-

bution. Let nt denote the number of members in all families of the same size t = 1; : : : ; T , and  

let μt denote the intra-class correlation for clusters of size t (μ1 ´ 0). Motivated by Rao and Scott 

(1981), Choi and McHugh (1989) derive the following adjusted chi-squared statistic 

TX 
¡1 ^ ¡1Xa = Xuf1 +  n (t¡ 1)ntμtg

t=1 

^where μ is the maximum likelihood estimator of μ under their model. The statistic Xa is an 

improvement over Xu (i.e., more accurately Â2 ). The p-value corresponding to the adjusted (r¡1)(c¡1)

chi-squared statistic will be larger. For weighted data they further adjust Â2 approximately (r¡1)(c¡1) 

by the average weight. 

We provide a Bayesian analysis of this problem. This is a direct extension of the probabilistic 

development in Altham (1976) which is used to provide a likelihood function. Then proper but 

noninformative priors are assigned to the parameters to provide a full Bayesian approach. The 

model includes a nonnegative intra-class correlation which varies according to the number of in-

dividuals in a cluster (i.e., all clusters of the same size have the same intra-class correlation). In 

this framework we can provide (a) the posterior densities of the cell probabilities and (b) a test of 

association between the two categorical variables. In (b) we use the Bayes factor to quantify the 

di®erence between a model with association and one without. This is the ratio of the prior odds of 

one model to the other to their posterior odds (obtained through the use of Bayes' theorem), and 

it is the same as the ratio of the marginal likelihoods of the data under two models, one without 

association and the other with association. If two models, M0 and M1, are ¯tted to data y, the  
~ 

Bayes factor for comparing models M1 and M0 is de¯ned as the ratio of the marginal likelihoods 
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of the data y as 
~ 

Z 
p(yjM1)

B10 = ~ with p(y j Mk) =  p(yjμk;Mk)p(μk j Mk)dμk; k = 0; 1 
p(yjM0) ~ ~ ~ ~ ~ 
~

where μk is the parameter vector under Mk, p(yjμk;Mk) is the probability density (or mass) function 
~ ~ ~ 

and p(μk j Mk) is the prior density. For example, in application M0 is the model of no association 
~ 

and M1 is the model of association. The Bayes factor summarizes the evidence provided by the 

data in favor of one scienti¯c hypothesis M1 relative to another M0. Kass and Raftery (1995) 

gave a comprehensive description of Bayes factors including their interpretation. For example, if 

0 · log(B10) < 1, the evidence against M0 is \not worth more than a bare mention"; if 1 · 

log(B10) < 3, the evidence against M0 is \positive"; if 3 · log(B10) < 5, the evidence against M0 is 

\strong"; and if log(B10) ¸ 5, the evidence against M0 is \very strong". There are several methods 

to compute the marginal likelihood (e.g., see Section 1 of Chib and Jeliazkov 2001), and we note 

that one standard method is Monte Carlo integration with an importance function. 

In this paper, we introduce a Bayesian method to analyze data from an r£ c categorical table. 

We consider the situation in which there are no missing data, but one in which the table is built up 

by aggregating clustered multinomial data. In Section 2, we describe the methodology to obtain 

estimates of the cell probabilities, and to obtain the Bayes factor for a test of no association between 

the two categorical variables. We also show how to use Markov chain Monte Carlo methods to ¯t 

the models. We show how to use Monte Carlo integration with an importance function to compute 

the marginal likelihoods under di®erent models. In Section 3 we illustrate our method using data 

from the National Health Interview Survey. In Section 4, we perform several simulated examples to 

compare inference using our model with another model which does not incorporate the intra-class 

correlation. Finally, Section 5 has concluding remarks. 

2. Bayesian Model and Computation 

We describe the methodology to ¯t \multinomial" data when there is an intra-class correlation. 

We build our model based on the work of Altham (1976). 
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2.1 Model 

Suppose there are si individuals in the ith cluster, i = 1; : : : ; `, and  sijk individuals fall in the jth 

P P r crow and kth column in the r £ c table, j = 1; :::r; k  = 1; :::; c. Here  j=1 k=1 sijk = si, sijk ¸ 0. 

Altham (1976) shows that the probability that all si individuals fall in the jth row and kth column 

is 

μsi ¼jk + (1  ¡ μsi )¼
si ; 0 · μsi · 1: (1)jk

There is exactly one sequence in (??). Note that (??) can  be  interpreted as a mixture of two  

distributions. Let w be the latent variable such that w = 1 for perfect dependence and w = si si si 

0, for perfect independence, where dependence/independence refers to the intra-class correlation. 

Then p(w = 1  j μsi ) = 1  ¡ p(w = 0  j μsi ) =  μsi .si si 

Also, the probability that the individuals are in di®erent speci¯ed cells is 

Yr cY 
(1 ¡ μsi ) ¼ sijk (2)jk 

j=1 k=1 

where we allow the intraclass correlation μsi , 0  · μsi · 1, to depend on the cluster size si. Note  

that there is at least one sequence in (??). 

This model of clustering permits only positive association or independence among the individ-

uals within a cluster, and this is typically the case for many demographic, social and economic 

characteristics. 

Note that μsi ¼jk + (1  ¡ μsi )¼
si is strictly increasing in μsi . When  μsi = 0, the probability that jk 

all individuals in the ith cluster belong to cell (j; k) is  ¼si , and  when  μsi = 1, the probability that jk

all individuals in the ith cluster belong to cell (j; k) is  ¼jk, which can be much larger. In addition, 
Q Qr c sijk (1 ¡ μsi ) j=1 k=1 ¼ is a strictly decreasing function in μsi . When  μsi = 0, the probability jk 

that the individuals in the ith cluster belong to di®erent speci¯ed cells is ¼si , and  when  μsi = 1,  jk

the probability that the individuals in the ith cluster belong to di®erent speci¯ed cells is 0. Thus, 

the intra-class correlation has an important role when inference is made about the ¼jk and the 

association between the two categorical variables. Henceforth, s1; : : : ; s` are assumed known. 
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Let C denote the set of clusters in which all individuals fall in a single cell of the r £ c table. 

Then, letting si = (si11; : : : ; sirc); i = 1; : : : ; `, 
~ 8 

> μsi ¼jk + (1  ¡ μsi )¼
si ; i 2 C< jk

p(s ; ¼) =  (3) 
~ ~ : r c sijk 
i j μsi >

(1 ¡ μsi )si! 
Q
j=1 

Q
k=1 ¼jk =sijk! i =2 C: 

Assuming independence over clusters and letting s = (s1; : : : ; s  ̀), we have 
~ ~ ~ 

rY r c Y Y YY Y c

p(s j μ; ¼) =  ¼jk + (1  ¡ μsi )¼
si f(1 ¡ μsi ¼

sijk : (4)fμsi jkg )si! jk =sijk!g
~ ~ ~ i2C j=1 k=1 i=2C j=1 k=1 

Observe that if μsi = 0; i = 1; : : : ; `, 

cY ` Yr Y sijk p(s j μ; ¼) =  fsi! ¼jk =sijk!g; (5) 
~ ~ ~ i=1 j=1 k=1 

P` which is a product of multinomial probability functions. In (??) the  statistics  i=1 sijk = njk are 

su±cient as in regular multinomial sampling (i.e., observations are from a simple random sample) 
P P r cand each individual belongs to cell (j,k) with probability ¼jk ¸ 0, k=1 ¼jk = 1.  j=1 

Suppose that each cluster has size t; t = 1; :::; T ; in applications  T is 2 to 5 or so. Then letting 

gtjk denote the number of clusters in C of size t with all individuals in cell (j; k) and  g~t the number 

~of clusters of size t in C (i.e., outside C), 

T r cYY Y 
jk)

gtjk p(s j μ; ¼) =  (μt¼jk + (1  ¡ μt)¼t (6) 
~ ~ ~ t=1 j=1 k=1 

T r cY Y Y Y 
gt sijk £ f  (1 ¡ μt) ~ g fsi! ¼ =sijk!g:jk 

t=1 i=2C j=1 k=1 

Finally for a full Bayesian approach, noting that μ1 = 0,  we  assume  

iid
μt » Uniform(0,1); t = 2; : : : ; T  

and independently 

¼ » Dirichlet(1 ): 
~ ~ 

These are noninformative but proper prior densities. Thus, the joint posterior density of (μ; ¼) is  
~ ~ 

proper. 
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The likelihood function is described in Appendix A where we introduce latent variables ztjk 

(i.e., an augmented likelihood function used primarily to simplify the computations). Speci¯cally, 

in (??) we have described the joint probability mass function of (s; z) given  (μ; ¼). Then, letting 
~ ~ ~ ~ 

z = fztjk; t  = 2; : : : ; T;  j  = 1; : : : ; r;  k  = 1; : : : ; cg and using Bayes' theorem the joint posterior 
~ 
density is ( )

TY 
gtp(μ; ¼; z  j s) / (1 ¡ μt) ~

~ ~ ~ ~ t=2 
( Ã ! )

r c TY Y Y g1jk+~sjk gtjk 
jk)

gtjk¡ztjk £ ¼ (μt¼jk)
ztjk ((1 ¡ μt)¼t : (7) 

j=1 k=1 
jk 

t=2 ztjk 

The joint posterior density in (7) is complex, so we use the Gibbs sampler to draw samples which 

are used to make inference about ¼jk and μt. 

2.2 Computation 

To run the Gibbs sampler we need starting values for μ and ¼, and these are easy to obtain. 
~ ~ P PP` r cLetting njk = i=1 sijk and n = j=1 k=1 njk, we  take  ¼̂jk = njk=n and μt = 1=t; t = 2; :::; T . 

Note also that we estimate ztjk by ztjk = gtjk[μt¼jk =fμt¼jk + (1  ¡ μt)¼t jkg]. 

The conditional posterior densities (cpd's) of each parameter given the others are needed to 

implement the Gibbs sampler. Note that z1jk = μ1 = 0. Speci¯cally, the cpd for μ is 
~ 8 9 

< r c r c =XX XXind
μt j ¼; z; s  » Beta : 1 +  ztjk; 1 + ~gt + (gtjk ¡ ztjk); ; t = 2; : : : ; T;  ~ ~ ~ j=1 k=1 j=1 k=1 

the cpd for ¼ is 
~ ( )

TX 
¼ j μ; z; s » Dirichlet 1 +  g1jk + ~sjk + [ztjk + t(gtjk ¡ ztjk)]; j  = 1; : : : ; r;  k  = 1; : : : ; c
~ ~ ~ ~ t=1 

and the cpd for z is 
~ ( )

ind μt¼jk
ztjk j μ; ¼; s  » Binomial gtjk; ; t = 2; : : : ; T;  j  = 1; : : : ; r;  k  = 1; : : : ; c:  

μt¼jk + (1  ¡ μt)¼t ~ ~ ~ jk 

We \burn in" 1000 iterates, and took every tenth to get 1000 iterates which we use for inference. 

These choices are very conservative, and the algorithm runs very quickly. 

3. Alternative Test for Association and Computation 
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To test for association versus no association between the two categorical variables, we use 

the Bayes factor, the ratio of the two marginal likelihoods. By no association we mean that 
P P(1) (2) r (1) c (2)

¼jk = q q where = = 1. A problem of the slightly less interest is to test j k j=1 qj k=1 qk 

for no intra-class correlation. The model without intra-class correlation is given in Appendix B. 

3.1 Bayes Factor 

Consider our problem with intra-class correlation. Letting z = fzijk; t  = 2; :::; T;  j  = 
~ 

1; :::; r;  k  = 1; :::; cg, we  de¯ne  Z = fz : 0  · ztjk · gtjk; t  = 2; :::; T;  j  = 1; :::; r;  k  = 1; :::; cg.Ã !~ Q Q QT r c gtjk For the model with association, taking μ1 = 0 and letting A(g; z) =  k=1 , the  t=1 j=1 
~ ~ ztjk 

marginal likelihood is 

Z Z  T r cX YY Y 
f(μt¼jk)

ztjk f(1 ¡ μt)¼t gtjk¡ztjk pas(s) = (rc¡ 1)! [A(g; z) jkg
~ ~ ~ z2Z t=1 j=1 k=1 

~ 3 
T r c sijk Y Y Y Y ¼jkgt 5£ f  (1 ¡ μt) ~ g fsi! gdμd¼ 
t=1 i=2C j=1 k=1 sijk! ~ ~ 

and for the model without association the marginal likelihood is 

Z Z Z  T r cX YY Y (1) (2) 
)ztjk f(1 ¡ μt)(q(1) (2))t gtjk¡ztjk pnas(s) = (r ¡ 1)!(c¡ 1)! [A(g; z) (μtq q q gj k j k 

~ ~ ~ z2Z t=1 j=1 k=1 
~ 3 

(1) (2) T r c )sijk Y Y Y Y (q qj k (1) (2) gt 5£f (1 ¡ μt) ~ g fsi! gdq dq dμ : 
sijk! ~ j ~ k 

~ t=1 i=2C j=1 k=1 
Q Q Qr cThen, letting d = (rc¡ 1)!S and e = (r ¡ 1)!(c¡ 1)!S with S = i=2C fsi!= j=1 k=1 sijk!g, it  

is easy to show that 
" #

TX Y 
pas(s) =  d A(g; z)f D(b1t + 1; b2t + 1)gD(a11 + 1; :::; arc + 1)  (8) 

~ ~ ~ z2Z t=2 
~ 

and " #
TX Y 

pnas(s) =  e A(g; z)f D (b1t + 1; b2t + 1)g D1(a) D2(a) (9) 
~ ~ ~ ~ ~ z2Z t=2 

P P ~ P P Pr c r c Twhere b1t = j=1 k=1 ztjk, b2t = ~gt + j=1 k=1(gtjk ¡ztjk), ajk = g1jk +~sjk + t=2fztjk +t(gtjk ¡ 
P P c r ztjk)g, aj¢ = = j=1 ajk, j = 1; : : : ; r, k = 1; : : : ; c, D1(a) =  D(a1¢ + 1; : : : ; ar¢ + 1)  k=1 ajk, a¢k 

~ 
and D2(a) =  D(a¢1 + 1; : : : ; a¢k + 1).  In  (??) and  (??) D(¢; : : : ; ¢) is the Dirichlet function, where 

~ 
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Q P · · for a ·-dimensional vector x; D(x) =  )=¡( ) (e.g.,  when  · = 2,  D(x1; x2) =s=1 ¡(xs s=1 xs
~ ~ 

¡(x1)¡(x2)=¡(x1 + x2) is the beta function). 

3.2 Computation 

To compute (??) and  (??) we use Monte Carlo integration with the importance function, 

ind 
ztjk » Binomial(gtjk; qtjk); t = 2; :::; T;  k  = 1; :::; c: (10) 

^ ^ · ^In (??), qtjk = μt¼̂jk=fμ̂t¼̂jk + (1  ¡ μt)¼̂jkg where · is a tuning constant and μt and ¼̂jk are 

respectively the posterior means of μt and ¼jk obtained from the Gibbs sampler. We choose the 

tuning constant · = 2.  

Then, simulation consistent estimators of pas(s) and  pnas(s) are  
~ ~ 

M QT (h) (h) (h) (h)X f t=2 D(b1t + 1; b2t + 1)gD(a11 + 1; :::; arc + 1)  
) =  dM¡1 pas

d(s 
(h) 

~ QT Q Q z (h) 
h=1 r c tjk (1 ¡ qtjk)gtjk¡ztjk 

t=2 j=1 k=1 qtjk 

and 

M QT (h) (h) 
d X f t=2 D(b1t + 1; b2t + 1)gD1(a

(h))D2(a
(h))

) =  eM¡1 pnas(s (h) ~ ~ 
~ QT Qr Qc z

tjk (1 ¡ qtjk)gtjk¡z
(h) 

t=2 j=1 k=1 qtjk 
h=1 tjk 

(h) P r P c (h) (h) P r P c (h) (h) PT (h)
where b1t = j=1 k=1 ztjk , b2t = ~gt + j=1 k=1(gtjk ¡ ztjk ), ajk = g1jk + ~sjk + t=2fztjk + 

(h)
t(gtjk ¡ ztjk )g, and  z(h); h = 1; :::;M  is a random sample from (??). We have chosen M=10,000. 

~ 

4. An Illustrative Example 

In the NHIS the households are poststrati¯ed by states and there are data from all 51 states 

(including the District of Columbia). For some states there are extremely small numbers of sampled 

households (e.g., Iowa, Idaho, Wyoming) and for some states there are extremely large numbers of 

sampled households (e.g., California, New York, Texas).  We  have studied  these states individually  

and to  illustrate our  procedure we use  the data from Maryland (medium size state). In column 2 of 

Table ?? we present the cell counts of the 3 £ 3 table of age and ALS for Maryland. It is of general 

interest to test the hypothesis that age and ALS are independent and to estimate the proportion of 
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individuals in each cell of the 3 £ 3 table. We have compared our model with intra-class correlation 

with the simple (without intra-class correlation) multinomial model; see Appendix B for a brief 

discussion of the simple multinomial model. 

Using the method of Rao (1965, p. 159) we have calculated the intra- class correlation coef-

¯cient for age and ALS separately for Maryland data. For age the estimates are: families of size 

2 (:71); 3 (:45); 4 (:20) and for families of size 5 (-.03), and for ALS the estimates are: families of 

size 2 (:29); 3 (:26); 4 (:20 and for families of size 5 (.02). Note that there are three families of 

size 7 and 2 of size 8 that we have omitted from our data analysis, and the total number of indi-

viduals is 897 with 104 one-member families, 140 two-member families, 79 three-member families, 

49 four-member families and 16 ¯ve-member families. 

We have constructed 95% credible intervals for the intra-class correlations (μ2; : : : ; μ5) and  they  

are: μ2 (:39; :58); μ3 (:46; :70); μ4 (:57; :80); and μ5 (:28; :74). Thus, there is substantial intra-class 

correlation especially among families of size 4. 

We have also studied the tests (Bayes factor and adjusted chi-squared statistics). Working 

with logarithm, for the model without intra-class correlation the Bayes factor is 15:6; the value 

of the unadjusted chi-squared test statistic is 67:2 giving a p-value of virtually 0. For the model 

with intra-class correlation the Bayes factor is 7:6 with  a  NSE  of 3:3; the value of the adjusted 

chi-squared test statistic is 45:8 giving a p-value of virtually 0 again. The Bayes factor gives very 

strong evidence for an association between age and ALS with or without the intra-class correlation; 

the same is true for  the chi-squared  test.  Note that the  count for  cell  (2; 1) is only 3, showing a 

possible problem for the chi-squared test. We also note that in this example, because there is a 

strong assosciation between age and ALS, the di®erence among  these tests  is  small.  However,  in  

cases where the association is not so large, there could be di®erences in these tests. 

For the ¼jk in Table ?? we present the posterior mean (PM), posterior standard deviation 

(PSD), numerical standard error (NSE), and the 95% credible intervals. First, the NSE's are small 

showing that the results can be reproduced. But note, as expected, the model without intra-class 

correlation  has PM's close  to  the  ̂¼jk, but there are some cases where the PM's from the model with 
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intra-class correlation di®er (e.g., for cell (2,1) compare :067 with :027 and for cell (3, 1) compare 

:706 with :675). Also the PSD's under the model with intra-class correlation are larger than those 

under the model without intra-class correlation, as is expected. These di®erences are re°ected in 

the 95% credible intervals (e.g., for cell (3,1) compare (:62; :73) with (:67; :73)). Except for cell (1, 

2) the intervals under the model with intra-class correlation contain those under the model without 

intra-class correlation. 

It is interesting that inference about the ¼jk can di®er under the model with intra-class corre-

lation and the one without, re°ecting the presence of an intra-class correlation. The presence of a 

substantial intra-class correlation has the e®ect of reducing the number of observations. Thus, we 

can deduce that the absence of intra-class correlation in the simple multinomial model leads to an 

under estimation of variability. 

5. A Simulation Study 

We have simulated data from our model to assess the quality of our methodology. Speci¯cally, 

we have studied how changes in the intra-class correlation a®ect inference about the ¼jk and the 

association between the variables in a r £ c categorical table. 

We have chosen the ¼jk to represent di®erent degrees of association between the categorical 

variables in a 3 £ 3 table. Speci¯cally, we have chosen three di®erent sets of ¼jk: (a)  low  (or  no)  

assiciation (¼jk = 1=9; j  = 1; : : : r;  k  = 1; : : : ; c) (b) medium association (¼11 = :220, ¼12 = :150, 

¼13 = :100, ¼21 = :075, ¼22 = :100, ¼23 = :075, ¼31 = :050, ¼32 = :100, and ¼33 = :130) and 

(c) strong association (¼11 = :250, ¼12 = :050, ¼13 = :010, ¼21 = :030, ¼22 = :250, ¼23 = :030, 

¼31 = :050, ¼32 = :080, and ¼33 = :250). We have taken μk = μ; k  = 2; : : : ; T , and 5 values of μ 

(:2; :4; :5; :6; :8). Thus, we study the e®ect of our choice of μ on inference about ¼jk and the 

association between the two categorical variables. We note that when μ is  small (large), there  is  a  

tendency for the simulated individuals to be in di®erent (same) cell(s) of the r £ c table. Letting 

ck denote the number of clusters of size k; k = 1; : : : ; T  = 5,  we  take  c1 = 50,  c2 = 70,  c3 = 50,  

c4 = 40 and  c5 = 20 to get a total of 600 observations. These are held ¯xed for all simulation 
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experiments. Thus, we study how the posterior distributions of the intraclass correlation and the 

¼jk are a®ected by choices of the intra-class correlation and the degree of association between the 

two categorical variables. 

We simulated the cell counts using the probabilities of allocation. Let si denote the counts for 
~ 

the ith cluster. Then, for t = 1,  si j ¼ » Multinomial(1; ¼). For t ¸ 2 the probability that all t 
~ ~ ~ 

individuals fall in the same cell is μ¼jk + (1  ¡ μ)¼t and the probability that they fall in di®erent jk 
Q Q P P r c sijk r ccells is (1 ¡ μ)(t!) j=1 k=1 ¼jk =sijk!; j=1 k=1 sijk = t. Thus, it is straight forward to draw 

the cell counts. 

We have simulated 1000 datasets of size 600 for each value of μ and the degree of association 

(i.e., there are 15000 datasets). We ¯t our model incorporating the intra-class correlation to each 

data set using the Gibbs sampler as described in Section 2.2. We compute (a) the posterior mean, 

posterior standard deviation, and 95% credible intervals for the ¼jk for each data set, (b) the Bayes 

factor to test for association in the 3 £ 3 table and (c) we have also compared inference using the 

model with intra-class correlation and the standrad multinomial-Dirichlet model, one that ignores 

the intra-class correlation (see Appendix B). 

We have presented results for our simulated examples in Tables ??, ??,?? and ??, taking  

averages over the 1000 datasets for each quantity. 

[Need to discuss!] In Tables ?? we have presented posterior mean (PM), posterior standard 

deviation (PSD) and 95% credible interval for the μk and the ¼jk. Apart  from  μ = :10 the posterior 

summaries are concordant with the design values for μ2 to μ5. 

[Need to discuss!] In Table ?? we have presented posterior mean (PM), posterior standard 

deviation (PSD) and 95% credible interval for the and the ¼jk. The posterior summaries indicate 

that the model with the intra-class correlation is more in concordant with the design values than 

the regular multinomial, and the regular multinomial degrades as μ increases. 

[Need to discuss!] The log-Bayes factors in Table ?? for  both the  model with intra-class  cor-

relation and the regular multinomial are bigger than 5, indicating very strong evidence for no 
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association. But while for the model with intra-class correlation the Bayes factor decreases rapidly 

as μ increases, the decrease under the regular multinomial model is not so steep. 

We have studied the datasets generated from the design level of weak association (¼jk = 1=9; j = 

1; 2; 3; k = 1; 2; 3) to compare the adjusted ch-squared test and the Bayes factor from the model 

with intra-class correlation; see Table ??. First, using the the model with intra-class correlation all 

the datasets show some degree of evidence for no association; of the 5000 datasets 3812 show strong 

evidence and 1188 show weak evidence for no association. Observe that the number of datasets 

showing weak (strong) evidence increase (decrease) with the intra-class correlation. The situation 

is di®erent when the adjusted chi-squared test is used; of the 5000 datasets 3948 do not reject 

(accept in Table ??) and 1052 (much too large) reject no association at the 5% signi¯cance level. 

With aberrations the e®ect of increasing intra-class correlation is the same as for the Bayes factor. 

Thus, inference using the adjusted chi-squared test can be incorrect. 

6. Concluding Remarks 

We have shown how to analyze multinomial data from r£ c categorical tables when there is an 

intra-class correlation. We have also shown that by using the Bayes factor (ratio of the marginally 

likelihoods of two models) we can test for association between the two categories. 

We have analyzed 3 £ 3 categorical data of age and activity limitation status from the 1996 

National Health Interview Survey. We have found moderately large intra-class correlations, and 

these correlations have small e®ects on tests of hypothesis (both the standard chi-squared test and 

our Bayesian alternative). While we have reported results for Maryland, we have found similar 

results for many of the other states. 

We have also performed a small simulation study to assess the impact of the intra-class corre-

lations on the alternative to the chi-squared test and posterior inference of the cell probabilities. 

It appears that the Bayes factor decreases as the intra-class correlation increases (further investi-

gation is required), but for the examples we have not found much di®erence in inference between 
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the model with intra-class correlation and the one without. There are also small di®erences for

inference about the ¼jk. 

In future we can extend our methodology to accommodate (a) small areas (b) nonresponse and

(c) an intra-class correlation coe±cient corresponding to each categorical variable. In (a) we can

consider the states (including the District of Columbia) as small areas. There are very sparse data

from some of the states (e.g., Iowa, Idaho, Wyoming), and to make reliable inference about one

of these states, one needs to \borrow strength" across the states. In (b) there is a non-negligible

number of nonrespondents from each state, and one would need to construct a model that can

adjust for nonignorable nonresponse. Finally, in (c) for two categorical variables one intra-class

correlation is μsi and the other is · si μsi ; 0 · · · μs¡i 
1 . Then we can replace μsi in Altham's si 

formula by 1 (· si + 1)μsi ; 0 · μsi · 1; 0 < ·si · μ¡1; i  = 1; : : : ; `  with an appropriate joint prior2 si 

density on (μsi ; · ).si 

APPENDIX A: Augmented Likelihood Function

We derive the likelihood function of μ and ¼, augmented with latent variables. Let the cell
~ ~ r cXX

counts for the ith cluster be sijk; i = 1; : : : ; `;  j  = 1; : : : ; c;  k  = 1; : : : ; c, and  si = sijk. Also
j k

let si = (si11; : : : ; sirc). Assuming that the si are known, we have  si given μand ¼ are independent. 
~ ~ ~ ~

We separate the derivation into two parts.

First, for each i²C (i.e., the ¯rst part in which all members fall in the same cell),

1X
)¼si ¼jk)

!ijk f(1 ¡ μsi )¼
si 1¡!ijk ;p(si j μ; ¼) = (μsi ¼jk) +  (1  ¡ μsi jk = (μsi jkg

~ ~ ~ !ijk=0

j = 1; : : : ; r;  k  = 1; : : : ; c  where !ijk is an indicator variable (i.e., !ijk = 0; 1). Then, by de-

marginalization over !ijk, we have  

i j μ; ¼) = (μsi ¼jk)!ijk f(1 ¡ μsi )¼
si 1¡!ijk ; !ijk = 0; 1:

~ ~ ~ 
p(!ijk; s  jkg 

μsi ¼jkThat is, !ijk j μ; ¼  » Bernoullif si g; i  2 C: Note that for each i 2 C there is
μsi ¼jk+(1¡μsi )¼ ~ ~ jk 

contribution from only one of the cells j = 1; : : : ; r;  k  = 1; : : : ; c  (i.e., sijk ´ si). Note also that
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for i²C and si = 1,  p(si j μ; ¼) =  ¼jk. Thus,  for  i 2 C letting ! denote the vector of all !ijk, by  
~ ~ ~ ~ 

independence the joint probability mass function of (si; i 2 C;! ) is  
~ ~ 2 32 3 

Y Y 
p1(si; i²C; !  j μ; ¼) =  4 ¼si 54 f(μsi ¼jk)

!ijk f(1 ¡ μsi )¼
si 1¡!ijk 5 : (A.1) jk jkg

~ ~ ~ ~ i²C;si=1 i²C;si¸2 

Second, for i =2 C (i.e., the second part in which members fall in the di®erent cells), 

r cY Y 
p(si j μ; ¼) = (1  ¡ μsi )fsi! ¼

sijk =sijk!gjk 
~ ~ ~ j=1 k=1 

and the joint probability mass function of si; i =2 C is 
~ 

r cY Y Y Y 
p2(si; i  =2 C j μ; ¼) =  p(si j μ; ¼) =  (1 ¡ μsi )fsi! ¼ sijk =sijk!g: (A.2) jk 
~ ~ ~ ~ ~ ~ i=2C i=2C j=1 k=1 

Thus, letting s = (s1; : : : ; s  ̀), by independence the joint probability mass function of (s; !) is  
~ ~ ~ ~ ~ 

p(s; !  j μ; ¼) =  p1(si; i²C; !  j μ; ¼)p2(si; i  =2 C j μ; ¼)  (A.3)  
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

where p1(si; !i; i²C  j μ; ¼) is given in (??) and  p2(si; i  =2 C j μ; ¼) is  given  in  (??). 
~ ~ ~ ~ ~ ~ ~ 

Now, let T denote the largest cluster size and μ1 = 0.  For  the  clusters  in  C, let  gtjk denote the 

number of clusters of size t with all their members in cell (j,k), and 

X 
z = fztjk : ztjk = !ijk; t = 1; : : : ; T;  j  = 1; : : : ; r;  k  = 1; : : : ; cg: (A.4) 
~ i²C;si=t 

Note that in (??) for all i 2 C whenever sijk = 0,  !ijk = 0. For the clusters outside C, let  g~t denote 
X 

the number of clusters  of size  t and s~jk = sijk, the total number of individuals in cell (j; k) 
i=2C 

outside C. Then, using the assumption that the intraclass correlation coe±cient depends only on 

the cluster size with μsi = μt, t = 1; : : : ; T  and (??), the joint probability mass function of (s; z) is  
~ ~ 8 9 

Y Y Y< r c = 
p(s; z  j μ; ¼) =  si!= sijk! : ;~ ~ ~ ~ i=2C j=1 k=1 

8 98 9Ã ! < T r c =< T r c =YY Y Y Y Y 
gt sjkgtjk (μt¼jk)

zijk f(1 ¡ μt)¼t gtjk¡ztjk ~
£ : jkg ;: (1 ¡ μt) ~ ¼jk ; : (A.5) 

ztjk t=2 j=1 k=1 t=2 j=1 k=1 
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Note that the joint probability mass fucntion in (??) as a function of μ, ¼ and z is the augmented 
~ ~ ~ 

likelihood function (i.e., μ and ¼ are augmented with z). Note also that from (??) 
~ ~ ~ 

ind μt¼jk
ztjk j μ; ¼  » Binomialfgtjk; g;

μt¼jk + (1  ¡ μt)¼t ~ ~ jk 

t = 2; : : : ; T;  j  = 1; : : : ; r;  k  = 1; : : : ; c. 

APPENDIX B: Product Multinomial-Dirichlet Model 

r cXX 
Letting ¼jk; j  = 1; : : : ; r;  k  = 1; : : : ; c  denote the cell probabilities and si = sijk, the  

j=1 k=1 
multinomial-Dirichlet model for the cell counts sijk in a r £ c categorical table is 

ind 
si j ¼ » Multinomial(si; ¼); i = 1; : : : ; `  and ¼ » Dirichlet(1; : : : ; 1); (B.1) 
~ ~ ~ ~ 

where the si are assumed known. 
P` Let njk = i=1 sijk denote the cell counts over all clusters, j = 1; : : : ; r;  k  = 1; : : : ; c. Then, a 

posteriori 

¼ j s1; : : : ; s  ̀ » Dirichlet(n11 + 1; : : : ; nrc + 1): 
~ ~ ~ 

Because the posterior density is in closed form, one can obtain inference about the ¼jk in a straight 

forward manner. 

The corresponding marginal likelihoods (association: as, no association: nas) are 

Q Q ( )
r c Y ` (rc¡ 1)! j=1 k=1 njk! si! 

pas(n) =  Q Qc (B.2)r(n+ rc¡ 1)! k=1 sijk!~ j=1i=1 

and 
Q Qr c

(r ¡ 1)!(c¡ 1)! (n+ rc¡ 1)! j=1 nj:! k=1 n:k! 
pnas(n) =  pas(n) Q Q (B.3)r c 

~ ~ (rc¡ 1)! (n+ r ¡ 1)!(n+ c¡ 1)! k=1 njk!j=1 
P P P P c r r cwhere nj: = k=1; njk; j  = 1; : : : ; r, n:k = j=1; njk; k  = 1; : : : ; c  and j=1 k=1 njk = n. 
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Table 1: Comparison of the posterior means (PM), posterior standard deviations (PSD), numerical 
standard deviation (NSE), and 95% credible intervals (CI) for ¼jk with and without intra-class 
correlation for Maryland 

Intra-class No intra-class 
Cell ¼̂ PM PSD NSE CI PM PSD NSE CI 

(1, 1) .014 .024 .010 .002 (.008, .045) .015 .004 .001 (.008, .024) 
(1, 2) .014 .027 .010 .002 (.011, .048) .016 .004 .001 (.008, .025) 
(1, 3) .003 .008 .006 .001 (.001, .021) .004 .002 .000 (.001, .010) 
(2, 1) .067 .027 .010 .002 (.012, .050) .067 .008 .002 (.053, .084) 
(2, 2) .022 .028 .010 .002 (.011, .051) .023 .005 .001 (.015, .035) 
(2, 3) .026 .024 .010 .002 (.009, .045) .027 .005 .001 (.017, .038) 
(3, 1) .706 .675 .029 .005 (.616, .730) .699 .016 .004 (.669, .730) 
(3, 2) .090 .099 .019 .004 (.067, .138) .091 .010 .002 (.071, .110) 
(3, 3) .057 .088 .018 .003 (.056, .125) .057 .008 .001 (.043, .074) 

NOTE: The total number of observations from Maryland is 897, and ¼̂jk is the observed 
proportion of observations in cell (j; k). The row and column variables are age and activity 

limitation status (ALS) respectively; Age (1: under 56 years; 2: 56-70 years; 3: over 70 years) and 
ALS (1: unable to perform major activity; 2: limited in kind/amount major activity and limited 
in other activities; 3: not limited (includes unknowns). The numerical standard errors are 
obtained using the batch-means method with batches of 25 for the selected sample from the 

Gibbs sampler. 
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Table 2: Ratio (R) and the probability content (C) of the 95% credible intervals for the intra-class 
correlation (μ) over the 1000 simulated datasets by the degree of association (low, medium, high) 
and ¯ve values of the intra-class correlations (.2, .4, .5, .6, .8) 

Low Medium High 
μ R C R C R C 

0.2 
1.04 
1.05 
1.07 
1.12 

0.94 
0.95 
0.94 
0.96 

1.06 
1.06 
1.05 
1.12 

0.95 
0.96 
0.95 
0.97 

1.45 
1.16 
1.10 
1.12 

0.68 
0.92 
0.94 
0.96 

0.4 
0.99 
1.02 
0.99 
1.03 

0.94 
0.94 
0.96 
0.95 

1.01 
1.00 
1.01 
1.01 

0.95 
0.97 
0.95 
0.96 

1.15 
1.05 
1.01 
1.02 

0.86 
0.92 
0.95 
0.96 

0.5 
0.99 
1.00 
1.00 
1.00 

0.95 
0.94 
0.95 
0.97 

1.00 
1.00 
1.00 
0.99 

0.94 
0.95 
0.96 
0.96 

1.10 
1.02 
1.00 
1.00 

0.87 
0.93 
0.95 
0.96 

0.6 
0.99 
0.99 
1.00 
0.98 

0.94 
0.95 
0.96 
0.96 

0.99 
0.99 
1.00 
0.98 

0.95 
0.96 
0.94 
0.95 

1.05 
1.02 
1.00 
0.99 

0.92 
0.94 
0.96 
0.96 

0.8 
0.99 
0.99 
0.99 
0.96 

0.96 
0.95 
0.95 
0.95 

0.99 
0.99 
0.98 
0.97 

0.95 
0.94 
0.95 
0.95 

1.01 
0.99 
0.98 
0.96 

0.95 
0.96 
0.96 
0.95 

NOTE: For the ith dataset Ri = PMi=DVi, where  PMi is the posterior maen of μ and DVi is the 
design value of μ; R is the average over the 1000 simulated datasets. 
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Table 3: Comparison of the two models via the ratio (R) and the probability content (C) of the  
95% credible intervals for the ¼jk over the 1000 simulated datasets by the degree of association 
(low, medium, high) and three values of the intra-class correlation (.2, .5, .8) 

Low Medium High 
μ RI RN CI CN RI RN CI CN RI RN CI CN 

1.00 1.00 0.95 0.91 0.99 0.99 0.94 0.89 1.00 1.00 0.96 0.88 
1.01 1.01 0.96 0.90 1.00 1.00 0.95 0.90 1.04 1.02 0.96 0.91 
1.00 1.00 0.96 0.91 1.00 0.99 0.95 0.91 1.19 1.13 0.96 0.91 
1.00 0.99 0.95 0.91 1.01 1.01 0.96 0.91 1.06 1.04 0.95 0.89 

0.2  1.00 1.01  0.95 0.90  1.00 1.00 0.96 0.90  0.97 0.99 0.95 0.88  
1.00 1.00 0.96 0.92 1.01 1.01 0.95 0.90 1.07 1.05 0.95 0.90 
1.00 1.01 0.94 0.88 1.03 1.02 0.93 0.88 1.05 1.02 0.95 0.91 
0.99 0.99 0.96 0.89 1.00 1.00 0.95 0.90 1.02 1.00 0.95 0.89 
1.00 1.00 0.95 0.90 0.99 1.00 0.96 0.89 0.98 0.99 0.94 0.90 

1.01 1.00 0.94 0.81 0.99 1.00 0.95 0.93 1.00 1.00 0.96 0.83 
1.00 1.00 0.96 0.82 0.99 1.00 0.95 0.83 1.02 1.00 0.96 0.82 
1.00 1.00 0.95 0.82 1.00 1.00 0.94 0.81 1.25 1.15 0.94 0.82 
0.99 0.99 0.94 0.81 1.02 1.02 0.95 0.84 1.07 1.03 0.95 0.81 

0.5  1.00 1.00  0.95 0.82  1.00 1.00 0.94 0.82  0.97 0.99 0.96 0.84  
1.00 1.00 0.95 0.83 1.01 1.01 0.96 0.84 1.08 1.04 0.94 0.83 
1.01 1.01 0.94 0.82 1.02 1.01 0.94 0.83 1.05 1.02 0.95 0.82 
1.00 1.00 0.94 0.81 1.01 1.00 0.96 0.82 1.02 1.01 0.97 0.84 
1.00 1.00 0.95 0.83 0.99 0.99 0.95 0.82 0.98 0.99 0.95 0.83 

0.99 1.00 0.95 0.74 0.99 0.99 0.94 0.75 0.99 0.99 0.94 0.75 
1.00 1.00 0.96 0.76 0.99 0.99 0.96 0.75 1.06 1.04 0.95 0.75 
0.99 0.99 0.95 0.75 1.00 1.00 0.95 0.77 1.30 1.15 0.96 0.75 
1.01 1.00 0.96 0.78 1.00 0.99 0.94 0.75 1.09 1.05 0.95 0.77 

0.8  1.00 1.00  0.95 0.77  1.00 1.00 0.95 0.75  0.98 1.00 0.95 0.77  
1.01 1.01 0.94 0.76 1.02 1.02 0.94 0.75 1.10 1.05 0.95 0.76 
1.00 1.01 0.96 0.77 1.04 1.02 0.95 0.78 1.03 1.01 0.95 0.75 
1.00 1.00 0.95 0.77 1.01 1.01 0.95 0.75 1.01 1.00 0.97 0.79 
1.01 1.00 0.94 0.76 1.00 1.00 0.94 0.75 0.97 0.99 0.94 0.77 

NOTE: The two models are the model with intra-class (I) correlation and the model with no (N) 
intra-class correlation (see Appendix B). For the ith dataset Ri = PMi=DVi, where  PMi is the 
posterior mean of ¼jk and DVi is the design value of ¼jk; R is the average over the 1000 simulated 

datasets. 
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Table 4: Comparison of the test based on the logarithm of Bayes factor and the test based on the 
chi-squared statistic by the degree of association (low, medium, high) and ¯ve values of intra-class 
correlation (.2, .4, .5, .6, .8) averaged over the 1000 simulated datasets 

Low Medium High 
μ N Y 2Âu

2Âa N Y 2Âu
2Âa N Y u

2Â a 
2Â

0.2 -3.6 -4.2 5.8 5.2 21.8 17.8 56.5 49.9 226.3 194.3 489.0 426.6 
0.4 -2.7 -3.9 7.8 6.2 22.7 14.8 58.0 46.5 227.0 167.6 490.4 389.7 
0.5 -2.5 -3.8 8.1 6.2 22.3 13.1 57.0 43.7 228.6 153.6 493.0 374.5 
0.6 -2.0 -3.6 9.2 6.7 23.3 12.1 59.2 43.3 228.5 138.5 492.0 358.1 
0.8 -1.0 -3.2 11.2 7.5 24.7 9.5 62.0 41.8 227.3 110.6 489.1 329.2 

NOTE: The Bayes factor is the ratio of the marginal likelihood for a model with (Y) association P P r
j=1 

c
k(i.e., no restriction on ¼jk; =1 ¼jk = 1) to the marginal likelihood for a model with no 

P P(1) (2) (1) 
auk

2 2(2) 
= 1). Also, Â and Âr

j
c
k= ¼ =1 ¼

repectively the unadjusted and adjusted chi-squared statistic. 
j(N) association (i.e., ¼jk ¼ =1 ¼ = 1;; arejk

Table 5: Classi¯cation of the simulated data sets by statistical signi¯cance using the adjusted chi-
squared statistic (reject: pvalue< :05; accept: pvalue¸ :05) and the strength of evidence using the 
logarithm of the Bayes factor (weak: log-Bayes factor < 3; strong: log-Bayes factor ¸ 3) for ¯ve 
values of intra-class correlation (.2, .4, .5, .6, .8) 

μ reject 
weak 
accept total reject 

strong 
accept total 

.2 

.4 

.5 

.6 

.8 

83 
141 
134 
144 
209 

77 
71 
99 
104 
126 

160 
212 
233 
248 
335 

25 
75 
71 
95 
75 

815 
713 
696 
657 
590 

840 
788 
767 
752 
665 

total 711 477 1188 341 3471 3812 

NOTE: Inference using the model with intra-class correlation is compared with inference from the 
adjusted chi-squared test. 
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