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INTRODUCTION 

Traditionally, the problems of finding stratum boundaries and  optimal allocations to those strata have been solved serially, 
with stratum boundaries determined first. Given that the boundaries affect the allocation, it is natural to ask if finding the 
optimal boundaries and  optimal allocation simultaneously, using the same  multivariate information, might not produce a 
better result.  Ballin and Barcaroli suggest a combination of  tree search and genetic algorithms for simultaneous optimal  
allocation and stratification on several  variables, but their method is restricted to categorical stratification variables. This 
paper suggests a different approach;  one that uses a single continuous stratification variable. 

Biological evolution can be viewed as a process of optimizing a species to (or increasing its fitness for) its environment.  
Evolutionary Algorithms (EAs), sometimes called Genetic Algorithms after their most common variant, adopt biological 
evolution as a  model for computation.  These algorithms are applied most often for finding approximate solutions to  
computationally intractable optimization problems.  The work reported  on in the author’s 2006 paper [17] focused on the 
design  of an  EA  for solving the multivariate optimal allocation problem and an investigation  of the performance of that 
algorithm on a simple, well-known example. 
 
This paper extends that work, examining the use of a special type of evolutionary algorithm, a cooperative coevolutionary  
algorithm (CCEA) to simultaneously determine optimal stratum  boundaries and a multivariate optimal allocation of sampling  
units to those strata. 

THE STRATUM BOUNDARY AND MULTIVARIATE OPTIMAL ALLOCATION PROBLEMS 

One goal of stratified sampling is to increase the precision (reduce the variance) of  estimates of population parameters 
inferred from  a sample.  All other things being equal, increased  homogeneity of the population being sampled works to  
increase precision.  By dividing the  population of interest into non-overlapping subpopulations (sampling strata) that are 
more nearly homogeneous, selecting independent samples from each stratum, and combining estimates from the strata, the  
statistician can make a more precise estimate than by  directly sampling from the population as a whole.  
 
A number of  methods have been proposed for approximating optimal strata with the objective of improving the precision of  
estimates.  Examples of such methods include Winkler [1], Dalenius and Hodges [2], Singh [3], Lavallée and Hidiroglou [4],  
Sweet and Sigman [5], and  Gunning and  Hogan (for skewed populations) [6].   Additional methods have been proposed that  
used multivariate information [Jewett and Judkins, Pia]. 

Once stratum  boundaries have been  defined, the problem arises of how many sample units to allocate to each  stratum.  If the 
survey practitioner wishes only to make as precise as possible an estimate for one variable given a fixed cost, or  find the 
minimum cost design to achieve a target variance, this  problem has a well-known solution [7]:  
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where nh  is the number of sample units allocated to stratum h,  Nh  is the number of population units in stratum h,  ch  is the cost  
per unit in stratum h,  Sh  is the population standard deviation for the variable of interest in stratum h, and  n is the total sample  
size.  (Sh  is usually estimated  from frame  information or earlier samples.)  If a target variance is fixed and cost is to be  
minimized, then: 
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where W = Nh/N. If cost is fixed and variance is to be minimized then:  

(C  c0 )NhSh / ch n  . NhSh ch 

While it is rarely the case that a survey is conducted to estimate the value of only one variable, this formula is still broadly 
useful, since an allocation that is optimal for one variable may be near-optimal for variables that are strongly correlated with 
it.  If, however, precise estimates of several variables are needed, and those variables are not all highly correlated  with each 
other, it is desirable to  have a method to  find a good compromise allocation that will give adequate precision for all of the 
variables of interest.  This is the usual goal of multivariate optimal allocation.  A number of approaches have  been used to  
find the optimal allocation  on  multiple variables [8-12].  

There are two common ways to approach this problem.  One is to minimize a weighted sum of the variances of the variables  
of interest.   Khan and Ahsan [13] propose a method in which they formulate this  problem as a nonlinear programming  
problem and use a dynamic programming technique to  find a solution.   One problem with this approach is  how to weight the 
variances.  There is no single solution for doing this, and it is not always easy to predict what the consequences of a particular 
choice of weights are.  

The other approach is to choose an acceptable coefficient of variation for each of the variables on which the allocation is to  
be done. These become constraints on a cost function that can be minimized, giving  the following  convex  programming 
problem:   
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Where tj is the target coefficient of variation (CV) of the jth  variable  and  Y j is the population mean of jth variable [14].  It is 
this second approach that will adopted in this paper; thus, the problem of interest may be stated as, “Find a combination  of  
stratum boundaries and allocations to those strata that minimizes the budget necessary to achieve predetermined maximum 
allowable coefficients of variation  for two  or more selected variables of interest.” 
 

EVOLUTIONARY ALGORITHMS  

Briefly, evolutionary algorithms adopt biological evolution as a model for computing.  While there are a number of canonical  
variants of evolutionary algorithms, it is common for practitioners to  adapt features of two  or more variants to develop 
algorithms specific to the solution of their problems.   
 
In  general, evolutionary algorithms start with a “population.” Each individual in the population consists of one candidate 
solution for the problem the EA is trying to solve.  Borrowing terminology from biology, each variable in a solution is  
referred to as a gene, the value for each gene is called an allele, and the structure of the whole solution is referred to as a  
genome.  These candidate solutions are usually generated at random  from the space (or a well-chosen subspace) of all 
possible solutions.  

The “fitness” of each individual is then evaluated; that is, the value of  the objective function  of the optimization problem 
being solved is determined for each candidate solution. Next, pairs (or n-tuples, should the practitioner wish) of individuals 
are selected to “reproduce” (reproductive selection).  This selection is done in  such a way as to favor fitter individuals; for  
example, individuals could  be selected with probability proportional to their fitnesses.  Note that the degree to which 
selection favors fitter individuals controls, in part, the rate  at which the algorithm converges.  If, say, a few of the fittest 



 
 

 

 

individuals are given a great deal (or all) of the probability of being selected, then only the areas of the solution space in 
which these lie will be explored.  If they lie near local (but not a global) optima, then it is possible to  converge rapidly to a 
less than o ptimal solution.  On the other hand, if there is near-uniform  probability of selection with respect  to fitness, then  
there is little pressure to converge toward  higher fitness solutions, and the algorithm  will fail to converge to an  optimum.   
This balance between “exploration” and “exploitation” is an  important design criterion  for an evolutionary algorithm.  
 
During reproduction, two operations can be used to  produce “children” (the next “generation” of candidate solutions). One 
consists of taking one part  of  one of the individuals selected to reproduce and appending it to the complementary part of the 
individual it was paired  with during selection.  This is referred to as “crossover” in the EA literature, and is analogous to 
recombination in biological reproduction (Figure 1)..  The second reproductive operator is mutation.  As one might  

Figure 1.   An example of one-point crossover. 
 
suspect, it consists in changing the value of one or more genes in a single individual with some probability. Following 
reproduction, each child’s fitness is assessed.  Children are allowed to survive into the next generation  (where they become  
the initial population)  based  on their fitnesses (survival selection).  
 
This process continues, with the children becoming the next generation’s parents, until some  convergence criterion  is 
reached, or a maximum  number of generations is reached.  One problem with EAs as described to this point is that the best  
solution may be lost; that is, the solution  with the overall highest (if maximizing) or lowest (if minimizing)  value of the 
objective function may disappear as the algorithm  moves from generation to generation, never to be seen again.  To address 
this problem, practitioners usually employ “elitism,” allowing the k highest valued members of the current parent population 
to survive into th e next  generation.  

Should the reader wish a thorough introduction to the field o f Evolutionary Algorithms, De Jong [1 4]  provides one. 
 
Cooperative Coevolution 
 
In nature, a species rarely evolves without  being affected  by a relationship with  one  or  more other species.  That  relationship  
may be competitive; for example, a predator and its prey, or two species that compete for the same food source.  In  other 
cases, the relationship may be symbiotic, such as flowers and the insects that pollinate them.  Over time, both the flowers and  
the insects have evolved together, or coevolved, to improve the effectiveness of their relationship.  

Wiegand [15] defines a coevolutionary algorithm as “an evolutionary algorithm that employs a subjective internal  measure 
for fitness.”  By subjective, Wiegand means that the fitness (value of the objective function)  of an individual cannot be  
evaluated independently, but  rather must be computed using one or more other individuals (collaborators).  For example, as 



 

 

 

 

 

 

we will define fitness, it will not be  possible to evaluate the fitness of an allocation without doing so in reference to a 
particular set of stratum boundaries. 
 
By internal, Wiegand means that the fitness influences the course of evolution in  some way.  The value of a candidate  
solution on an objective function is an example of an internal fitness when it is used  to  make that individual more or less 
likely to survive or reproduce. Complex optimization problems  may be modeled by decomposing them into parts and 
representing candidate solutions to each of the parts as coevolving species in an evolutionary algorithm. Designing a  
successful CCEA is not a trivial exercise.  The following discussion of the relevant issues draws heavily from  Wiegand.  
First, one must decide  how to represent a candidate solution to his or  her problem.  Choice of representation is often critical  
to the success of an EA. 

Fortunately, for CCEAs, there are some principles to  guide the designer.  In  particular, it is important that the separation of  
the candidate  representation into coevolving parts matches the natural decomposition of the problem.  If the designer creates 
more coevolving populations than there are  parts to the problem, this results in strong interactions between those populations  
representing the same part.  This condition is termed “cross-population epistasis,” a characteristic that often causes poor 
performance of the algorithm.  

Once a representation is decided  upon, it is necessary to decide how the coevolving  populations will interact.  Since CCEAs 
have subjective fitness, when fitness is evaluated it must be done on the space of interactions between the populations. It may  
be tempting to try and evaluate each member of one population in collaboration with each member of the coevolving 
population, so-called “complete mixing.”  Note that, if the populations are relatively large, this requires an extremely large  
number of fitness evaluations, usually the most computationally  expensive part  of an EA.  In most circumstances, evaluation 
of a sample from  the interaction space for each individual is sufficient. 

Note that, given the space of interactions between all possible collaborators from both  populations, the current populations  
restrict fitness evaluation for any individual in one population to the “projection” of the individuals in the coevolving 
population onto the interaction space.  That is, in a two-population CCEA, population A is optimized for collaboration with  
population B, and  population B is optimized for collaboration with  population A.   As the two populations evolve, they may  
eventually reach what is referred to as “robust resting balance.”  Readers familiar with game theory may recognize this as an 
example of a Nash equilibrium.  Nash equilibria, like the optimal strategy chosen by each individual in the familiar Prisoner’s  
Dilemma game, are not  guaranteed to be  the global optimum solution.   Wiegand suggests some design choices that are  
incorporated in the design  of the algorithm for this investigation to ameliorate this problem.  

DESIGN OF  A CCEA TO SOLVE THE MULTIVARIATE OPTIMAL STRATUM BOUNDARY 
CONSTRUCTION  AND SAMPLE ALLOCATION PROBLEM 

 
Given the interaction between stratum boundaries and optimal allocations, one may view the construction of boundaries and  
allocation of sample units as a single, decomposable problem,  with the obvious natural decomposition.  For purposes of this  
investigation, two populations, one of stratum boundaries and the other of  allocations to those strata are allowed to coevolve.  

Optimal Allocation  
When  designing an EA (or any other optimization algorithm), it is important to incorporate any special features of the 
problem to be solved.  In the case of  optimal allocation, any solution that results in enough  of  the available budget (total cost) 
being left over to allocate another unit in any stratum is sub-optimal; that is, any optimal solution must use the entire budget.  
This implies that, rather than searching the entire space of feasible allocations, the EA  can concentrate on a bounding 
hyperplane of that space, enormously reducing the size of the set  to be searched and reducing time to convergence.  This can 
be incorporated into the problem  as a constraint.  A second constraint consists of the need to meet the maximum CV  targets. 
The algorithm described here takes a conventional approach to the first constraint and an  unusual  one to  the second.  

By defining the allocations to the strata as budget allocations  (making  the number of units allocated implied rather than 
explicit), and incorporating the budget constraint into the initialization, mutation, and crossover operators by calling  a repair 
function at the end of each operation, the algorithm constrains the search to the hyperplane in  which the solution  must lie.  
When creating an initial population of candidate allocations, the initialization operator chooses gene values at random from a 
fixed range with uniform probability.  The operator then calls a function  which  finds the sum of the allocated  values and 
normalizes the vector of allocations so that the sum of its elements equals the budget with the constraint that no stratum may 
be assigned an allocation less than two.  So, the EA starts with an initial population of vectors that lie in the hyperplane with 
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the optimal solution. If the search is to  be constrained to that hyperplane, mutation and crossover operators must operate to 
keep children  in that region of the solution space as well.  The mutation operator uses a parameter that contains the  
probability of  mutation to decide  whether or not to mutate a particular gene.  If a gene is chosen fo r mutation, its value is 
increased  or decreased (with equal probability) by the cost of one unit in that stratum.  The repair function is then called again 
to ensure that the budget is maintained. The crossover operator is relatively simple, doing a simple one-point crossover with 
tournament selection and calling the repair function should the budget constraint be violated.  

The phrase “tournament selection” needs a little explanation.  As discussed earlier, in any EA it is necessary to select  
individuals reproduce.  These selections are done in such a way that fitter individuals have a greater chance of being  chosen 
to reproduce, thus putting pressure on the whole system to evolve fitter and fitter individuals in successive generations.  One  
method of choosing individuals to reproduce is to  hold a “tournament” in which k individuals are chosen at random and the 
fittest is selected to reproduce.  The larger k gets, the more likely the randomly chosen  participants are to contain at least one 
high fitness individual; therefore, larger values of k  are associated with greater selection pressure.  In this application,  
exploration of the solution space was heavily valued over rapid exploitation of promising areas, thus k was set at its minimum 
value of two.  

Optimal Stratification  
What concerns us in this section is not  development of a general method for determining multivariate optimal stratum 
boundaries.  We are instead concerned  with the development of a complementary algorithm to the optimal allocation 
algorithm described above; that is, one that determines optimal stratum boundaries given an allocation.    

Fortunately, we were able to  borrow considerably from the optimal allocation algorithm.  For example, the fitness function is 
essentially the same, except that instead  of there being a different  vector of nhs for each individual, the individuals 
undergoing evolution are integer vectors of  AGI boundaries, similar to the boundaries developed by the Lavallée and  
Hidiroglou method used for comparison  below, but represented a little differently.  Given the nhs as fixed, the boundaries are  
used to compute the stratum standard deviations for each study  variable, and the  Whs for each stratum.  These are the  
quantities in the fitness function that vary for each candidate vector of boundaries. 

Some thought was needed about  how to implement the fitness function.  Consider an  EA that uses a breeding population of 
size 100 and evolves it over 1,000 generations (a tiny number by EA standards).  This implies that ~100,000 fitness 
evaluations  will be  done.  If the evaluation  process is slow, then the evolution will be  glacial.  A  simple-minded approach, in  
which the data file must be read once for each evaluation in order to estimate the stratum standard deviations is prohibitively  
expensive in terms of computing time. 
 
Consider the usual computational  formula for S:  

If the data are sorted on ascending value of the stratifier, then cumulative            x  ai nd          x   2 
i  can  be  pre-computed and  stored 

in a file.  These can be read inonce per generation, when  the fitness evaluation  object  is instantiated.  By representing the 

stratum boundaries not as values of AGI, but as row indexes intothe data matrix sorted on  AGI, it is a simple matter to 

calculate the stratum            x  i  and         x2 
  i  by subtraction of respective cumulative total  at  the lower boundary of the stratum 

from  that at the higher boundary.  This greatly speeds and simplifies the calculation of  fitnesses.  A  more sophisticated 

method will have to be found if one wishes to  use multiple continuous stratifiers. 

Initialization was done by generating an integer vector of five  stratum boundaries represented as row indexes into the data 
matrix  sorted on  the stratifier, AGI.  These boundaries determined the strata sampled at less than 100  percent.  The final value 
of the allocation vector was used to determine the lower the boundary of the take-all stratum.  Candidate solutions in which  
that boundary was below the fifth and last non-100 percent boundary were eliminated using a very large penalty in the fitness  
function.  The condition that needed to be  maintained in  this case was that stratum boundaries must be in ascending  order, 



 

 

 

 

 

 

 

otherwise population  units are included in two or more strata.  So, after boundary vectors were instantiated, their values were  
sorted to preserve the ascending order property.  This is, in effect, another simple  repair function, and was used after  
mutation and crossover as well.  Mutation was initially done similarly to the method for optimal allocations, except 100 was  
added or subtracted instead of  1, as the numbers being dealt with were approximately two orders  of magnitude larger.  This  
method proved unsatisfactory, as 100 proved too small in the initial generations when the algorithm needs to search the  
solution space more broadly, and too large in later generations when the algorithm was trying to converge.  An idea was 
borrowed from simulated annealing.  As the  number of generations became larger, the mutation increment was reduced, 
starting  with  2000 and ending  with ten.   One-point crossover was also employed, with  Tournament selection.  
 
Selection for reproduction was done using the roulette-wheel method.  This method selects an individual  i from  the 
population w ith probability proportional to its fitness, similar to a PPS sample of one  with fitness as the size measure. As in  
most implementations, elitism  is employed  to avoid losing the best solution found to that point. 

The fitness function is modeled after the objective function used  by Bethel [16].  Given a vector of allocations to strata, the  
program calculates a “standardized precision unit” (SPU) for each variable j as follows: 
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Note that this is the left-hand-side  of the first constraint  on the cost minimization problem discussed earlier.  Further, the 
variance constraint  on the jth variable is met when this quantity is equal to  one.  Using the SPUs a fitness function can  be  
formed.  This EA uses:  

 fitness   SPU 2 
j 

SPU j 1 

as its fitness function. This function is minimized. 
 
The EA described here is actually a framework for an optimization algorithm.  The CV constraint is treated as the objective  
function,  with the budget a fixed parameter for any one run  of the algorithm.  This is not the objective for the optimal  
allocation  problem as defined here.  That objective is to  minimize the sample size.  To achieve that objective, the EA is used  
in a binary search over the set of sample sizes, with each set of EA runs used as a test to determine whether or not a solution  
meeting the target CVs can be  found given the sample size being tested.  If a solution is found, then a size from the lower 
interval defined in the binary search is explored.  If, after a sufficient number of unsuccessful runs of the EA have been  
completed to convince the user that no solution can be found with the current sample size, then the upper interval defined in 
the binary search is explored.  This continues in the usual fashion for a binary search algorithm  until the binary search 
converges.    

DESCRIPTION OF THE TEST DATA  
 

Testing the CCEA method’s performance required an example problem, results on which could be compared to  more 
standard methods.  The author’s primary interest is in economic data, particularly tax data, and the example problem is drawn  
from  this field.  Confidentiality constraints prevent the use of live data, so a set of synthetic data were constructed.  Four 
aggregate income variables were created by treating the Statistics of Income Individual Tax Return sample file as a 
population.   Note that the SOI sample is stratified, so the unweighted  distributions of amount  variables in the sample does not  
represent the true distributions of these variables.  (They are considerably  more skewed.)  Thus, despite the variable names,  
the characteristics of these data should  not be taken to  represent real world statistics.  

For each of the four variables, Wage Income, Business Income, Investment Income, and Taxable Retirement Income, a 
univariate lognormal distribution was fit to the unweighted SOI sample data.  In addition, a residual amount was computed  
by subtracting the components of the four  named variables from Adjusted Gross Income (AGI), and a normal distribution  
was fit  to  these  residuals to  represent other components of  AGI.   
 In order to create an observation, a random  variate was generated from  the fitted distribution for each of the four variables of 
interest which was to be present in that observation.  In addition, a residual amount was generated from the residual  
distribution.  Not all of the four named variables are present on every tax retu rn; therefore, to add a real world complication  



 

 

 

 

 

to the example, patterns of presence or absence from the real data were used to create a vector of indicator variables for each  
synthetic observation. AGI  was computed by summing the generated values of the  four variables of interest times their  
respective indicators and the residual variate. Note that no attempt was made to  preserve  multivariate relationships that  might  
exist between these variables on real tax returns.  This provides an additional level of confidentiality protection.  The 
distributions  of the synthetic data amounts are presented in  Figures 2-5.  

Despite care having been taken to prevent these variables from  too closely  mimicking real tax data, the data set has several  
interesting properties for evaluation of sample stratification and allocation  methods.  Figure 6 shows the proportion of records 
with each  of  the four variables of interest and their correlations with the stratifier, AGI.  Three of the four possible 
combinations of high and low frequency of presence and high and low correlation with AGI are present.  Only the easiest  
situation, a variable present in a high proportion of  observations that is highly correlated with  AGI is not represented.  Given   
 

Figure 2.   Disribution of Synthetic Variables 
 
these characteristics, along with the highly skewed  nature of the variables of interest and the stratifier, the example problem  
data represent a fair test of a method’s ability to perform in real world conditions. 
 

RESULTS 
 

The results of any new method  should  be compared with methods  already in common use.  The method described by 
Lavallée and Hidiroglou  (L-H) [4] is one such method  for stratification and allocation in the presence of  skewed  
distributions. Table 2 shows the stratification on AGI and Neyman allocation to achieve a CV of 0.10 resulting from the use 
of the L-H method. Table 3 shows the sample sizes and CVs using the L-H strata for Neyman allocation, multivariate optimal  



 

 

 

 

 
 

allocation  with target CVs of 0.10 for all four  variables of interest using  the L-H sample size, and the same thing using the 
minimum sample size necessary to achieve the target CVs. 
 
Table 4 shows the stratum boundaries and allocations  found using the method described in this paper (CCEA), while Table 5  
shows the associated CVs.  The first thing to  note is that  the CCEA method can match the performance of serial stratification 
using the L-H method and multivariate optimal allocation.  Additional test runs with smaller sample sizes were disappointing.  
While CVs very close to the targets could be obtained, no  runs  were observed in which the target CV fo r Taxable Retirement  
Income was met.  For these four variables, no improvement over commonly used methods was obtained.  

   
 Variable Name   Correlation with AGI  Percent Observations Present 

Wage Income  0.0844  83 

Business Income  0.4181  27 

Investment Income  0.9021  31 

Taxable Ret.  0.0721  29 
Income 
Table 1. Correlations with AGI and percentage of  records  with a nonzero value of the variable for synthetic data.  
 
 
Why might this be?   Note that Taxable Retirement Income shows a correlation  of only 0.0721  with the stratifier; that  is, the  
stratified sample can  be expected to be only slightly, if any, better than a simple random sample.  Thus, it’s not unreasonable  
to believe that the CCEA’s ability to alter stratum boundaries will have little effect on the needed sample size to reach the  
target CV for this variable. 

What happens if this variable is eliminated?  Table 6 shows the results of multivariate optimal allocation using the L-H 
stratum boundaries on the three remaining variables.  Note the drop in the required sample size to  meet the remaining CV 
targets from 475 to 346. Runs with the CCEA method were  more encouraging, with the CCEA method able to find a solution  
meeting the remaining CV targets with a sample size of  only 330 (Tables 7 and  8).  The ability to adjust strata and allocations  
simultaneously led to a smaller minimum sample size to hit the CV targets. 
 

CONCLUSIONS  

Use of a cooperative coevolutionary algorithm to find simultaneous optimal stratum  boundaries and multivariate optimal  
allocations is effective in reducing the sample size needed to meet CV targets for variables with moderate or stronger  
correlations to the stratifier.  For multivariate optimal allocations in which at least one variable of interest is poorly correlated 
with the stratifier, the CCEA method is as good as the commonly  used Lavallée and Hidiroglou  method for finding stratum  
boundaries to be  used for multivariate optimal allocation.  
 

RECOMMENDATIONS  
 

The results of  this investigation are sufficiently encouraging to  warrant additional research in the CCEA method.   CCEAs  
should be compared to more stratification methods, in  particular the Gunning and Horgan method.  Further, CCEAs should  
be tested against other methods used for sampling from  different distributions, including bimodal, multimodal, and other 
mixture distributions.  The lack of any  distributional assumptions by the CCEA method  makes it  use for designing  samples 
from  unusual or unknown distributions  of  interest.  



 
  Stratum Upper Boundary (AGI) 

 
  Population (N = 119,326) 

   Sample Allocation (n = 58) 

 33,000  37,785 3 

 71,415  36,118 4 

 152,761  26,960 6 

 405,364  13,629  10 

 1,619,751  4,154  13 

 17,976,308  674  16 

 59,528,121 6 6 

 
 
 
 
 

 
 

  Allocation Method 

 
Study 

  Variable 

Neyman on AGI 
 (Default L-H,  

   n = 58) 

 
 

Multivariate Optimal   
  (n = 58) 

 
 

Multivariate Optimal  
(n = 475)   

 Wage 
Income 

 0.146  0.116  0.040 

Business  0.282  0.265  0.100 
Income 

Investment  0.129  0.169  0.066 
Income 

Taxable  0.678  0.296  0.100 
Retirement 
Income 
 
Tables 2  and  3. Results of  Lavallée and Hidiroglou Stratification and Three Approaches to  Optimal Allocation.  
 
  



 
  Stratum Upper Boundary (AGI) 

 
 Population  

  (N = 119,326) 

    Sample Allocation (n = 475) 

 31,196  35,338  36 

 58,402  29,529  56 

 107,940  26,130  91 

 277,033  20,395  132 

 1,392,710  7,359  104 

 19,753,607  841  52 

 59,528,121 4 4 

 

 
 
 
 
 
 
 
 
 
 

 

Table 4. CCEA Multivariate Optimal  Stratum Boundaries and  Allocations 
 

  

 

 

  

Variable Name Coefficient of Variation 

Wage Income 0.040 

Business Income 0.100 

Investment Income .0.071 

Taxable Retirement Income 0.100 

Table 5. CVs for CCEA Multivariate Optimal Allocations  and Stratum Boundaries, n  = 475  



 
 

 
  Stratum Upper Boundary (AGI) 

 
   Population (N = 119,326) 

 
   Sample Allocation (n = 346) 

 33,000  37,785  13 

 71,415  36,118  28 

 152,761  26,960  52 

 405,364  13,629  83 

 1,619,751  4,154  95 

 17,976,308  674  69 

 59,528,121 6 6 

 

  
 

 

Table 6. Multivariate Optimal  Allocation Using Lavallée and Hidiroglou  strata, dropping Taxable Retirement Income  

 
  

 
   

 
    

   

   

   

   

   

   

 

Stratum Upper Boundary (AGI) Population (N = 119,326) Sample Allocation (n = 330) 

55,082 61,836 29 

124,239 33,332 48 

252,241 14,898 58 

551,708 6,121 61 

1,680,115 2,503 68 

19,753,607 632 62 

59,528,121 4 4 

Table 7. CCEA Multivariate Optimal  Allocation and Stratum  Boundaries dropping Taxable Retirement Income   
 



 
 
 

Study Variable   

 Method 
  (Sample Size) 

 
Lavallée and 

 Hidirouglou 
  (n = 346) 

 
Cooperative Coevolutonary Algorithm  

  (n = 330) 

Wage Income  0.057  0.060 

Business Income  0.100  0.100 

Investment Income  0.061  0.061 

 

 

 

 

 

 

Table 8. CVs for L-H with  Multivariate Optimal Allocation and CCEA methods dropping Taxable Retirement Income and  
meeting remaining  3 CV targets.  
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