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Sources of Unstructured Data

Documents

Reports

Legions of Figures

Tabular data names

Field names in databases
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Some Datatypes are Only accessible from Unstructured Data

 Social Determinants of Health
¢ Signs and Symptoms

* Physical Exam findings

« Counseling

 Quality of Life

» Behavioral Data

« Street drug use

* Opinions
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Electronic Health records

* Began in the 1960’s
« HELP — Utah
+ CoSTAR - MGH

« Commercial Systems

» Technicon — from Lockheed 1963 developed for EI Camino Hosopital used NIH clinical

center — and later become TDS (Han Article)
» Meditech — 1969

-

+ 1977 MUM{PS was developed as a standard il e 8 Hmj;f,’:ﬁw.mmntsl\m

« 1979 — Epic started as an outpatient system g i 1}7P;:MU:;'£,; i p;;;gﬁ?cﬂn{li'lg%lédfg
« 1979 — Cerner which started as a lab system *é;‘g"'éC bermedi (:me“ul & educaﬁong%-
« 1980s — Boston Beth Israel System g; J.ﬁg‘,?j};gbx Paper 359 B;rnlaﬁcs ¢
* 1980 — Regenstrief Institute of Indiana University Imm Patlen 1te‘§.DGx ﬂquah sty BMC
« 1981 — VA Distributed Hospital Computing Program e i g Uﬁe@;‘fﬁf&m CEF“?,,'}{,‘I’T?T“”

« 1994 — DHCP became VistA “ﬂ\_i

- 1994 — CPRS )

« 2009 — ARRA EHR Adoption
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Electronic Health records Functional
Specification from HL?7
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Best in KLAS: Software

BEST IN

SOFTWARE
& SERVICES

Categoey
Arwin Carc EME (Large Hospitalf1IDN)
anesthesia

Cardiology

Community HIS

Emergency Department

Enterprise Resosne Plansing [ERP)

Ghobal (Mon-Us) A&Cute Care EMR
Glabal {Non-1rs) PACS

Ghobal (Mon-1Urs) Patient Adesinistration
Sysiems

Heatth Information Exchange (HIE)
Healthcare Business Intelligence &
Analytics

Homecare

Labaoratory (Large HospitalfIDN]
Long-Term Care

P&CS [Large Hospital ioN}

Fatient Arcess

Palinnl Ao oouming & Paties Managemen

[Large Hospital 0N}
Fatient Porials

Popalation Health

Speech Recognition—Front-End
Surgery Managemant
A Fivaae A hive

Recipient

Epic EpicCare inpatient EMR
iProcedures iPro Anesthesia
Margs, an |1BM Company, Cardio
MEDITECH €5 Commusity HIS (6.x)
Wellzoft EDIS

Predider PrmisrConmsct ERP
Solutscns

InterSysiems Trakare EPR
Secira PACS

InterSysiems TrakCare S

Epic Cane Evarywhen

Health Catalyst Amalytics Flatform

Thsaredtrrry MO

Epic Boakar

MarrieCare

Sectra PACS

Exparian Health elare NEXT

Epic Risolete s pital Billing

Epic MyChart

Enli CaraMamager 21 Population
tealth iHTracks.

MModal Fluency Direct
Cemer Surgical Management

Marge, i |BM Comnpiany, onnect
Eserprise Anchive
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High Performance Computing and Natural Language Understanding

Peter L. Elkin', Daniel R Schlegel?, Christopher Crowner’, Frank LeHoullier’
Department of Biomedical Informatics, University at Buffalo, SUNY, Buffalo ,NY USA
2SUNY Oswego, New York USA

Introduction
Big data is expanding
exponentially. We are

Methods

The UB Center for Computational
Research (CCR) is an NSF

looking at housing,
processing, analyzing
and retrieving
Petabytes of data

sponsored supercomputing facility
where we can scale to 16,000 nodes.
We have a large number of high
memory (>64GB) nodes. We installed
a script to access the CCR scheduling

every day. With the
advent of Genomic
and Proteomic data
we are increasingly
challenged with
understanding the
patient’s phenotype

application and deployed our HTP
application (See Figure 1).

litgrul Prissass

with greater specificity ||/ = /| —ml

and detail. This is
going to require
developing and

applying ontology at a |

more granular and
consistent fashion.
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Results

We have 212,343 patients in our observational
database. We have 7,000,000 clinical notes
and reports and they have generated
750,000,000 SNOMED CT codes. Structured
data are held in SQLServer™ in OMOP /
OHDSI format. The ontology codes such as in
SNOMED CT are held in a Berkley DB,
NOSQL database. The compositional
expressions are held in Neo4J (a graph
database) and also in Graph DB (a triple store).
Our retrieval times for real clinical questions
average between 2 and 3 seconds.
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Observational Data are formatted for OMOP (OHDSI) and i2b2

" The Evolution of Modern Data Engineering

Traditional Bl \

S

/" Big Data Analytics

et PR
\ Hadoop Distributed File System (HDFS) /
H |

orizontally Scalabie Environment - Optimized for Analytics
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Medical Ontology : Relationships between diseases, disorders,
& systems, organs and tissues

. tissue . digestive system
.connective tissue Jdiver
. adipose tissue .pancreas
. Islet cells

Adipose Tissue
(Obesity)
- ‘m "y

st

v
Cardio vascular

. cardio vascular system
.blood vessel
. retinal vessel
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Biomedical Ontology : Neuronal interaction between
diseases, systems, organs, substances, tissues, cells, proteins and genetics

Brain
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Basic Formal Ontoloqgy (BFO)

Defines the high-level structures common to all domains
Connects — Health — Basic Science — Finance & Engineering

top level Basic Formal Ontology (BFO) + Cell Ontology (NHGRI, NIAID)
____ — « eagle-i and VIVO (NCATS)
Information Artifact (?tolog): far . .
Ontology iomedical Spatial Ontology * Environment Ontology (GSC)
mid-level I \Db' Investigations (BSPO)
Perel (ORI »  Gene Ontology (NHGRI)
A?rt‘x»:n\n&l;r\ 7 | aections + IDO Infectious Disease Ontology (NIAID)
A0 S " Disease .
Coll Cellular har'\.t‘nlng\ O"mx';’sy ° Nanopamde Ontology (PNNL)
domain | 8y ‘;‘;':‘[“":';:" (ENVO) i) . Ontology for Risks Against Patient Safety
'I';:'e'; (€L (FMA®, GO%) (EU)
Subcellular Anatomy Ontology (SAO) ‘ 881:6()':? gé{(iﬁfzant')vlce&'tal Health and
e - Plant Ontology (NSF)
l'v«m-:;:l:z-;_l;'lnx_v * Protein Ontology (NIGMS)

» Translational Medicine Ontology (W3C)
Ceusters W, Elkin P, Smith B. Negative findings in electronic health records and . .
biomedical ontologies: a realist approach. Int J Med Inform. 2007 Dec;76 Suppl US Army Biometrics Ontology (DOD)

3:8326-33. » Vaccine Ontology (NHBLI)
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Ontology of General Medical Sciences (OGMS)

Therapeutic Response

healthy disorder disorder w/symptom disorder w/sign

self physical specimen
assessment assessment exam isolation

inding  lab test g
lab finding

treatment

RE == DIAGNOSIS ==  PLAN

interpretive patient management
process plan development
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Level Three Ontology

* Fully Encoded Health Record

* Consistent with the Level One and Two
Ontologies for Health

« Compositional Expressions are assigned
Automagically

* Information is gathered through the usual
documentation of patient care.

Example..............
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SNOMED Codes:;

Mows 2 I1A] CASHIBSO0ET [ilnpatn- mmisitun 6] (POEI00% Wi pabiy () (000 Tupe o 1] (10HE5006) | Dinbebny meinty (0 CRECI00H] [l dieays K] (R0T0ROGH] (S (MY CiERE H00R]
i Typa i dm with relinopedhy Typm i dm willh nephrepalky Tipe i

 Disbates mallifs ] FATL900%)  Wedrspatny [} (384053004)| Precimonis (W] (T33408007) | Segcl= ] (S1S00004] | Hypertacsive Faa diseace (N (E473500%,  Fiasart falllen (i) (B4118557) Disnetes pwailnns (W] (75210005
dm wilh nauropatiny Praumonia with Bapsis Hypartansive heart disease with haart failure Diahetas melitus

Typa i dm with rirtingpathy Typa ii dm wilh neplrapathy Typer i
dm with nemnpacﬂ'ry Preumona with ' Hmertenm'e heast disease haart failus Drahetes mefitus
EEE _
heficiifier
hmbdcdifier
“é"m'""i_ _—
due o underhying conditian with proliferaties dinbabic retinopathy with macular edama Alcohalic cirhosis of lver with
Eytate, fursctinn [ {397 50044 Kangastive heark feljure (K] EFRei00y]]  Dlgteiic bioos prasaurs (M{TTIeA0008) Congeative e failune (] (3 348007] | Aironaiis nepatic fmilur W] (1o
[ combsned aysiolic congestive heart failure and dia=tolic chit alcaholic nepatic failune with
Coma [i] (74632005

Tl
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Case

HISTORY OF PRESENT ILLNESS:
#1 Chest pain

Patient is a 57-year old %entleman with a 80-pack-year smoking history. He has a family history of early coronary disease on his father’s side, as his father had a heart
attack at age 43. Patient does not exercise very much. He drinks 2 ounces of alcohol a day. He has type ii diabetes mellitus, hypertension, nor does he know his
cholesterol level. Patient was in his usual state of health until 2 months ago when he began having exértional dyspnea and chest pain at peak exercise. Patient could
walk 4 blocks and up 2 flights of stairs before he would have crushing substernal chest pain, which radiated to his left arm. On a scale of 0 to 10, it was as bad as 8 out of
10. Patient had some diaphoresis and dyspnea associated with the chest pain. He would sit down and this would be relieved after about 15 minutes. Patient has taken it
upon himself to limit his activities based on this symptomatology. Patient has an interest in quitting smoklngri He denies palpitations, syncope, pre-s¥ncope, PND, or
orthopnea. Patient has had no peripheral edema or shortness of breath at rest. He has had no episodes where the pain lasted greater than one-half hour.

#2 Right knee pain

Patient has had an 8-year history of right knee pain. Patient works as a construction worker and had a fork lift injury 8 years ago. Since that time, he has had more

difficulty gettln%arpund on his right knee. It f)ops occasionally, but it never locks. It has not given out on him, but he has constant pain for which he takes ibuprofen on a
regular’basis. Patient used to be an avid golfer, but he has not been able to participate since the injury. This has also effected his work, as he has had difficulty climbing
which is sometimes required in his profession.

#3 Nicotine dependence

Patient smokes a pack a day and has a 80-pack-year smoking historN._ He was smoking less than this until last year. Patient states his stress at work is the factor that
has caused an increase in smoking, and he will be willing to see the Nicotine Dependence Center. In the past, he has tried to quit on his own without help of nicotine
patches or any other nicotine replacement or Wellbutrin.

#4 Obesity

Patient is somewhat overweight and has had difficulty losing weight despite being a smoker. Patient has tried dietin%_and exercising programs, but since his inability to
exercise with the right knee |nJur_¥, he has had more difficulfy with exercise and has not been able to lose weight. Patient states he watches his diet quite closely and has
been limiting his caloric intake. To that end, he has actually lost 8 pounds over the last 6 months.

#5 Diabetes Mellitus Type ii

Patient denies polyuria and polydipsia however he is well controlled with Levemir Insulin 28 U SQ bid and Metformin 1000 mg bid. He has peripheral diabetic neuropathy,
nephropathy and retinopathy.
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Physical Examination (Relevant Sections)

» Extremities — Without clubbing, cyanosis, or edema. + Neuropathy with 3+/5+ loss of
sensation in both feet to the ankle.

* Neuro — Cranial nerves 2 through 12 were intact. Visual fields were within normal limits.
Pupils were equal and reactive to light and accomodation. Sensation was intact and
bilaterally symmetric in his arms but a loss of sensation was found in his feet using a
microfilliment examination. Motor was 5+/5+ bilaterally symmetric. Deep tendon reflexes
were 2+/2+ and were symmetric bilaterally. Romberg was normal. Cerebellar signs
were absent. Babinski was down going bilaterally.
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Hictorv Fneaded in SNOMED OT

Y S T T

He drinks 2 ounces of alcohol a day

(Dinbefes MelnUs type 1 [K] (A058006],  HYDerensive (R30T0er, Sysvervac ATeCil K] (Y8341008) Finding of Criolesieral Level [K] (3657 93008)
| He has type ii diabetes meltus . hypertension , nar dees he know his cholesterol level .
Watient M) (1 16152503) [State [W] 336070604}  Weaitn [M{ (JEFTTS0GS)) Phanth [M] (223706005} Diénen on exenicn K] j@aeiscos)  Chaepain Py asssooel "
| Pﬁﬁchl was n his usust sate of health untd 2 rﬁonms ago when he began having exnrlional dyspoes and chest pan at

U

_ peak exercise
 EaTEnE W] 118154008 Chest pain K] (15857000} Entie (6] Upper arm [M] (72038002

Patient could walk 4 blocks and up 2 flights of stairs before he would have crushing substermnal chest pam . which radisted to his left arm e

Seaw, oeice (U] 9S00 g (4] 155600)))
iOna scale of Oto 10, It was as vad as Boutof 10,
 Bwtiant {M] (116154993 Wxewsbive sawating (K] (53843005)]  Dydpnea (K] R67iS6007) Ehest pain (K] (9630000
' Patient had some taphoresis and dyspnea associated with the chest pain
i (M (153708004}

| He would sit down and this would be relieved after about 15 minutes
- Patiant (W[ (116154003 Retwity pay (1577 33005)

Patiant has taken it upen himsalf to limit his sctivities based on this symptomatology .
Pationt [M] ({1615409%) Virging of febaccs amoking benaviar (K] (163981067)

Patent has an Interast in guanng sSmoxing

T ] I0I000] By ] VAN 00T — — — —

[He danies palpitasons syncope pre syncope PND L of
ptieiit (W] (16154008 — Lyspnea [v] (267056007 (R

Patient has had no penpheral edema or shortness of breath at rest
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History

Disbetes melltus type 7 [K] (S4054006)] Fatient [M] (115154005} Potrans DML FErchogenic POl oo (K] (IIBI00R neilins 3K RETHESG0]
#5 Drabetas Mellius Typs i Fatient denias pohyuria and pohydipsia hoiesver he is well conirolled with Levamir insuim 2B
.ﬂ“ Matfarmir () (3000H1 bod) | “
bid and Ktfarmin 1000 bid

_m Eldney df smase K] (070800T] __
He has peripharal disbatic naurcpachy . nephropathy and retinopathy
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- Nearopathy with3+/5+ lossof sansaton  in both feet 10 the ankle
Hidmex [M] (13 16300%)]
Neuro — Cranal nerves 2 through 12 were Inact .

visual fislds were within normal limits

Pupis were equal and reactive to ight and accomadsation

Sensation was inact and bilaterally symmatric i his arms but & loss of sensation  was found n his feet usng a mecrofiliment

examinanon

Motor wasS5+/5+ bilaterally symmetric

Deep 1endon reflexes were 2+ ( 2 + and were symmetric bllaterady

Fiormai [M] [17521005))
Romberg was noemal
Carenaiiar stroctiire M] (11350509) Bt 1] [P NG
Cerebeliar signs were absent .

Babnsk was down gomng biararally

Gait - Within normal limits
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Assessment of Intranasal Glucagon in Children and Adolescents
With Type 1 Diabetes

The purpose of this study is to assess how glucagon administered as a puff
into the nose (AMG504-1) works in children and adolescents compared with
commercially-available glucagon given by injection. In addition, the safety
and tolerability of glucagon given as a puff into the nose will be evaluated.

Part-of-Speach:
B O m s W W A vwn S i T e O 0 B O MR Bl . . S ] AE .
Tl Deirpezai OF Chis Sudy B LD aGEEEE Do glur.agr:n adivdrdatarad a5 & pulf inbs tha I'Ilflﬁl: AMGE0E - 1 ] workE in children and adoksEtants oompaned WEh coemimarcially -

i T R

anvailahle glucagon gidan by InjEction .

[ UE B o B o B M W w06 e e [
In addition , Hhe safeby and tnlerability of glocagon given as a poff inte the nose will be svaluabed |

SNOMED Codes:
Firrrm N QR [ D3RO g prest s M TP P - it 2tmt g M TR 3001). Ertr e ] LELLTREET)
Thea il poas of this atudy i 0 Anceas Pow glucagoes adirinistared as a pufl o tha noks [
v IR sy of [ pOTTIRIG: G cagar prasart U] (07T 30800 T [ RO
AHCEDS - 1 ) works in dréldran and dolascants O with commancially - availais glucagon gwar by injesction
Bty o e crean T AIZERILD ‘Erivm e IFE QN TARSST]

In adsition | tine safety and tolerabliny of gucagon preen s 3 puff into the i L] Wil b eynlupted |
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Rational Knowledge

Representation
+ Cellulitis of the left foot with Osteomyelitis of the Third metatarsal without
Lymphangitis
[AND]
[WITH]
Cellulitis (disorder) [128045006]
[has Finding Site]
Entire foot (body structure) [302545001]
[has Laterality]
Left (qualifier value) [7771000]
Osteomyelitis (disorder) [60168000]
[has Finding Site]
Entire third metatarsal (body structure) [182134006]
[WITHOUT]

Lymphangitis (disorder) [1415005]
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The Evolution of Healthcare

Key Areas of Synergy

Evolution of evidence base for precision medicine

and implementation science

Recognition of underuse and overuse of interventions ®

Management of abundance of data

o s

Optimal integration of effective N
diagnosis, prevention, and treatment /S'Q,
Understanding of multilevel context 5 é"
Theories and strategies to drive - &"
health care improvement "_L-' n

o.

=

Key Areas of Synergy

Support for implementation
of effective practices
Contextually sensitive
improvement of practices

Improved health,
health care,
and health systems

\;\‘?\

Optimal use of genomics and
behavioral data to drive clinical and
patient decision making

Ongoing development of genomics
evidence base

Personalized and population impact

Key Areas of Synergy
Refresh cycle of evidence base

Determination of degree of
achievable personalization of care

N
LEARNING W5 e
CARE SY°

Use of ongoing data to drive health
system improvement

Focus on iterative and ongoing learning
All stakeholders participate
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CTSI Biomedical Informatics Core Facility Architecture
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Precision Oncolo Picture

MAVERIC Precision Oncology Program
High Level Conceptual Design with VistA Evolution
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. Learning Healthcare System Model
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Validations Hit rate (current) Reference

Indication Putative primary cause (total) [.-=invivo] Source/ Collaborator (or TBP)
Diabetes mellitus type 1 autoimmune, genetic 10 1/1 % Gaurav Chopra, UCSF TBP
Dental caries S. mutans 10 10/10 Jeremy Horst, UCSF [5, 22], TBP
Dengue fever Dengue virus 31 1/27 Scott Michael, FGCU TBP
Herpes HSV, CMV, KSHYV (all) 29 6/29 Michael Lagunoff, UW; ImQuest Biosciences, Inc. TBP
MDR Tuberculosis M. tuberculosis 17 4/8 Michael Strong, NJHC TBP
Systemic lupus erythematosus autoimmune =20 1/1 Keith Elkon, UW TBP
PB cirrhosis HBRV =20 12 /12 Andrew Mason, U. Alberta TBP
Hepatitis B Hepatitis B virus 31 3/31 ImQuest Biosciences, Inc. [14], TBP
Flu Influenza A virus 24 0/24 ImQuest Biosciences, Inc. [14], TBP
AIDS HIV1&2 =40 ongoing James Mullins, UW
Diabetes mellitus type 2 metabolic, genetic =80 ongoing Jay Heinecke, UW
Cholangiocarcinoma neoplastic disorder 40 angoing Natini Jinawath, Ramathibodi Hospital, Thailand
Ebola hemorrhagic fever Ebola virus =40 ongoing Michael Katze, UW
Flu Influenza viruses =40 ongoing various
Hepatitis C Hepatitis C virus =20 angoing Larne Tyrell, U. Alberta
MDR Tuberculosis M. tuberculosis 40 ongoing Prasit Palittapangarnpim, Mahidol U, Thailand
Soft tissue infections P. aeruginosa =40 ongoing Pradeep Singh, UW
Yellow fever Yellow fever virus =20 ongoing Scott Michael, FGCU
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HTP-NLP & CANDO / CANDOCK
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Computational to Validation Components

Empirical / data-driven Mechanistic/ first principles

Building from
data

Combinatorial
prafiling

Caontrol clreuits

Modeling Team Lung Organoid

Literature Based Discovery
Mining basic principles [NLP)
Causal regulatory dynamics

= Simulation/ optimal trial design

-

Data mgt/ integration
normalization

Feature identification/ Evaluation of Candidate Drugs

pattern matching 1. cell lines Phase | Clinical Trials
Network Generation 2. Organoids/Spheroids PHASE |

Statistical inference / 2. PDX tumors "y s
diagnostic classification ™ R
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Healthcare Value

*Value = Quality / Cost

*Quality is composed of:
* Qutcomes
« Safety

* Service
- Reliability
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Measuring Strategic Performance

“You can’t manage what

you can’t measure. You

can’t measure what you
can’t describe”

e
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{ " \ 1

Robert Kaplan and David Norton
Authors of “The Balanced Scorecard”
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Framework that aligns the entire organization to
what is important to the customer, allowing the
organization to excel at the critical activities and
reduce time spent on the things that don’t matter

People Process

Technology
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Study: Are patients with Rosacea at increased risk of having Obstructive
Sleep Apnea?

212,343 Patients

Chance of OSA

pinout 211,764 Without Rosacea
5443/211764
(2.6%)
5443 Patients with OSA
without Rosacea Relative Risk
Chance of OSA of OSA given
with Rosacea _ . Rosacea is
51/580 (88%) 580 Patients with 3.4X
Rosacea NNTest — 12

Chi-Square Test
P<0.0001
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Quality Accomplishments

* Improved Quality of Care
* Metrics and Measurement of Practice Outcomes
» Patient Centered Medical Home
» Quality Improvement Project Registry
* Improved outcomes in Payer Measures

* Improvement in Internal Referrals
» Went from 54% to 82% Internal Referrals

« DOM Strategic Plan Implementation
 Quality Tools
 Quality Structures
» Support of New Multispecialty Clinical and Research Centers
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From third to the last to the best in IHA Quality metrics
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internal Medicineg Provides Reaport Cards lor Target Patient Population
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Internal Medicine Provider Report Cards for Target Patient Populations

|  Patients with Persistent Asthma 115 |

Asthma Benchmarks W Provider O

Provider Practice
Cortesteroid Inhaler Prescribed | 47.8%]  a0.3%]

Cortesteriod inhaler Prescribed
| Patients with COPD 38 |
COPD Benchmarks m Provider 0
DENT
1

Provider Practice
spirometry TestDone 1yr|  0.0%]  0.4%]

985383
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Internal Medicine Provider Report Cards for Target Patient Populations

Provider O ee
UB[MD e#sse INTERNAL MEDICINI
o8 Rl
I'L Patlents with Diabetes 118 ] Al hemchmarks are withio o one
30 T . ) year periad. Patient counts are on
. . B Provider 0 iz provider level, wniess otherwise
Diabetic Benchmarks i i
100%
BO% - _Frovidar P
Hbate<r| 55,05
E0%: Mbalclyr  @6.4%
a0 DL <100 35.6%|
20% LDL1yr 6%
o% 2 - - - - - MAb <30 39.8%|
; | : i ; i A3, 78|
Whale«? MBale (DL<ED0 LU MAB <30 MAL  MAB ar Fye Exem MABdyr 43,25
e Ml or Neph| 55,15
Eye Exam| 33_5.-}-,5
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Internal Medicine Provider Report Cards for Target Patient Populations

Provider O .y
T - , . -
UB|MD #$8¢e INTERNAL MEDICINE
*
| Patients Efigible for CRC Sreening &37 |Patients Eligible for Mammo Sreening A84
| Patients Elgibbe for Cervical Screenling 639 |Patlents Elighble for Chlamydla Sreening 53
i L . | . 5
|Patients Eligible for Flu Shot 1186 |Patients Eligible for Pneuma Shot 351
Preventative Benchmarks 8 Prowider O Calovectal Screeming & calenoscapy in
DEMT the dasd 10 yrs or FOBT im the fost 2 prs
far patients betwesn 530 mog S0,
100 fammogron Scresmiag i reporting
0% E o0 wWirme T ages 42 toe 89 Dhlampoia
e SOFRRINAL H TRRarting on patienrs
[ | between 18 and 24. Cervical
a0 | Soreening ds Pap Serear i the fast §
l— prs. R shot & done with i the lask g
2009 - [L _L avid Preeume 5 @ Poewmacaceal
0% ¥ i ..j' = r vocoinotion lfetime
RO Cervical  FHuShotlyr  Poeumo
SFmining 5HI-'1|I'|! RI'HH Sereening

Pravider Fhlirll_:n_
CRC Screening| 53 S‘Ha AT

Mamma Sereaning  57.0%  GLIW
Chismydia Screening  28.8%  24.0%)
Cervicad Cancer Screening ) 9.0

Flushot yr|  34.5%)  26.3%|
Preume|  00.%  B6.1%
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Internal Medicine Provider Report Cards for Target Patient Populations

Patients with Persistent Asthma 159 |

Asthma Benchmarks & Provider O

Provider Practice
Cortesteroid Inhaler Prescribed a47.2% 39.2%

Cortesteriod Inhaler Prescribed

| Patients with COPD 13

COPD Benchmarks ® Provider O

Provider Practice
Spirometry Test Done 1 yr 0.0% 1.8%
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Assessment of Intranasal Glucagon in Children and Adolescents
With Type 1 Diabetes

The purpose of this study is to assess how glucagon administered as a puff
into the nose (AMG504-1) works in children and adolescents compared with
commercially-available glucagon given by injection. In addition, the safety
and tolerability of glucagon given as a puff into the nose will be evaluated.

Part-of-Speech:

B0 M WED BN WeZTo ¥ Wi N0 Ve WEDEN WE) M0 BN J@) V2 N WE © e 00 wn W m g
1 The purpose of this study is to assess how glucagon administered as a puff into the nose ( AMGS504 - 1 ) works in children and adolescents compared wlth commercially -
B veN o EW 0

available grucaéon given by injection .

hu__[@_L!_-_ [c [ra) m| [EN]  (vew| IpT] BN] (1N [T (RN Mol [VB!  (VEN] [iD

2 In addition , the safety and tolerat:illty of glucagon gwen as a puffinto the nose will be evaluated .

SNOMED Codes:

1 The purpose of this study is to assess how glucagoen administered as a puff into the nose {
AMGS04 - 1 } works in children and adolescents compared with commercially - available glucagon given by injection

2 In addition , the safety and tolerability of glucagon given as a puff into the nose will be evaluated . ,
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Prescription Opioid Dependence in Western New York:
Using Data Analytics to find an answer to the

Opioid Epidemic
Shyamashree Sinha, Gale R Burstein, Kenneth E Leonard, Timothy F Murphy,
Peter L Elkin

Department of Biomedical Informatics/ Department of Anesthesiology

Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State
University of New York, Buffalo, New York

Advancing research discoveries to improve health for all MJ
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Distribution of Opioid Dependence among the Non-Hispanic
community in the clinic population of Western New York
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Distribution of Opioid Dependence based on geographical
location

—+—Opioid Dependence
644

PATIENTS WITH OPIOID DEPENDENCE

133 140 141 142 143 144 145 146 147 148 145

ZIP CODES(FIRST THREE DIGITS)

The distribution of the patients based on the first three numbers of the zip code
showed area 142 had the highest number of opioid dependent population
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70 68

50

Number of Patients
5

30

20
12
9
10 7
3 3
1 1 2 1
ﬂ T T T T
Family Family Family Internal Murse Physician  Psychiatry & Pulmonology  Resident Sports
Medicine Medicine Medicine Medicine Practitioner Assistant Meurology Medicine
Addiction Resident Family
Medicine

Specialty of Prescribing Practitioner
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Map showing boundaries of area with zip code 142:
https://'www.maptechnica.com/zip3-prefix-map/142

npjrTe
Muivuinl
il e



| University at Buffalo
Y | Clinical and Translational Science Institute

Al AND NATURAL LANGUAGE
PROCESSING (NLP) TO
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Goal of the study

* The goal of this study is to compare clinician-rated
stroke and bleed risk assessments in Nonvalvular Atrial
Fibrillation (NVAF) patients with assessments utilizing
NLP derived codified EHR data for CHA,DS,-VASc and
HAS-BLED scores.
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Research Questions

 Research Question: 1

» What is the accuracy of using structured data (ICD and CPT and Medication codes)
alone vs. unstructured (ie, Clinical notes and reports, labs and Medications) plus
structured data to identify patients who have Atrial Fibrillation?

» Objectives:

« Compare structured data to structured and unstructured data using NLP to identify NVAF
Patients - validated by clinician assessment
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Research Question 4

Does the method (using structured data only vs. structured plus unstructured data) of

determining risk scores affect the treatment of NVAF patients for stroke prevention
with OAC?

Objectives:

1.Using structured and unstructured data assessments of CHA,DS,-VASc,
HAS-BLED scores and contraindications for OAC, classify the patient cohorts as
follows and compare the treatment rates with OAC.

1. Would benefit and are on OAC;

2. Would benefit but are not on OAC;

3. Would not benefit and are on OAC;

4. Would not benefit and are not on OAC
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Semi-Supervised Machine Learning

« Small Amount of Labeled Data and Large Amounts of Unlabeled Data
» Cheaper and Faster than a Fully Supervised Approach
» More accurate than an unsupervised approach

e Can be used to create models from a mixed dataset. These models can be used for
Biosurveillance.

« Example:

* Intuitively, we can think of the learning problem as an exam and labeled data as the
few example problems that the teacher solved in class. The educator also provides a
set of unsolved problems. In transductive reasoning, these unsolved problems are a
take-home exam questions and you want to do well on them in particular. In inductive
reasoning, these are practice problems of the sort you will encounter on the in-class
exam.

* NSQIP - Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS,
Rosen AK, Elkin PL, Brown SH, Speroff T. Automated identification of postoperative

complications within an electronic medical record using natural language processing.
JAMA. 2011 Aug 24;306(8):848-55.

* NVAF Study — in press, Circulation, 2017.



http://www.ncbi.nlm.nih.gov/pubmed/21862746
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Table 1. Comparison of outcomes for Structured and Structured
ReSU—1t plus Unstructured data against the gold standard.
[T Structured Structured+NLP P
Sensitivity 773 (.68, .79) 1(.979,1) <0.001
Specificity 47 (.258, .65) 444 (.279, .619) 0.317
PPV .91 (.87, .95) .93 (.893, .956) 0.007
NPV 215(.131, .322) 1(.713, 1) <0.001
kappa 156 (.041, .271) 585 (.414, .733) <0.001

» Out of the 96,681 patients identified in the AllScripts EHR database,
2.8% (2722 cases) were identified with NVAF by the Structured+NLP
method as opposed to 1.9% for Structured alone (1849 cases) with a
difference of 873 cases

» Out of the 96,681 patients identified in the AllScripts EHR database,
2.8% (2722 cases) were identified with NVAF by the Structured+NLP
method as opposed to 1.9% for Structured alone (1849 cases) with a
difference of 873 cases

» Based on the PPV adjusting the true positive rates for both ICD9 and
NLP alone this converts to a 36.3 % improvement identification of true
cases in this NVAF cohort.
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Histograms of CHA,DS,-VASC Scores and HAS-BLED scores
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Sensitivity and Specificity of Outcomes Compared to Gold

Standard
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CHA,DS,-VASC
Method: Exact Binomial
Sensitivity
Structured 0.942
Structured+NLP 0.983
Difference 0.0413
Test Statistic -
p-value 0.00195
Method: Exact Binomial
Specificity
Structured 0.955
Structured+NLP 0.909
Difference -0.0455
Test Statistic -
p-value 1

Method: Generalized Score
Positive Predictive Value

Structured 0.996
Structured+NLP 0.992
Difference 0.004
Test Statistic 0.915
p-value 0.339
Negative Predictive Value
Structured 0.6
Structured+NLP 0.833
Difference 0.233
Test Statistic 11.662
p-value <0.001
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Area under the Curves (AUC)
C-Index and Somer’s D using
Ordinal Logistic Regression

(where probabilities are modelled ROCqurva for. uteame 3cores

as P(Y>=K|X)) 9 |
(R rms and Hmisc packages) )
C-index Structured CHA,DS ,- g ]
VASC: 0.863 (CI:0.838, 0.887) .
(Somer’s D (D,,): 0.726, £ o
SD=0.025)

0 3
C-index Structured+NLP —e— Structured CHADSVASC
CHA,DS,-VASC: 0.914 (CI: g ~e— Structured+NLP CHADSVASC
0.896, 0.933) (Somer’s D (D,): T SietradiiLP AASBLED
0.829, SD=0.0185) o] !
Z=0.625/.0316=19.776 | | ’ ' ' '

00 02 04 06 08 10

CHA,DS ,-VASC: Compared to 1-Specifcty

Standard normal distribution®: 2-
Sided p-value: <0.001
1-Sided p-value: <0.001
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Predictive Risk Model Generation of Requiring Rx with OAC and not being currently on treatment

Would
Benefit and
On OAC

Would
Benefit and
Not on OAC

Would Not
Benefit and
Are on OAC

Would Not
Benefit and
Are Not on

Gold Standard with
Contraindication

Gold Standard with No
Contraindication

Structured with
Contraindication

Structured with No
Contraindication

Structured+NLP with
Contraindication

Structured+NLP with No
Contraindication

CHA,DS,-VASc >2 AND HAS-BLED
<3 and Contraindication
CHA,DS,-VASc > 2AND HAS-BLED
= 3 and Contraindication
CHA,DS,-VASc <2 and
Contraindication

CHA,DS,-VASc >2 AND HAS-BLED
<3 and No Contraindication
CHA,DS,-VASc >2 AND HAS-BLED
= 3 and No Contraindication
CHA,DS,-VASc <2 and No
Contraindication

CHA,DS,-VASc >2 AND HAS-BLED
<3 and Contraindication
CHA,DS,-VASc >2 AND HAS-BLED
= 3 and Contraindication
CHA,DS,-VASc <2 and
Contraindication

CHA,DS,-VASc >2 AND HAS-BLED
<3 and No Contraindication
CHA,DS,-VASc >2 AND HAS-BLED
2 3 and No Contraindication
CHA,DS,-VASc <2 and No
Contraindication

CHA,DS,-VASc >2 AND HAS-BLED
<3 and Contraindication
CHA,DS,-VASc > AND HAS-BLED 2
3 and Contraindication
CHA,DS,-VASc <2 and
Contraindication

CHA,DS,-VASc >2 AND HAS-BLED
<3 and No Contraindication
CHA,DS,-VASc >2 AND HAS-BLED
2 3 and No Contraindication
CHA,DS,-VASc <2 and No
Contraindication
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Al Biosurveillance:
Population of NVAF in the USA

Population for Rates Truven Optum Total Event Rates in %
1. All the patients enrolled during Oct 2015 - Sep 2016 32,046,193 31,249,927 63,296,120
2. (1) and age>=18 in 2016 25,400,465
3. (2) and with any diagnosis of AF during Oct 2015 - Sep 2016 (first = index date) 422,092 865,072  1,287,164.00
4. (3) and without VHD diagnosis during 1-year pre-index 355,811 611,990 967,801.00 1.52%
5. (4) and CHADS-VASc >= 2 and no contraindications to OAC 276,465 539,775 816,240.00 84.34%
6. (5) and Untreated 179,441 316,308 495,749.00 60.74%
Stroke Rate 11,530 10491 22,021.00 4.44%
Death Rate 727 593 1,320.00 5.99%
Costs the

Costthe  Year Prior

Year After to the PMPM PMPM Inflation adjusted Annual PM Inflation adjusted

Stroke Stroke Difference Difference Difference

$11,130.30 $2,665.40 $ 8,464.90 $ 8,253.42 $99,041.00
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Artificial Intelligence Based Disease Surveillance: The Case of NVAF

Extrapolated Results Structured Structured Plus Unstructured Difference Between the Two Methods

NVAF Population 4,955,284 6,754,052

NVAF Population with no
contraindications and CHA2DS2-VASc

>=2 4,543,995 6,193,466
NVAF Population needing Treatment 3,009,840 4,102,411
Strokes Prevented 133,637 182,147
Deaths Prevented 8,005 10,911
Cost Savings* $13,235,529,625.06 S 18,040,026,878.96 S

* Cost Basis is $99,041 / Untreated Ischemic Stroke's 1st year after event Cost (1.9% Inflation Adjusted)

1,798,768

1,649,470

1,092,572

48,510

2,906
4,804,497,253.90
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Strokes Prevented: Biosurveillance of NVAF patient cohorts CHA:DS:-VASe
and HAS-BLED Scores using Natural Language Processing and SNOMED
T

FPerer L. Elkin, MD, MACP, FACML FEY AM', Sarab Mullio, M5!, Chris Crowner. M5!, Sylvester
Salcilay, MSL Shyvamashres Sioba, MD MBA, MPH!, Gary Brady, PharmD, MEA®, Marvecia Wrighe,
PlharmD*, Kim Nolen, BS, PharmD? , JoAnn Traiver, PharmD?, Sashank Kaushik, MD, MBA',
Jane Fhao, MDY, Buer Soug, MDD, PED'. Edwin Anaad, MDD
Wniversity ar Buffalo, Buffalo, NY: “Plizer. New York, NY
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Conclusmns

» Natural Language Processing is not only highly accurate, but also is
now providing transaction speeds that make it practical for clinical
applications.

 HTP-NLP is available for academic partnerships
* NLP is necessary to practically implement Semantic Interoperability

» Cross Validation of Data from a Variety of Datatypes is necessary to
ensure accuracy

» Standardized Phenotypes can be shared and reused to ensure
consistent population identification and data interoperability
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Conclusions

« Clinical Decision Support assists clinicians in caring for their patients

« Biomedical Informatics partnering with Clinicians toward safer and more effective
clinical care

» Biomedical Informatics as a Field deals with more than just computer in medicine

* Clinical Informatics is a new ABMS approved medical subspecialty that trains
clinicians as future leaders of healthcare and healthcare organizations.
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s nothing more difficult to take in hand,
more perilous to conduct, or more uncertain in its
lumn than to take the lead in the introduction of
a new order of things. Because the innovator has
for enemies all those who have done well under the
old conditions, and lukewarm defenders in those
who may do well under the new. “

i
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	HISTORY OF PRESENT ILLNESS:
	HISTORY OF PRESENT ILLNESS:
	HISTORY OF PRESENT ILLNESS:

	#1 Chest pain 
	#1 Chest pain 

	Patient is a 57
	Patient is a 57
	-
	year old gentleman with a 80
	-
	pack
	-
	year smoking history.  He has a family history of early coronary disease on hi
	s father’s side, as his father had a heart 
	attack at age 43.  Patient does not exercise very much.  He drinks 2 ounces of alcohol a day.  He has type ii diabetes mellit
	us,
	hypertension, nor does he know his 
	cholesterol level.  Patient was in his usual state of health until 2 months ago when he began having exertional dyspnea and c
	hes
	t pain at peak exercise.  Patient could 
	walk 4 blocks and up 2 flights of stairs before he would have crushing substernal chest pain, which radiated to his left arm.
	O
	n a scale of 0 to 10, it was as bad as 8 out of 
	10.  Patient had some diaphoresis and dyspnea associated with the chest pain.  He would sit down and this would be relieved a
	fte
	r about 15 minutes.  Patient has taken it 
	upon himself to limit his activities based on this symptomatology.  Patient has an interest in quitting smoking.  He denies p
	alp
	itations, syncope, pre
	-
	syncope, PND, or 
	orthopnea.  Patient has had no peripheral edema or shortness of breath at rest.  He has had no episodes where the pain lasted
	gr
	eater than one
	-
	half hour.  

	#2 Right knee pain 
	#2 Right knee pain 

	Patient has had an 8
	Patient has had an 8
	-
	year history of right knee pain.  Patient works as a construction worker and had a fork lift injury 8 years
	ago.  Since that time, he has had more 
	difficulty getting around on his right knee.  It pops occasionally, but it never locks.  It has not given out on him, but he 
	has
	constant pain for which he takes ibuprofen on a 
	regular basis.  Patient used to be an avid golfer, but he has not been able to participate since the injury.  This has also e
	ffe
	cted his work, as he has had difficulty climbing 
	which is sometimes required in his profession.  

	#3 Nicotine dependence 
	#3 Nicotine dependence 

	Patient smokes a pack a day and has a 80
	Patient smokes a pack a day and has a 80
	-
	pack
	-
	year smoking history.  He was smoking less than this until last year.  Patient sta
	tes his stress at work is the factor that 
	has caused an increase in smoking, and he will be willing to see the Nicotine Dependence Center.  In the past, he has tried t
	o q
	uit on his own without help of nicotine 
	patches or any other nicotine replacement or Wellbutrin.  

	#4 Obesity 
	#4 Obesity 

	Patient is somewhat overweight and has had difficulty losing weight despite being a smoker.  Patient has tried dieting and ex
	Patient is somewhat overweight and has had difficulty losing weight despite being a smoker.  Patient has tried dieting and ex
	erc
	ising programs, but since his inability to 
	exercise with the right knee injury, he has had more difficulty with exercise and has not been able to lose weight.  Patient 
	sta
	tes he watches his diet quite closely and has 
	been limiting his caloric intake.  To that end, he has actually lost 8 pounds over the last 6 months.  

	#5 Diabetes Mellitus Type ii
	#5 Diabetes Mellitus Type ii

	Patient denies polyuria and polydipsia however he is well controlled with 
	Patient denies polyuria and polydipsia however he is well controlled with 
	Levemir
	Insulin 28 U SQ bid and Metformin 1000 mg bid.  He has peripheral diabetic neuropathy, 
	nephropathy and retinopathy.
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	Physical Examination (Relevant Sections)


	•
	•
	•
	•
	•
	Extremities 
	–
	Without clubbing, cyanosis, or edema.  + Neuropathy with 3+/5+ loss of 
	sensation in both feet to the ankle.


	•
	•
	•
	Neuro 
	–
	Cranial nerves 2 through 12 were intact.  Visual fields were within normal limits.  
	Pupils were equal and reactive to light and 
	accomodation
	.  Sensation was intact and 
	bilaterally symmetric in his arms but a loss of sensation was found in his feet using a 
	microfilliment
	examination.  Motor was 5+/5+ bilaterally symmetric.  Deep tendon reflexes 
	were 2+/2+ and were symmetric bilaterally.  Romberg was normal.  Cerebellar signs 
	were absent.  Babinski was down going bilaterally. 
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	Assessment of Intranasal Glucagon in Children and Adolescents 
	With  Type 1 Diabetes
	The purpose of this study is to assess how glucagon administered as a puff 
	into the nose (AMG504
	-
	1) works in children and adolescents compared with 
	commercially
	-
	available glucagon given by injection. In addition, the safety 
	and tolerability of glucagon given as a puff into the nose will be evaluated.
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	Improved Quality of Care
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	•
	Metrics and Measurement of Practice Outcomes
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	Patient Centered Medical Home
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	Quality Improvement Project Registry
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	Improved outcomes in Payer Measures
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	Improvement in Internal Referrals
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	Went from 54% to 82% Internal Referrals
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	DOM Strategic Plan Implementation
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	Quality Tools
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	Quality Structures
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	Support of New Multispecialty Clinical and Research Centers
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	Assessment of Intranasal Glucagon in Children and Adolescents 
	With 
	Type 
	1 
	Diabetes
	The 
	purpose of this study is to assess how glucagon administered as a puff 
	into the nose (AMG504
	-
	1) works in children and adolescents compared with 
	commercially
	-
	available glucagon given by injection. In addition, the safety 
	and tolerability of glucagon given as a puff into the nose will be evaluated.
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	The  distribution of the patients based on the first three numbers of the zip code 
	showed area 142 had the highest number of opioid dependent population
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	•
	•
	•
	•
	•
	The goal of this study is to compare clinician
	-
	rated 
	stroke and bleed risk assessments in 
	Nonvalvular
	Atrial 
	Fibrillation (NVAF) patients with assessments utilizing 
	NLP derived codified EHR data for CHA
	2
	DS
	2
	-
	VASc and 
	HAS
	-
	BLED scores. 
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	•
	Research Question: 1


	•
	•
	•
	What is the accuracy of using structured data (ICD and CPT and Medication codes) 
	alone vs. unstructured (
	ie
	, Clinical notes and reports, labs and Medications) plus 
	structured data to identify patients who have Atrial Fibrillation?


	•
	•
	•
	Objectives:


	•
	•
	•
	Compare structured data to structured and unstructured data using NLP to identify NVAF 
	Patients 
	-
	validated by clinician assessment
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	Does the method (using structured data only vs. structured plus unstructured data) of 
	Does the method (using structured data only vs. structured plus unstructured data) of 
	determining risk scores affect the treatment of NVAF patients for stroke prevention 
	with OAC?

	Objectives:
	Objectives:

	1.
	1.
	1.
	1.
	Using structured and unstructured data assessments of CHA
	2
	DS
	2
	-
	VASc, 
	HAS
	-
	BLED scores and contraindications for OAC, classify the patient cohorts as 
	follows and compare the treatment rates with OAC.


	1.
	1.
	1.
	1.
	Would benefit and are on OAC; 


	2.
	2.
	2.
	Would benefit but are not on OAC; 


	3.
	3.
	3.
	Would not benefit and are on OAC;
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	4.
	4.
	Would not benefit and are not on OAC
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	•
	•
	•
	•
	•
	Small Amount of Labeled Data and Large Amounts of Unlabeled Data


	•
	•
	•
	Cheaper and Faster than a Fully Supervised Approach


	•
	•
	•
	More accurate than an unsupervised approach


	•
	•
	•
	Can be used to create models from a mixed dataset.  These models can be used for 
	Biosurveillance.


	•
	•
	•
	Example:


	•
	•
	•
	•
	Intuitively, we can think of the learning problem as an exam and labeled data as the 
	few example problems that the teacher solved in class. The educator also provides a 
	set of unsolved problems. In 
	transductive
	reasoning, these unsolved problems are a 
	take
	-
	home exam questions and you want to do well on them in particular. In inductive 
	reasoning, these are practice problems of the sort you will encounter on the in
	-
	class 
	exam.
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	NSQIP 
	-
	Murff
	HJ, 
	FitzHenry
	F, Matheny ME, Gentry N, Kotter KL, 
	Crimin
	K, 
	Dittus
	RS, 
	Rosen AK, Elkin PL, Brown SH, 
	Speroff
	T.  
	Link
	Span
	Automated identification of postoperative 
	complications within an electronic medical record using natural language processing.
	Span

	JAMA. 2011 Aug 24;306(8):848
	-
	55
	.


	•
	•
	•
	NVAF Study 
	–
	in press, Circulation, 2017.
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	Outcome
	Outcome
	Outcome
	Outcome
	Outcome



	Structured
	Structured
	Structured
	Structured



	Structured+NLP
	Structured+NLP
	Structured+NLP
	Structured+NLP



	P
	P
	P
	P




	Sensitivity 
	Sensitivity 
	Sensitivity 
	Sensitivity 
	Sensitivity 

	Specificity
	Specificity

	PPV
	PPV

	NPV
	NPV

	kappa
	kappa



	.773 
	.773 
	.773 
	.773 
	(.68, .79)

	.47 
	.47 
	(.258, 
	.65)

	.91 (.87, .95)
	.91 (.87, .95)

	.215(.131, .322)
	.215(.131, .322)

	.156 (.041, .271)
	.156 (.041, .271)



	1 (.979,1)
	1 (.979,1)
	1 (.979,1)
	1 (.979,1)

	.444 (.279, .619)
	.444 (.279, .619)

	.93 (.893, .956)
	.93 (.893, .956)

	1 (.713, 1)
	1 (.713, 1)

	.585 (.414, .733)
	.585 (.414, .733)



	<0.001
	<0.001
	<0.001
	<0.001

	0.317
	0.317

	0.007
	0.007

	<0.001
	<0.001

	<0.001
	<0.001






	•
	•
	•
	•
	•
	Out of the 96,681 patients identified in the 
	AllScripts
	EHR database, 
	2.8% (2722 cases) were identified with NVAF by the 
	Structured+NLP
	method as opposed to 1.9% for Structured alone (1849 cases) with a 
	difference of 873 cases


	•
	•
	•
	Out of the 96,681 patients identified in the 
	AllScripts
	EHR database, 
	2.8% (2722 cases) were identified with NVAF by the 
	Structured+NLP
	method as opposed to 1.9% for Structured alone (1849 cases) with a 
	difference of 873 cases


	•
	•
	•
	Based on the PPV adjusting the true positive rates for both ICD9 and 
	NLP alone this converts to a 36.3 % improvement identification of true 
	cases in this NVAF cohort.
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	•
	•
	•
	•
	•
	Natural Language Processing is not only highly accurate, but also is 
	now providing transaction speeds that make it practical for clinical 
	applications.
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	•
	•
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	-
	NLP is available for academic partnerships
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	NLP is necessary to practically implement Semantic Interoperability


	•
	•
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	Cross Validation of Data from a Variety of Datatypes is necessary to 
	ensure accuracy


	•
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	Standardized Phenotypes can be shared and reused to ensure 
	consistent population identification and data interoperability
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	•
	•
	•
	•
	•
	Clinical Decision Support assists clinicians in caring for their patients


	•
	•
	•
	Biomedical Informatics partnering with Clinicians toward safer and more effective 
	clinical care


	•
	•
	•
	Biomedical Informatics as a Field deals with more than just computer in medicine


	•
	•
	•
	Clinical Informatics is a new ABMS approved medical subspecialty that trains 
	clinicians as future leaders of healthcare and healthcare organizations.
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