
Evaluation and Selection of Models 

for Attrition Nonresponse Adjustment 

Eric V. Slud1,2 and Leroy Bailey1 

1Census Bureau, SRD, and 2Univ. of Maryland College Park 
Eric.V.Slud@census.gov, Leroy.Bailey@census.gov 

Abstract. The setting of this paper is a longitudinal survey like SIPP, with successive “waves” of data collection from 
sampled individuals,in which nonresponse attrition occurs and is treated by weighting adjustment, either through 
adjustment cells or a model like logistic regression in terms of auxiliary covariates. Following Bailey (2004) and 
Slud and Bailey (2006), we measure the discrepancy in estimated initial-wave (“Wave 1”) attribute totals between 
the survey-weighted estimator in the frst wave and for the corresponding weight-adjusted estimator for the same 
Wave-1 item total based on later-wave respondents. The present research defnes a composite metric of quality of a 
model used for nonresponse adjustment of a longitudinal survey. The metric combines the magnitudes of estimated 
between-wave adjustment biases based on subsets of the sample, relative to the estimated total, for various survey 
items. The maximum of the adjustment biases for estimated totals of a survey item are calculated from the frst 
j sample units, as j ranges from 1 to the size of the entire (Wave-1) sample, after each of a number of random re-
orderings either of the whole sample or of the units within specifed cells (which are then also randomly re-ordered); 
and the average over re-orderings of the maximal adjustment bias is divided by the estimated wave-1 attribute total 
to give the metric value. Confdence bands for the metric are estimated, and the metric is applied to judge the 
quality of and to select among a collection of logistic-regression models for nonresponse adjustment in SIPP 96. 

Keywords: Adjustment cells, Logistic regression, Model Selection, Nonresponse Weighting Adjustment, Random 
Re-ordering, Subdomains. 

This report is released to inform interested parties of ongoing research and to encourage discussion of work in progress. 
The views expressed on statistical and methodological issues are those of the authors and not necessarily those of the 
Census Bureau. 

1 Introduction 

Slud and Bailey (2006) studied the estimated biases between Wave 1 totals of various Survey of Income and Program 
Participation (SIPP) 1996 cross-sectional survey items and their estimates based on nonresponse-adjusted totals 
of the same Wave 1 items using only response data from a later Wave (4 or 12). The nonresponse adjustments 
studied were derived either by an adjustment cell method (using the 149 standard SIPP adjustment cells described 
by Tupek 2002) or a parsimonious logistic regression model for the later-wave response probabilities. One of the 
tentative conclusions of that work was that the relative and standardized magnitudes of the estimated biases varied 
considerably and somewhat erratically from one adjustment model to another. Many competing adjustment models 
could be defned, depending on which attribute variables were used in constructing adjustment cells or as logistic 
regression predictors. Slud and Bailey (2006) noted that using Poverty as a logistic regression predictor did have 
the artifcial e�ect, akin to raking, of making the sample-wide estimated Wave 1 total of Poverty particularly small. 
However, since that e�ect directly stems from the sample-wide estimating equation defning the logistic regression 
coeÿcients, it was conjectured that this artifciality could be removed by considering estimated Wave 1 bias within 
a number of di�erent subdomains. 

In Slud and Bailey (2006) the possibility was also considered of customizing the adjustment model in order to remove 
between-wave adjustment biases as far as possible. This suggests creating a composite metric defned by combining 
the magnitudes of estimated between-wave adjustment biases for various SIPP items. The considerations of the 
previous paragraph suggest also including in the metric the estimated biases on multiple subdomains of the SIPP 
target population. We present below two constructions of such a composite metric, and we exhibit its values for 
the models studied in Slud and Bailey (2006). The ultimate objective of this research is then to use the metrics 
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defned to choose an optimal model – which might be either of adjustment-cell or logistic-regression form, although 
we restrict attention in this paper to the latter – based on SIPP 96 data. 

2 Background & Previous Work 

To measure the quality of nonresponse adjustment in a longitudinal survey, one would certainly try to evaluate the 
biases of adjustments using external data on the sample frame and the same variables whenever such external data 
are available. But that will seldom be the case. 

There seems not to have been much published methodological work on how to measure the biases of adjustment, from 
the internal evidence of a longitudinal survey. One important paper on this topic is that of Dufour et al. (2001). That 
paper starts from the perspective that large longitudinal national studies will almost always be raked or calibrated 
to population totals derived from a past or current census or survey of high quality. The paper specifcally considers 
calibration, and proposes to measure magnitudes of adjustment through a metric the authors defne for tracking 
weight change through several stages of a weight-adjusted longitudinal study. By conducting a large simulation 
study within which they randomly subsample from a large longitudinal survey dataset (SLID, the Canadian Survey 
of Labor and Income Dynamics), the authors compare the weight-changes experienced from nonresponse weighting 
adjustment done by two main model-based adjustment approaches (Logistic regression with stepwise variable selection 
and Response Homogeneity Groups — what we call below the adjustment-cell method — with cells defned using a 
CHAID-based Segmentation Model). Calibration optimally adjusts weights according to a model (of adjustment-cell 
or logistic-regression type), in order that estimated population totals in designated subsets perfectly match the totals 
from an external study. Then the estimated adjustment biases (as in Bailey 2004 and Slud and Bailey 2006) for 
population totals of other early-stage variables could be used to judge the overall success of the modelling approach 
used in adjustment. This could have been, but was not, done in Dufour et al. 2001, nor were e�ects of weighting 
adjustment on population subdomains examined. 

By contrast, we propose to adjust simultaneously, using models for later-stage response (also of adjustment-cell or 
logistic-regression type), the later-stage estimates of totals of population and other survey variables. We will then 
measure the biases of later-stage subtotals for population and the early-stage survey variables, for an array of di�erent 
population subdomains including the cells to which calibration would have been done. The metric for e�ectiveness 
will combine the magnitudes of relative biases of specifc survey variables over an interesting array of population 
subdomains. The results will then be assembled for a set of di�erent survey variables along with population count 
into a weighted loss function. Unlike the calibration-frst approach, this method provides the possibility of giving 
heavy but not overwhelming weight to population adjustment biases as opposed to biases in totals of other survey 
variables. 

Although raking or calibration to updated-census population totals in defned cells will ultimately be done in practice 
whenever a weighting adjustment is applied to a large national longitudinal study, it may not be best to do all 
comparisons of adjustment methods with respect to bias in the presence of such raking/calibration adjustments, 
which often function as a black-box method superimposed on otherwise simple and understandable adjustment 
models. Therefore, in this paper as in Bailey (2004) and Slud and Bailey (2006), we restrict attention to weighting 
adjustments based on SIPP weights before adjustment-cell raking. 

There has been a great deal of work on calibrating, reconciling, and benchmarking time series of di�ering reporting 
periods and accuracies, c.f. Dagum and Cholette (2006). But our literature search has yielded few papers (Dufour 
et al. 2001 in particular) explicitly recognizing survey and weighting-calibration aspects in this regard. 

There has also been previous theoretical work on the large-sample behavior of model-based nonresponse weight 
adjustment methods. One recent example is Kim and Kim (2007); and these same authors, in an unpublished 2007 
preprint, have considered the problem of choosing between alternative parametric models for survey nonresponse 
using the same data on which the estimated parameters will be applied to adjust the weights. 

The goal of this research is to devise metrics to aid in the comparison of di�erent model-based methods of adjustment 
for nonresponse due to attrition, which will provide a basis for choosing among adjustment methods. Several 
earlier comparative investigations related to adjustment methods have been conducted, even within the SIPP survey 
structure, but they seem not to have resulted in clear advantage for any adjustment method over others. (See Rizzo 
et al. 1994 for example.) 



3 Formal Development: Metrics and Bounds 

Let S← denote the sample of nψ = |S|← persons drawn from sampling frame U , with known single inclusion 
probabilities {πi}i2U , and responding in Wave 1. For a series of cross-sectional survey measurements indexed by 

kψ = 1, . . . Kψ , such as the Kψ = 11 items studied by Bailey (2004) and Slud and Bailey (2006), denote by y
(k) 
iψ

the Wave 1 item values and xiψ a vector of auxiliary variable values for all iψ ∈ U . Let riψ denote individual 
response indicators (observed for all iψ ∈ S) in a specifed later Wave of the same survey, and let piψ = P (riψ = 1 | S) 

ˆdenote the (unknown) conditional probabilities of later-wave response. Let p̂iψ = g(xi, ϑ) denote estimators of these 
unknown probabilities derived (using a known function g) from a parametric model using auxiliary data xi, within 

ˆwhich parameter-estimators ϑψ are obtained via estimating equations (Kim and Kim, 2007). For any population 
P 

attribute zi, iψ ∈ U , the frame-population total is denoted tzψ = i2U zi, and the corresponding Horvitz-Thompson 

estimator is t̂zψ = 
P 

zi/πi.i2S 

For each survey item y
(k)

, iψ ∈ U ,ψ with respect to the specifc strategy of adjustment embodied in the estimated iψ

response probabilities p̂i, and for each domainsubset D ⊂ U← of the population, defne the estimated nonresponse 
bias 

� �

X ri
B̂k(D) = − 1 y

(k) 
/ πiψ (1)iψp̂i

i2D\S 

In Slud and Bailey (2006) and earlier papers of Bailey, the domain D← was all of U , and the quantity B̂k(U) was 

interpreted as the di�erence between an adjusted estimator of t using only the data (y
(k) 

,xi, iψ ∈ S) and the (k)y iψ

ordinary Horvitz-Thompson estimator t̂ (k) , and was regarded as an estimator of attrition nonresponse bias due to y

the method of adjustment. 

3.1 Relative Subdomain Bias 

We now propose a measure of the typical relative bias in estimating item totals over subdomains. The idea is to 
consider the largest value of absolute relative bias B̂k(D)/t̂ (k) over a collection of di�erent subsets D ⊂ U . Suppose y

that we re-order the elements of U , inducing a re-ordering τψ = (τ(1), τ(2),ψ . . . , τ(n)) of the nψ elements of S. 
The largest absolute bias in survey variable kψ over consecutively τ -indexed subdomains of S← is 

max |B̂k({τ(i) : aψ ≤← iψ ≤← b})| ≤← 2 ·← max |B̂k({τ(1),ψ . . . , τ(a)})|
1�a�b�nψ 1�a�nψ

To measure the overall relative bias in estimating item kψ totals over subdomains, we defne 

� � 

mkψ = Eτψ max |B̂k({τ(1),ψ . . . , τ(a)})| / t̂y(k) (2)
1�a�nψ

where the expectation is taken, for a fxed sample, over random permutations τψ chosen equiprobably from the n! 
permutations of the elements of S. The quantity mkψ is smaller than the largest relative bias |B̂k(D)|/t̂ (k) over all y

subsets C ⊂ U← — which is too large an estimate of error, and also too expensive to calculate — but does represent 
the typical magnitude of the worst relative bias in a random scanning order of the sampled population. 

In settings where the relative estimated bias 

X

� � 
(k) 

. riψ y
δ(k) ≡← B̂k(U)/t̂y(k) =

ˆ
− 1 iψ t̂y(k) (3) 

piψ πi
i2S 

is large, we will see below that mkψ and its estimator m̂kψ are not much di�erent from |δ(k)|. However, if 
δ(k) is small — which may be true for artifcial reasons if the model used to defne p̂iψ prominently features the 

(k)
attributes {y , jψ ∈← S}), then m̂kψ will often be meaningfully large, refecting the fact that the model-ftting jψ

does not simultaneously adjust for weighted y
(k) 

totals over arbitrary subsets of the sample. This is an attempt to iψ

penalize models which directly adjust the population-wide total of an attribute. 

The bias measure mkψ cannot be calculated directly from the sample data, but can be estimated by evaluating 
its defning expectation over random permutations τψ using a Monte Carlo simulation strategy. For each of a set 
1, . . . , Rψ of indices cψ denoting Monte Carlo replicates, we defne independent random permutations τcψ of the 



indices iψ ∈ S. For each b, (τc(j),ψ 1 ≤← jψ ≤← n) is equiprobably chosen from the n! possible re-orderings of S, 
which is easily implemented in a Monte Carlo simulation by defning a sample of independent Uniform(0, 1) variates 
Vcψ = (Vci, iψ ∈ S) and to let τc(j) be the sequence of indices iψ of the Vciψ observations written in increasing order. 
Then the estimator m̂kψ defned in (2) is 

.

R

= max 
X1 |B̂k({τc(1),ψ . . . , τc(j)})|← t̂m̂kψ (k)yRψ 1�j�nψ
c=1 

�

�

� 

X

�

�

�
(4) 

R

= max 
R t̂ (k)y

X

(k)
1 

I[Vci�x] (
riψ

p̂iψ
− 1) 

yiψ

πi0<x�1 
c=1 i2S 

As a metric for nonresponse bias combined over all survey variables indexed by kψ = 1, . . . ,K, we propose a simple 
weighted average and estimator 

�.�

K K

Mψ = wkψ mkψ = wkψ ·← sup 
XX 

|B̂k(D)|← t̂ (5)(k)y
DˆS 

k=1 k=1 

K
X

M̂ψ = wkψ m̂kψ (6) 
k=1 

where w = {wkψ }Kψ is a fxed vector of positive weights summing to 1. If all survey variables are considered k=1 
equally important then, as below, we would use wkψ = 1/K. 

The quality of estimation of mkψ in terms of m̂k, and relationships between these and |δ(k)|, are addressed 
in Section 3.3 below. We turn frst to the modifcation of (2) and (4) to allow expected and estimated maximum 
absolute relative discrepancies with respect only to those random re-orderings which preserve specifc cells of the 
population, such as the cells to which population totals would be raked or calibrated. 

3.2 Metric for Subdomain Bias with Distinguished Cells 

Most random permutations of the sample completely shatter any meaningful sample subdomains. Yet the idea behind 
raking or calibration is precisely that certain estimated subdomain totals — usually, the estimated population totals 
over the cells Ajψ of a specifed geographic-demographic partition U← = ∪j

Jψ
=1 Ajψ of the frame population — must be 

constrained equal to those of a current (updated) census. For that reason, it makes sense to measure bias estimates 
B̂k(Aj) over these cells, where we assume from now on that a partition A← of U← into cells Aj , jψ = 1, . . . , J , 
has been fxed. The idea is to modify (2) so that the allowed permutations must retain the consecutive indexing of 
elements in each cell Aj . 

One approach would be to aggregate these biases into an relative accumulated absolute bias 

X

J

= ω
. 

(k) |B̂k(Aj)|← t̂jψ
Cumψ

(k) (7)mkψ y

j=1 

(k)
where ω (S) are a set of cell- and item-specifc weights. A related approach would be to replace each termjψ

|B̂k(Aj)| in (7) by the expectation of maxl2Aj |B̂k({iψ ∈← Ajψ : τj(i) ≤← τj(l)}|← with respect to a random permutation 
τjψ of the elements of S ∩Ajψ . However, in either of these two forms, the relative accumulated absolute bias is likely 
too conservative to be very useful, because it aggregates across cells the worst sub-cell biases, as though all domain 
totals in all cells could be simultaneously badly biased. 

A less extreme modifcation of (2), which we adopt below, would combine cellwise biases within a partition A← so 
that the permutations τψ — now denoted σψ — leave the cells Ajψ ∩ S← invariant. To explain this invariance, we 
assume that the sample is indexed in such a way that the njψ ≡ |Aj ∩S|← sampled elements in the j’th cell Ajψ appear 
consecutively in the enumerated sample S. The invariance of the cells under σψ means that for all 1 ≤← j ≤← J , the 
elements {σ(i) : iψ ∈← Ajψ ∩ S}← also form a consecutively indexed block in the indexed sample S. Now the allowed 

QJ
random permutations σψ of the sample elements are chosen equiprobably from the J ! j=1 nj ! permutations which 
frst permute the Jψ complete blocks Ajψ ∩ S← of njψ elements each and then permute the elements within the 



re-ordered blocks. Finally, we defne the expectation over σψ of the maximum absolute cumulative weighted sum of 
cellwise biases relative to t̂ (k) , as follows: y

�� 

� mkψ ≡← Eσψ max |B̂k({σ(1),ψ . . . , σ(q)})| / t̂ = (8)(k)y
1�q�nψ

j−1
X

� 

Eσψ max 
1�j�J, b2Aj 

�

�

�
ωσ(l) ˆ ˆBk(Aσ(l)) + ωσ(j) Bk({τ(a) : aψ ∈← Aσ(j), aψ ≤← b}) 

�
�

�

� 

l=1 

(k)
Here ωjψ = ωjψ (S) are again a set of cell- and item-specifc weights (usually taken to be 1) which may depend on 

PJψ (k)
the sample, but which satisfy the relation J−1 ω = 1.j=1 jψ

An estimator for the modifed quantity (8) can be implemented in terms of a collection of random batches Vcψ of nψ
independent Uniform(0, 1) random variates, along with independent batches Ucψ of Jψ independent Uniform(0, 1) 
variates, for 1 ≤← cψ ≤← R. For each fxed batch-index c, we use the ordering of the variates Uc1, Uc2,ψ . . . , UcJψ to 
determine the c’th random ordering of the blocks Ajψ ∩S,ψ 1 ≤← j ≤← J . Next, the c’th reordering of the elements iψ
within the re-ordered block Ajψ ∩ S, is given by the order of the variates (Vci, iψ ∈← Ajψ ∩ S). For each qψ = 1, . . . , nψ
indexing an element of the sample S, denote by j(q) the index jψ for which qψ ∈← Aj . With these notations in 
mind, we express the estimator for (8) as 

�

�

� 

R

1�q�nψ
c=1 l:Uc,l<Uc,j(q) 

X X

B̂k(Al)≡← (R t̂y
(k)

m̂� 
kψ (k) )−1 ωmax lψ

�

�

�

(k) 
B̂k({iψ : iψ ∈← Aj(q), Vciψ ≤← Vcq})j(q) 

X

R

(9)+ ω

or equivalently, 
�

�

� 

�

�

�

(k)
riψ yiψ

X 

� 
kψ ≡← (R t̂ (k) )−1 

ym̂ ( − 1) (10)max 
p̂iψ πi1�q�nψ

c=1 i: Uc,j(i)�Uc,j(q), Vci�Vcq 

�We next show how to place confdence bounds on the di�erences between the quantities mk, m and their estimates kψ
�m̂k, m̂ and on the di�erences between these quantities and |δ(k)|.kψ

3.3 Confdence Intervals and Bounds for mk 

In the frst part of this Section, we provide a theoretical development of confdence intervals by bounding m̂kψ −mkψ

and mkψ − |δ(k)| probabilistically. However, all of these quantities are functions of the sampled survey data, and the 
probability statements made at this stage concern only the chance element introduced by the random permutations 
τ,ψ τcψ used in defning (2) and (4). At the end of the Section, we interpret the meaning of sample-based metric-
estimators m̂kψ for the survey population and adjustment model. 

We begin with the simplest and clearest confdence statement. Since m̂kψ is calculated as the empirical average over 
quantities calculated from a series of Rψ random permutations of the sample, its sampling variability due to those 
permutations can be assessed by empirical standard errors 

R
yiψ

�

�

�

�

�

�

h i1/2(k)
1 1 riψ

X 

−← t̂ (k) m̂k)2 
yse(m̂k) ( I[Vci�x] ( − 1)= max 

|t̂ (k) |← R(R − 1)y c=1 
p̂iψ πi0<x�1 

Thus, with approximate 99% confdence when Rψ is large, 

|mkψ −← m̂k| ≤← 2.576 ·← se(m̂k) (11) 

and similar confdence statements with respect to the randomness of the permutations σcψ can be given bounding 
m� − m̂� 

k k. 

The di�erence between the metric value mkψ and the overall relative bias |δ(k)|← is due to the fuctuations with 
varying xψ of the quantities 

(k)
riψ yiψ

X 

Zk(x) = I[Vi�x] ( − 1) 
πipi

i2S 



being maximized in (4), where Viψ = Vciψ denote independent identically distributed Uniform(0, 1) variates. If these 
quantities were replaced by their expectations (i.e., if I[Vi�x] were replaced by x), then the expression (4) would 

become |δ(k)|. Thus, the discrepancy m̂kψ − |δ(k)| can be bounded by the maximum absolute value of the random 
weighted empirical process indexed by a continuous argument xψ ∈← [0, 1], 

1 ��

X

(k) 

(
riψ

p̂iψ

i− 1) 
y

(12)βk(x) = √ I[Vi�x] −← xψ
nψ πi

i2S 

(k) 
on 

conditionally with all sample data i,ψ ri, xi,ψ (y ,ψ 1 ≤← kψ ≤← K) : iψ ∈ S← fxed and with only the variates iψ

Vi, iψ ∈ S, regarded as random. The process βk(·) has mean 0 , and according to a slight extension of the Donsker 
Theorem (Pollard 1980), which can be proved as Corollary of the Martingale Central limit Theorem (Hall and Heyde 
1980), has approximate distribution for large nψ the same as 

h 1 
(k)

riψ (y )2 i1/2 
iψ

Xp

γ(k) W �(x) ≡← W �(x) (13)− 1)2(
π2 

ip̂inψ
i2S 

as a random continuous function of xψ ∈← [0, 1], where W �(x) denotes a tied-down Wiener process or Gaussian 
process with mean 0 and 

Cov(W �(v),W �(u)) = min(v, u) −← vψ ·← uψ

The scaling constants governing the amplitude of fuctuations of βk(·), 
X1 riψ (k)

γ(k) = − 1)2 (y )2/π2 
i( (14)iψp̂inψ

i2S 

can readily be computed from the sample data, and under general assumptions remain bounded for large n. 

By defnition of mkψ and the remark that (4) would become |δ(k)| if I[Vi�x] were replaced by x, 

�

�

�
mkψ − |δ(k)|←

�

�

�

�

�

� 

�

�

� 

�1 �
(k)

X 

(I[Vi�x] − x) (
riψ

p̂iψ
− 1) 

yiψ

πiψ
≤← EV max 

t̂ 0<x�1(k)y i2S 
pp

t̂ t̂

since 1.2286 is the expectation of sup

�n γ(k) n γ(k) 
EV( max |βk(x)| ≈← 1.2286

0<x�1 
(15)=

(k) (k)y y

x2[0,1] |W �(x)| which arises in calculating percentage points of the one-sample 
Kolmogorov-Smirno� statistic, readily calculated using the density of this random variable given by Kolmogorov and 
reproduced by Feller (1948). 

For specifc items k, we fnd when nψ is large that for moderate numbers Rψ of random permutations, the di�erence 
� � �ˆ (or m̂ −← m ) is generally very small compared to mkψ (respectively m ). Then, by calculating the mkψ − mk k k k

right-hand side of (15), we fnd roughly how small the value m̂kψ must be in order that the sample data be compatible 
with a zero relative bias δ(k). The objective of this kind of analysis is frst of all to fag as ‘inadequately adjusted’ 
those items for which model-based attrition nonresponse adjustment has resulted in estimated metric values m̂kψ

�greater than the sum of the right-hand sides of (11) and of (15). Since we will fnd generally that the values of m̂kψ
�and m̂kψ are roughly the same, we will use the same threshold for metric values m̂k. 

�Next, we compare the estimated metric values m̂kψ and m̂k, individually or in their aggregated form (6), across 
di�erent adjustment models with a view to choosing a ‘best’ model in a specifc survey application. 

4 Adjustment Metric Values in SIPP 96 

For the case of SIPP 96, with Kψ = 11 cross-sectional items, response probabilities p̂iψ were estimated by the specifc 
adjustment-cell and logistic-regression models mentioned above, all as described in detail by Slud and Bailey (2006). 

Briefy, the cross-sectional survey items y
(k) 

studied are: indicators that the individual lives in a Household which iψ



Table 1: Logistic regression models used to adjust Wave 4 or Wave 12 nonresponse in SIPP 96. Df is the number 
of independent coeÿcients in each model, including Intercept, and Dev the deviance for the 94444-record SIPP 96 
sample data. 

Model Df Variables Dev 
A 7 

8 
Wnotsp Renter College RefPer 

Black Renter*College Black*College 
76558.0 

B same as A, plus Pov 76544.6 
C 13 same as B, plus Foodst Mdcd 

Heins UnEmp Div 
76299.3 

D 13 same as B, minus Black*College 
plus Mdcd Heins UnEmp Pov*Heins 

Mdcd*Heins Heins*College 

76242.4 

E 17 same as D, plus hisp + Famtyp 76017.1 
F 18 same as C, plus Afdc SocSec Emp Mar 76279.9 

receives (i) Food Stamps (Foodst), or (ii) Aid to Families with Dependent Children (AFDC); or indicators that the 
individual receives (iii) Medicaid (Mdcd), or (iv) Social Security (SocSec); and indicators that the individual (v) 
has health insurance (Heins), (vi) is in poverty (Pov), (vii) is employed (Emp), (viii) is unemployed (UnEmp), (ix) 
is not in the labor force (NILF), (x) is married (MAR), or (xi) is divorced (DIV). 

In this data example, nonresponse is adjusted in one of two ways: either using an adjustment-cell model based on 
149 standard cells (Tupek 2002) defned in terms of variables including race, hispanicity, and family-type; or using 
one of a series of logistic regression models A–F summarized in Table 1. (Of these models Model A and B were the 
ones used in Slud and Bailey 2006.) The models C–E were selected to have progressively better ft, using an indicator 
of Wave 4 response as response-variable within the 94444 SIPP Wave-1 sample records with positive base-weights. 
The variables used in these regression models include race, hispanic origin, Renter versus Owner of housing unit, 
indicator that individual is the Household Reference Person, indicator of College education, a 4-category variable of 
Family type, plus some or all of the 11 SIPP survey items listed above. 

The method followed in this data analysis, as described and justifed in the previous Section, is based on searching for 
�metric values m̂k, m̂ which are large compared to the bounds obtained by adding the right-hand sides of (11) and kψ

(15). This contrasts with the approach of Slud and Bailey (2006) which, in the present notation compared estimated 
population-wide adjustment biases δ(k) with their design-based standard errors as found by a Balanced Repeated 
Replication method. A summary of the results of Slud and Bailey (2006) in the present notation is given in Tables 6 
and 7 of the Appendix. Despite the di�erences in method, the two sets of results from the two di�erent methods 
seem quite consistent. 

Calculations of m̂kψ have been made with Rψ = 100 random-permutation Monte Carlo replications, with the results 
for Model B presented in Table 2 below. (Because n=94444 is so large, the between-replication di�erences are small 
and this choice of Rψ is ample.) The fnal columns of Table 2 respectively display the bounds b4,k, b12,kψ on the right-
hand sides of (15) (which turn out to be virtually identical for the adjustment-cell and logistic-regression adjustment 
methods) for adjustments of Wave 4 and 12 nonresponse. It also turns out that for all items and combinations 
4C, 4L, 12C, and 12L, the bounds on the right-hand side of (11) are much smaller, ranging from 1–5% of the 
corresponding bounds (15). The analogous Table with logistic models A and D and F, also calculated with Rψ = 100 
iterations, are displayed as Table 3. However, the columns of bounds b4,k, b12,kψ are included in the latter Table 
only for model D, because the bounds for the other models are virtually identical with these, and again the bounds 
from (11) are only a few percent of the bounds (15). 

Inspection of Tables 2 and 3 reveals that the metric m̂kψ with very few exceptions in Wave 12 clearly exceeds the 
corresponding bounds bkψ for the adjustment-cell model and all of the logistic regression models A and B. One notable 
exception is Pov, where as seen by Slud and Bailey (2006), model B includes Pov as a predictor and does adjust 
e�ectively both in Waves 4 and 12. Similarly, we see that Model D which includes variables Pov, Mdcd, Heins, and 
UnEmp as predictors, does a particularly good job of adjusting the totals of these same variables as measured by the 
metric m̂k. Indeed, the most striking preliminary conclusion from examining the tables of metric values under these 
various logistic regression models is that including a variable as a predictor generally results in very good adjustment 



Table 2: Quantities m̂kψ in (4) estimated from SIPP96 data, for later-wave nonresponse adjustment either to wave 4 
or 12, and by either the Adjustment-Cell (C) or Logistic-Regression (L) method (Model B) and based on Rψ = 100 
replications. The last two columns are the bounds in (15), with αψ = .01. 

Item 4Cm̂ 4Lm̂ 12Cm̂ 12Lm̂ b4,kψ b12,kψ

Foodst .0052 .0186 .0442 .0130 .0056 .0123 
AFDC .0067 .0248 .1040 .0350 .0078 .0173 
Mdcd .0066 .0279 .0163 .0426 .0053 .0119 
SocSec .0191 .0116 .1118 .1038 .0041 .0086 
Heins .0085 .0065 .0197 .0133 .0019 .0040 
Pov .0187 .0033 .0372 .0091 .0047 .0097 
Emp .0016 .0017 .0082 .0122 .0020 .0041 
UnEmp .0534 .0594 .1176 .1280 .0131 .0250 
NILF .0032 .0034 .0333 .0462 .0033 .0069 
MAR .0111 .0018 .0508 .0226 .0025 .0051 
DIV .0124 .0201 .0235 .0390 .0067 .0133 

Table 3: Quantities m̂kψ estimated from SIPP96 data based on Rψ = 100 random permutations, for wave 4 or 12 
nonresponse adjustment by logistic regression model A (frst two columns) or model D (next two columns). The last 
two columns are the bounds b4,k, b12,kψ from (15) using model D. 

Item 4,Am̂ 12,Am̂ 4,Dm̂ 12,Dm̂ 4,Fm̂ 12,Fm̂ bDψ
4,kψ bDψ

12,kψ

Foodst 
AFDC 
Mdcd 
SocSec 
Heins 
Pov 
Emp 
UnEmp 
NILF 
MAR 
DIV 

.0120 

.0175 

.0219 

.0117 

.0076 

.0123 

.0021 

.0626 

.0026 

.0023 

.0201 

.0086 

.0446 

.0346 

.1040 

.0148 

.0127 

.0116 

.1322 

.0447 

.0236 

.0390 

.0076 

.0067 

.0035 

.0125 

.0013 

.0032 

.0015 

.0095 

.0029 

.0018 

.0168 

.0110 

.0624 

.0078 

.1066 

.0027 

.0074 

.0161 

.0207 

.0456 

.0213 

.0334 

.0039 

.0053 

.0037 

.0027 

.0012 

.0032 

.0014 

.0098 

.0023 

.0017 

.0011 

.0093 

.0134 

.0084 

.0073 

.0028 

.0085 

.0034 

.0184 

.0063 

.0037 

.0026 

.0056 

.0077 

.0052 

.0041 

.0019 

.0047 

.0020 

.0139 

.0033 

.0025 

.0068 

.0123 

.0170 

.0114 

.0086 

.0039 

.0098 

.0041 

.0288 

.0069 

.0051 

.0139 

as measured either by metric m̂kψ or m̂� 
k. This is true even under Model F, where we can see from Table 1 that 

the last batch of variables entered between model D and F are not very signifcant as measured by an increase in 
maximized loglikelihood, or equivalently in decreased Deviance. 

Recall that we devised the metrics m̂k, m̂� 
kψ in part to penalize model-based adjustment which, like raking, removes 

bias directly in terms of population totals. Recall also that m̂� 
kψ di�ered only by fnding maximum absolute 

discrepancies over consecutive sequences of re-ordered indices which keep adjustment-cells consecutively indexed. In 
fact, the metric values m̂� 

kψ turn out to be only slightly larger than m̂k, and they follow a very similar pattern across 
the di�erent models. Consider Table 4 charting the progression of averaged m̂� 

kψ metrics (over kψ = 1, . . . ,ψ 11 and 
Population Count) as the adjustment model varies over the Adjustment Cell model and the six Logistic Regression 

M̂� ˆmodels described in Table 1, and for brevity let denote the average of these metric values analogous to Mψ in 
(6), with equal weights wkψ = 1/12. The logistic regression models are all clearly better than the cell-based model in 
adjusting at Wave 12, but at Wave 4, models A and B actually seem a little worse than the cell-based method. Since 
the models A–E are listed in order of decreasing Deviance or AIC, there is no strict relationship between decreasing 
AIC and decreasing M̂�. Model C looks to be the best among A–E, and might have been chosen also for parsimony 

M̂�from examination of deviances; but the metric rewards model F for including essentially all of the SIPP items 
as predictors. 
Although we would not have chosen model F from likelihood considerations, it may well be that this model is 
a good choice from the vantage point of nonresponse adjustment. The SIPP dataset is large enough (n=94444) 

http:whichkeepadjustment-cellsconsecutivelyindexed.In


Table 4: Metric values m̂ calculated on SIPP 96 data for Adjustment-cell model and for logistic regression models �
kψ

A–F and averaged over kψ = 1, . . . ,ψ 12, where ‘item’ 12 is Population Count (y
(12) ≡← 1).iψ

Model 
Adj.Cell 
LReg, A 
LReg, B 
LReg, C 
LReg, D 
LReg, E 
LReg, F 

Wave-4 Wave-12 
0.01228 0.04741 
0.01451 0.03942 
0.01504 0.03893 
0.00426 0.02475 
0.00571 0.02812 
0.00481 0.02654 
0.00342 0.00782 

Table 5: Metric (8) values for Wave 4 adjustment, based on the Adjustment cell and logistic regression models, using 
SIPP 96 data with adjustment cells as partition elements Aj . 

item ModA ModB ModC ModD ModE ModF Adj.Cell 
Fdst .0667 .0700 .0615 .0627 .0608 .0609 .0594 
AFDC .0800 .0840 .0728 .0734 .0705 .0722 .0697 
Mdcd .0588 .0620 .0517 .0516 .0514 .0511 .0527 
SocS .0300 .0300 .0305 .0310 .0315 .0287 .0332 
Hins .0249 .0247 .0238 .0241 .0226 .0237 .0224 
Pov .0627 .0632 .0574 .0576 .0556 .0566 .0572 
Emp .0276 .0281 .0263 .0261 .0234 .0259 .0227 
UnEmp .1005 .0988 .0868 .0866 .0878 .0867 .0946 
NILF .0315 .0315 .0312 .0315 .0313 .0304 .0327 
MAR .0207 .0206 .0206 .0207 .0198 .0216 .0225 
DIV .0498 .0498 .0459 .0476 .0443 .0451 .0480 
POP .0260 .0264 .0243 .0244 .0222 .0238 .0221 

that all of the SIPP survey items except AFDC and Emp have highly signifcant coeÿcients. Moreover, the highly 
parametrized adjustment models C–F are accomplishing something that simple raking cannot: they are generating 
response probabilities with good behavior over adjustment cells considered as subdomains. To see this more clearly, 
consider the unforgiving metric (8): for each item k, we sum the absolute estimated biases |B̂k(Aj)|← over all 
adjustment cells and form the ratio of the total to t̂ The result on the SIPP 96 data is given in Table 5. (k) . 
Although the Adjustment Cell model is given an advantage by evaluating adjustment e�ectiveness over exactly the 
same adjustment cells used to form ratio weighting-adjustments, a few of the logistic regression models (especially 
models D–F) do at least as well, item by item, with far fewer parameters than the 149 adjustment-cell response 
fractions. Nevertheless, with respect to this metric none of these models except possibly Model F shows much 
advantage over the others. 

y

5 Conclusions 

This paper has developed metrics for nonresponse-adjustment e�ectiveness, calculated after randomly re-indexing 
the survey sample and calculating maximum discrepancies over consecutively indexed subdomains. The objective 
was to discount any advantage which an adjustment regression model might achieve toward eliminating whole-sample 
nonresponse biases by including survey attributes as predictors. However, when applied to SIPP 96 data, the metrics 
developed did not have the expected e�ect. Those regression models which incorporated most or all of the interesting 
survey attributes did exceptionally well with respect to the new metrics, even though some of those models would 
not have been preferred from examination of likelihood ratios or deviance. While the same adjustment strategy 
could not be tried if the selected set of ‘interesting’ survey attributes were very large, the strategy may actually be a 
good one in the setting chosen, where the selected set of attributes was still small enough to contain variables which 
were almost all highly predictive of response and yet not redundant (except for the triple Emp, UnEmp, NILF which 



partitions the population by defnition.) 

One important check on the usefulness of the adjustment e�ectiveness metrics developed here remains to be pursued 
in depth: namely, an examination of the sampling variability of the metrics through calculation of their design-based 
variances. The variances could be calculated by a BRR method, although that computationally intensive calculation 
involves a design crossing many replicate weight-factors with many iterated random permutations of the sample. 
This kind of investigation of sampling variability of the metrics considered as statistics, may show that the present 
adjustment e�ectiveness study was statistically stable enough to justify a reliable adjustment strategy for SIPP. 
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7 Appendix: Results from Slud & Bailey 2006 

Table 6: Relative biases δ(k) between waves 4 versus 1 and 12 versus 1 in SIPP 1996 survey-weighted estimated 
(adjusted) population total of 11 Wave 1 survey items, as found by Slud and Bailey (1996). The entries are indexed 
by wave 4 or 12 and C (cell-based adjustment model) or L (logistic regression model B). Entries are the biases given 
in Tables 1 and 2 of Slud and Bailey divided by Wav1 item totals. Totals given here in 1000’s. 

Item Total µ4Cψ µ4Lψ µ12Cψ µ12Lψ

Foodst 
AFDC 
Mdcd 
SocSec 
Heins 
Pov 
Emp 
UnEmp 
NILF 
MAR 
DIV 

27268 
14030 
28173 
37087 

194591 
41796 

191201 
6406 

66647 
114367 
18463 

-0.00315 
-0.00394 
0.00544 
0.01885 
0.00837 
-0.01843 
0.00099 
-0.05257 
0.00221 
0.01096 
-0.01116 

0.01814 
0.02412 
0.02764 
0.01115 
0.00634 
0.00071 
0.00113 

-0.05868 
0.00245 
0.00083 

-0.01936 

-0.04325 
-0.10352 
-0.01410 
0.11168 
0.01948 

-0.03655 
-0.00758 
-0.11609 
-0.03290 
0.05060 

-0.02063 

0.00956 
-0.03274 
0.04149 
0.10364 
0.01299 
0.00587 
-0.01172 
-0.12657 
0.04588 
0.02231 
-0.03732 

Table 7: Relative standard errors (rse) of the Wave 4 versus Wave 1 and Wave 12 versus Wave 1 di�erences between 
estimated totals of 11 SIPP96 Wave 1 survey items. Variances were calculated by Slud and Bailey (2006) using Fay’s 
BRR method, and rseψ table entries are the respective SE columns in Tables 3 and 4 of Slud amd Bailey (2006) 
divided by the Wave 1 totals. The rse’s given here should be multiplied by 2.576 to give 99% confdence interval 
half-widths comparable to the bounds bkψ in Table 2. 

Item Total rse4Cψ rse4Lψ rse12Cψ rse12Lψ

Foodst 
AFDC 
Mdcd 
SocSec 
Heins 
Pov 
Emp 
UnEmp 
NILF 
MAR 
DIV 

27268 
14030 
28173 
37087 

194591 
41796 

191201 
6406 

66647 
114367 
18463 

0.00615 
0.01107 
0.00481 
0.00335 
0.00117 
0.00429 
0.00069 
0.00874 
0.00187 
0.00170 
0.00551 

0.00655 
0.01150 
0.00523 
0.00387 
0.00121 
0.00020 
0.00086 
0.00902 
0.00244 
0.00159 
0.00523 

0.01251 
0.02078 
0.01050 
0.00682 
0.00234 
0.00901 
0.00149 
0.02051 
0.00415 
0.00365 
0.01134 

0.01509 
0.02375 
0.01274 
0.00766 
0.00258 
0.00187 
0.00191 
0.02015 
0.00549 
0.00337 
0.01072 
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