NTPS Web Scraping

Center for Optimization and Data Science (CODS), US Census Bureau
Louis Avenilla
October 27, 2022, FCSM

Project Motivation

- The National Teacher and Principal Survey (NTPS) gathers information on the United States teaching staff through initial teacher listing forms and follow-up surveys
- Alternate sources of data could augment, validate, and update survey generated information
 - Vendor Supplied Data
 - Data scraped from the Web

Project Motivation

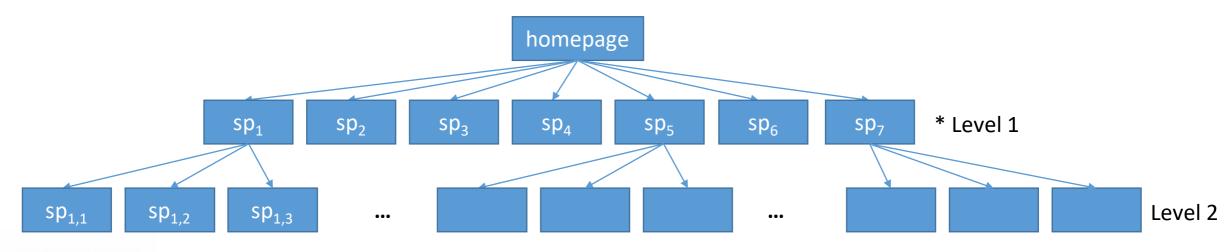
 Data acquisition from the Web may offer several advantages when combined or even compared with vendor supplied data

- 1. Control over timing
- 2. Transparency
- 3. Customizability
- 4. Enhanced coverage

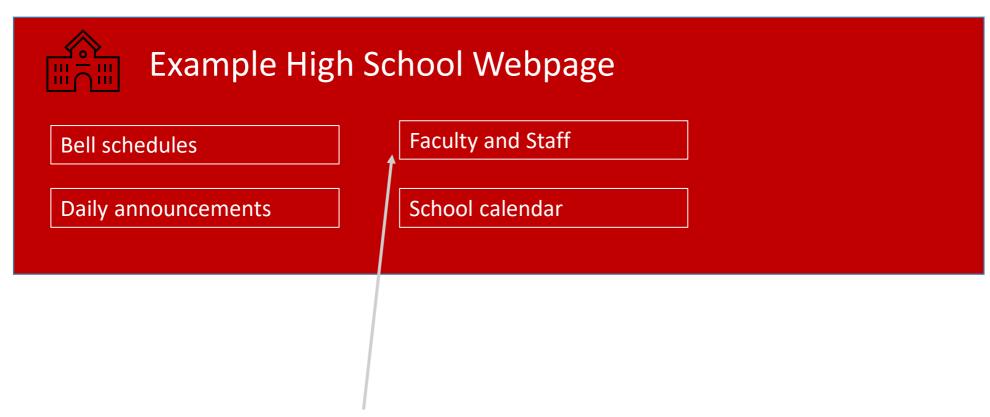
Method Overview

- 1. Query: find websites via addresses from Google Places API
- 2. Crawl (information retrieval): explore landing page links to identify staff roster pages
- **3. Extract** (information extraction): extract teacher names, positions, etc. from roster pages

Query


- Google Places API to acquire school websites.
 - Can ostensibly be done for any school in the country
- Some data quality concerns
 - District websites
 - Broken links
 - Incorrect websites
- Google Places API returned a URL for 90% of submitted public school addresses
- For public schools with a returned URL, we assess the URLs from Google Places API queries to be 92% relevant¹

¹Doesn't account for school district URLs



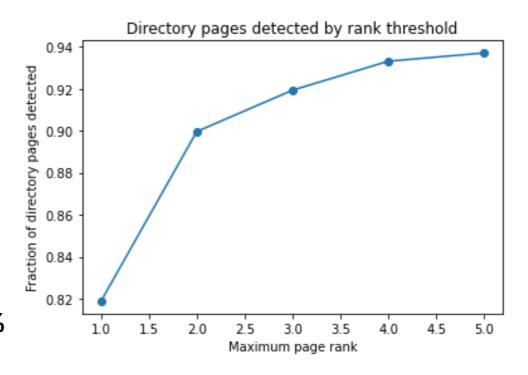
Crawl

- Google Places API queries provide the starting points for our initial Crawler
- The Crawler gathers level 1* of the hyperlink hierarchy for each school URL:

Crawl

- Identifying amongst the level 1 subpages the page that lists school faculty:
 - How do we know that a page lists school faculty before acquiring that page?

Crawl


- We curated a list of expressions for faculty directories
- Then, we measured the frequency with which these expressions were used
- Finally, we construct a function that uses both the known expressions and their frequencies to estimate the likelihood that a page contains faculty directories

Expression	Frequency	
Staff Directory	150	
Staff	60 20	
Faculty & Staff		
Faculty and Staff	<15	
Our Staff	<15	
Teachers	<15	
Faculty Directory	<15	
Faculty	<15	
Faculty & Staff Directory	<15	
Teachers & Staff	<15	
School Staff	<15	

Crawl – How well do we detect these pages?

- For any given school, we use our function to rank its level 1 pages/links.
- We set aside the top pages for further processing (parsing)
- We manually curated approximately 3,100 pages
 - Using the top ranked page, we capture 82% of directory pages
 - Using the top 3 ranked pages, we capture
 92% of directory pages

Extract - Directory Pages Sampler

First grade

Teacher name

Teacher name

Second grade

Teacher name

Teacher name

Teacher name

Third grade

Teacher name

Teacher name

School Staff

1 2 3 4 ... > showing 1-4 of 65 staff

Teacher name

Titles: Second grade teacher Emails: teacher@school.edu
Phone number: 000-000-0000

Teacher name

Titles: Second grade teacher Emails: teacher@school.edu
Phone number: 000-000-0000

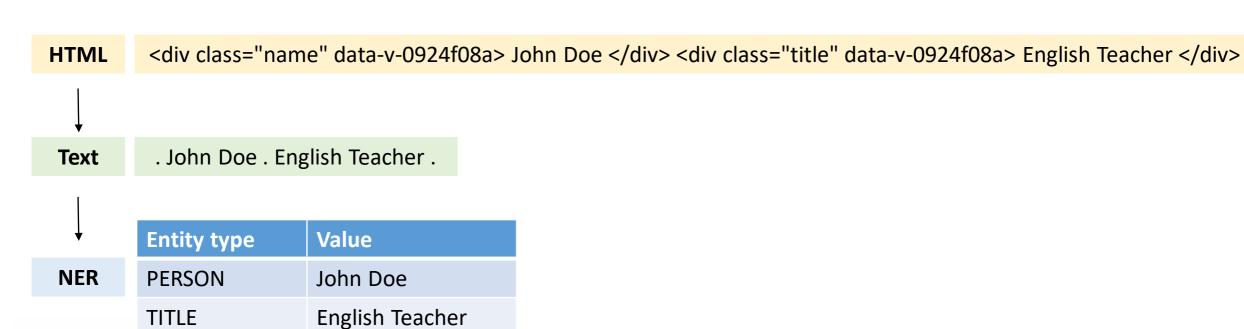
Teacher name

Titles: Second grade teacher **Emails:** teacher@school.edu **Phone number:** 000-000-0000

Teacher name

Titles: Second grade teacher Emails: teacher@school.edu Phone number: 000-000-0000

<u>Position</u>	<u>Title</u>
Teacher 1	Title A
Teacher 2	Title B
Teacher 3	Title C
Teacher 4	Title D
Teacher 5	Title E
Teacher 6	Title F
Teacher 7	Title G
Teacher 8	Title H
Teacher 9	Title I


Extract – Key Components

Component	Description
Parser	Extracts names, titles, and emails from webpages
Relation Extractor	Given lists of parsed names, titles, and emails, group values by person
District Detector	Determines if a page represents an individual school or a school district
District Crawler	Crawls and scrapes district information (e.g. links or teacher data) from a district page

Extract — Parser NER

 Named Entity Recognition (NER) on text peeled away from HTML elements to provide hints for people, email, and title locations

Extract — Parser Profile

• Use NER results to identify a repeating HTML profile around likely people, titles, and emails

Extract – Parser Progress

 We ran the pipeline on a sample of approximately 80 staff directory pages

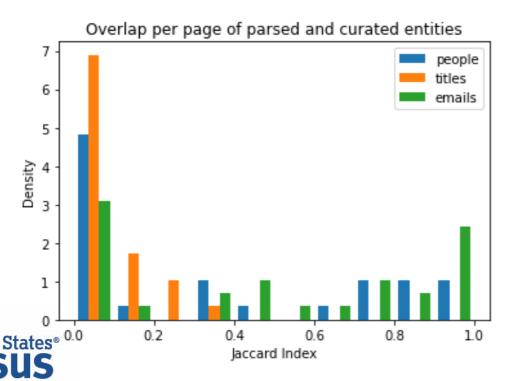

	Person	Title	Email
Total count	6,100	2,600	1,900
Percent of pages with at least one person, title, or email	90%	100%	60%
Average count per page	80	30	20

Table 2: metrics describing parser payload and coverage for a sample of staff directory pages

Extract – Parser Performance

 We manually curated approximately 30 pages and assessed the overlap of values per page between the parsed data and curated data

Overlap per page assessed with Jaccard Index:

intersection union

Extract – Relationship Extraction

 Traverse the HTML element hierarchy of a page to find the global minimum distance between names and titles or other elements on a page

Webpage view

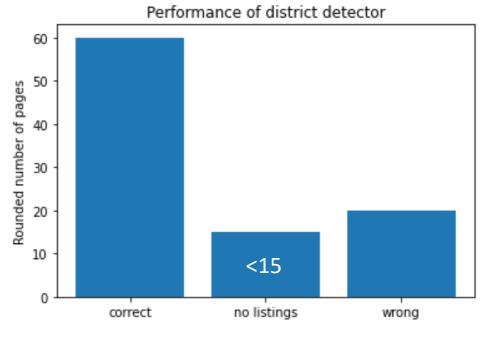
Last Name	First Name	Email Address	Job Title	Website
Last1	First1	last1@school.edu	Title A	website
Last2	First2	last2@school.edu	Title B	website

HTML hierarchy

Row 1

Row 2

Row 2


Last1 First1 Last@school.edu Title A website Last2 First2 Last2@school.edu Title B website

CENSUS

DRAFT, PRE-DECISIONAL 16

Extract — District Detector

- Determines if a page represents an individual school or a school district
- Uses distribution of school names on the page

Curated ~80 schools

Recap of current status and next steps

	Query	Crawl	Extract
Achieved	1. Acquired school URLs	 Link harvesting Directory link detection Dynamic scraping 	 Parsing Post-processing Relationship extraction District detector
In progress			 School links from district sites School to staff relationship

Acknowledgements

Core Team

- Sara Alaoui | <u>sara.alaoui@census.gov</u>
- Louis Avenilla | Louis.R.Avenilla@census.gov
- Ugo Etudo | <u>ugochukwu.o.etudo@census.gov</u>
- Haley Hunter-Zinck | <u>haley.s.hunter-zinck@census.gov</u>

Special Thanks

- Patrick Campanello | patrick.campanello@census.gov
- Yathish Kolli | yathish.b.kolli@census.gov
- Anup Mathur | <u>anup.mathur@census.gov</u>
- Kayla Varela | <u>kayla.m.varela@census.gov</u>
- Allison Zotti | Allison.Zotti@census.gov

Thank you! Questions?

