Bayesian stratified sampling for establishment surveys with uncertain design parameters

Jonathan Mendelson^{1,2} and Michael Elliott³ FCSM, October 25, 2022

¹ Bureau of Labor Statistics
 ² University of Maryland
 ³ University of Michigan

Content does not represent BLS policy

Bottom line up front

- Imprecisely estimated survey design parameters could harm sample efficiency
- There is a Bayesian approach to sample design, which accounts for this
- We identify the Bayesian optimal design in a particular establishment survey context
 - Outperforms Neyman-HT in simulation
 - Performs similarly or better than the main model-assisted approach considered

I. Introduction

Introduction

- Sample designs often assume population characteristics are known.
- In practice, some are typically estimated.
- *Example*. Optimal STSRS for estimating finite population mean via separate ratio model
 - Theory: $n_h \propto N_h S_{dh} / \sqrt{c_h}$ (Cochran, 1977)
 - S_{dh} is the stratum SD of a residual term

- Practice: $n_h \propto N_h \hat{S}_{dh} / \sqrt{\hat{c}_h}$

• Typically, little attention is given to the effect of imperfect information on sample design.

Selected Bayesian design literature

- Bayesian optimal experimental design (Lindley, 1972) can be applied to STSRS sample allocation
 - Flexible approach; accommodates uncertainty
- Draper & Guttman (1968) consider continuous data
 - Assumes use of pilot study data
 - Special case leads approximately to Neyman allocation
 - However, D&G assume fixed strata means and variances
- Rao & Ghangurde (1972) consider categorical data
 - Assumes Dirichlet-multinomial model
 - Applicability for continuous, skewed distributions?

Heteroscedasticity and design

- Consider $\{X_i, Y_i; i = 1, ..., N\}$, where
 - $-Y_i = \beta X_i + \varepsilon_i$
 - $-\mathbf{E}_M(\varepsilon_i)=0$
 - $-\operatorname{Var}_{M}(\varepsilon_{i}) = \sigma^{2}X_{i}^{b}$; known b, { $X_{i} > 0$ }
 - Independent ε_i 's
- "b" (coefficient of heteroscedasticity) can meaningfully affect optimal allocation

– PPS/GREG strategy: $\pi_i \propto X_i^{b/2}$ (e.g., SSW, 1992)

Heteroscedasticity, visualized

Data source: National Hospital Discharge Survey of 1968 (via PracTools)

• See Henry & Valliant (2009) for more real examples

Bayesian decision theory for optimal experimental design

• Lindley (1972) treats as a two-part decision:

- Choose the experiment, $e \in E$ (e.g., $e = \{n_h\}$)

- This results in the sample (data), $x \in X$
- Translate the data into a terminal decision
 - For example, compute estimate $\hat{\theta}$ for parameter $\theta \in \Theta$ (e.g., finite population mean)
- Define a loss function of the form $L(\hat{\theta}, \theta, e, x)$
- Lindley suggests finding optimal $\hat{\theta}$, e via $\lim_{e} \int_{X} \left(\min_{\hat{\theta}} \int_{\Theta} L(\hat{\theta}, \theta, e, x) p(\theta | x, e) p(x | e) d\theta \right) dx$

Our research

- We consider optimal STSRS design while accounting for heteroscedastic errors and uncertain design parameters
 - We aim for weaker assumptions than some previous Bayesian work
 - We accommodate uncertain design parameters
 via Bayesian decision theoretic formulation

II. Problem set-up andBayesian analysis

Problem set-up

• Study design:

- Pilot is only used for designing main study
- Strata defined upfront
- Model: $Y_{hi} = \alpha_h X_{hi} + \varepsilon_{hi}$, where $\varepsilon_{hi} \stackrel{ind}{\sim} N(0, \nu_h X_{hi}^b)$ - Known $X_{hi} > 0$; known b

• Prior (diffuse):
$$\pi\left(\left\{\alpha_h, \frac{1}{v_h}\right\}\right) \propto \prod_{h=1}^H v_h$$

Overview: our Bayesian decision theoretic analysis for the finite population mean

1. Objective:
$$L(\overline{Y}, \widehat{\overline{Y}}, e, D2) = (\widehat{\overline{Y}} - \overline{Y})^2$$

- Minimized when $\overline{\overline{Y}} = E(\overline{Y}|D2, e, b)$

2. Posterior loss is $Var(\overline{Y}|D2, e, b)$

- Apply Ericson (1969) to obtain

- 3. Preposterior analysis: average over future data (D2|D1)
 - Consider uncertainty with respect to:
 - Posterior for parameters given pilot, $\{\alpha_h, v_h\}|D1$
 - Sample indicators, {*s*_{2*h*}}
 - Model uncertainty given above, $D2|(\alpha_h, \nu_h, D1, s_{2h})$
 - Results provided in paper

4. Optimize via mathematical programming

III. Simulation

Simulation design: compare strategies across a series of artificial populations

- "Strategy" denotes allocation + estimator
- We generated P = 90 bivariate populations, and applied each strategy R = 1000 times
- For population *p*, simulation *r*:
 - Draw an equally allocated pilot sample of m = 75 units
 - For strategy a:
 - Allocate and draw a main study sample of n = 500 units
 - Obtain point estimate and 95% Cl
- Compare strategies' RMSE, bias, and CI coverage/width

- For instance:
$$rmse(\hat{Y}_{(p,a)}) = \sqrt{\frac{1}{R}\sum_{r=1}^{R} \left(\hat{Y}_{(p,a)}^{(r)} - Y_{(p)}\right)^2}$$

We considered three size measures

Distributions of simulated stratified size measures, by MOS (Vertical lines denote strata boundaries)

We considered 30 structures for $Y_{hi}|X_{hi} \sim N(\alpha_h X_{hi}, \nu_h X_{hi}^b)$

- 5 levels of b considered: $b \in \{0, 0.5, 1, 1.5, 2\}$
- 6 choices of $\{\alpha_h, v_h\}$, where $\{v_h\}$ were chosen as to approximately yield target correlations

Scenario	α_1	α_2	α ₃	$lpha_4$	α_5	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_4$	$ ho_5$
1. Baseline	1	1	1	1	1	0.7	0.7	0.7	0.7	0.7
2. Lower correlations	1	1	1	1	1	0.5	0.5	0.5	0.5	0.5
3. Higher correlations	1	1	1	1	1	0.9	0.9	0.9	0.9	0.9
4. Increasing correlations, fixed slopes	1	1	1	1	1	0.5	0.6	0.7	0.8	0.9
5. Fixed correlations, decreasing slopes	1.4	1.2	1	0.8	0.6	0.7	0.7	0.7	0.7	0.7
6. Increasing correlations, decreasing slopes	1.4	1.2	1	0.8	0.6	0.5	0.6	0.7	0.8	0.9

We compared several strategies

- We focused on three main strategies:
 - Neyman plug-in/HT estimator (N-HT)
 - Cochran plug-in/separate ratio estimator (C-SR)
 - Bayesian allocation/prediction estimator (B-P)
- We also considered three rule-of-thumb allocations suggested or implied by Cochran for different levels of b (used SR estimator for each)

$$\begin{array}{l} -n_h \propto N_h \\ -n_h \propto N_h \sqrt{\bar{X}_h} \\ -n_h \propto N_h \overline{X}_h \end{array}$$

Simulation results: main strategies

- The three main strategies:
 - were approximately unbiased; and
 - had near-nominal coverage for 95% CIs.
- Therefore, we focused on analyzing RMSE
 - Findings on RMSE were paralleled by analogous findings for CI relative width

B-P consistently outperformed N-HT

- Use of N-HT led to RMSE 11%–175% higher than B-P for individual populations (MOS1 pops displayed below)
- Results varied greatly by assumptions for $f(Y_{hi}|X_{hi})$
 - Compare 2nd and 3rd data columns below

	Scenario for $\{\rho_h, \alpha_h\}$							
		2. Lower	3. Higher		5. Dec.	6. Inc. corrs,		
	1. Baseline	corrs	corrs	4. Inc. corrs	slopes	dec. slopes		
b = 0	65%	32%	175%	72%	69%	77%		
b = 0.5	44%	18%	138%	44%	51%	36%		
b = 1	46%	24%	127%	35%	40%	28%		
b = 1.5	52%	24%	139%	41%	51%	38%		
b = 2	64%	44%	159%	75%	68%	62%		

Relative increase in RMSE from N-HT versus B-P (among MOS1 pops)

B-P did about as well or better than C-SR, with marked differences across populations

- B-P showed the greatest advantage for a subset of MOS1 scenarios (top and bottom rows below)
- In contrast, differences were fairly muted for most MOS2 and MOS3 populations, which had less skewness

relative increase in rivise noin C-sr versus b-r (anong iviost pops)								
	Scenario for $\{\rho_h, \alpha_h\}$							
		2. Lower	3. Higher		5. Dec.	6. Inc. corrs,		
	1. Baseline	corrs	corrs	4. Inc. corrs	slopes	dec. slopes		
b = 0	19%	10%	18%	32%	29%	40%		
b = 0.5	7%	3%	0%	2%	12%	7%		
b = 1	6%	7%	3%	1%	4%	3%		
b = 1.5	11%	9%	5%	5%	6%	5%		
b = 2	23%	21%	23%	25%	24%	29%		

Relative increase in RMSE from C-SR versus B-P (among MOS1 pops)

B-P sometimes produced more stable allocations than the main alternatives

• Differences in allocations' stability were starkest for MOS1, b = 2 pops, for instance:

Allocation summary statistics by allocation and stratum								
Population 25 (MOS1, b=2, baseline ρ_h , α_h scenario)								
	Ney	man	Cocl	nran	Bayesian			
h	$\mathrm{E}(n_h)$	$sd(n_h)$	$\mathrm{E}(n_h)$	$sd(n_h)$	$\mathrm{E}(n_h)$	$sd(n_h)$		
1	149	48	135	50	112	19		
2	90	20	92	22	98	17		
3	76	16	80	19	85	15		
4	85	17	85	19	91	15		
5	101	22	107	24	114	19		

Performance was mixed for rule of thumb strategies

- C-SR and B-P strategies, which incorporate pilot data for allocation, consistently did as well or better than the RT-SR strategies
 - $-n_h \propto N_h \overline{X}_h$ performed quite badly in some situations (e.g., RMSE 82%–204% higher than B-P for b = 2, MOS1 populations)
 - In contrast, $n_h \propto N_h \sqrt{\overline{X}_h}$ had reasonable performance for a subset of the b = 1 scenarios (depending on the α_h and ρ_h)

IV. Application

We applied our methods to analyzing tax returns of public charities

- Source: IRS Form 990 data (National Center for Charitable Statistics [NCCS], Urban Institute)
 - Analyzed 140,858 domestic operating public charities meeting inclusion criteria
 - $X = \log revenue, 2008$
 - $Y = \log revenue, 2013$
- Unstratified MCMC analysis yielded $\hat{b} = 0.55$ and 95% CI of (0.25, 0.66)

NCCS application (continued)

- We formed 24 strata based on nonprofit sector (8 groups) by revenue class (3 groups)
- Methods paralleled earlier simulation
 - -R = 10,000 equally allocated pilots of 360 units used to design main studies of 1,800 units
 - Compared RMSE, relative bias, CI properties

C-SR and B-P again outperformed N-HT

- C-SR and B-P offered substantial reduction in RMSE than N-HT
- All three methods were approximately unbiased and had near-nominal CI coverage

Table. NCCS Simulation Results

Strategy	Relative RMSE	1000*RelBias	CI Coverage (%)	1000*CI RelWidth
N-HT	1.427	-0.00	94.7	6.48
C-SR	1.014	-0.01	94.8	4.57
B-P	1.000	-0.00	95.5	4.63

Note: RMSE is displayed relative to that of the B-P strategy.

V. Discussion

We provided a Bayesian approach to sample design for our problem

- We considered STSRS designs for establishments
 - Allow for heteroscedastic errors \rightarrow improved realism
 - Problem formulated via Bayesian decision theory
 - We derived the approximate expected posterior variance, which is then minimized
- We assessed performance via simulation to artificial and real data
 - The proposed B-P strategy provided substantial gains versus design-based approach
 - B-P strategy did as well or better than the main model-assisted approach considered

Potential future directions

- Consider other population structures, including those not following our model
- Compare to additional sampling strategies
- Extend to scenarios where "b" is unknown
- Consider other loss functions
- Identify other ways to express prior knowledge (e.g., in absence of pilot)

Comments? Questions?

Jonathan Mendelson PhD candidate, JPSM Research Statistician, BLS (OSMR/BSRC) mendelson.jonathan@bls.gov