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How my own research has been affected/evolved …

• Data Quality (Multi-source Inference/Learning) 

• Data Privacy (Multi-phase Inference/Learning)

• Data Granularity  (Multi-resolution Inference/Learning) 





Building Representative Miniatures out of
Non-representative Big Data: An Interplay of

Data Quantity, Quality, and Privacy

Xiao-Li Meng, Harvard University

• Meng (2022). Miniaturizing Data Defect Correlation: A Versatile Strategy

for Handling Non-Probability Samples. Survey Methodology.

• Meng (2018) Statistical Paradises and Paradoxes in Big Data (I): From

The Law of Large Populations to The Big Data Paradox. Annals of

Applied Statistics, 12, 685–726.

• Bradley, Sejdinovic, Meng, Kuriwaki, Isakov, Flaxman (2021)

Unrepresentative Big Surveys Significantly Overestimated COVID-19

Vaccination in the US. Nature Dec; 600(7890):695-700.
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It has been a decade ...

• We know that a 5% random sample is better than a 5% non-random
sample in measurable ways (e.g., bias, predictive power).

• But is an 80% non-random sample “better” than a 5% random
sample in measurable terms? 90%? 95%? 99%? (Jeremy Wu of
US Census Bureau, 2012, Seminar at Harvard Statistics)

• “Which one should we trust more: a 1% survey with 60%
response rate or a non-probabilistic dataset covering 80% of
the population?” (Keiding and Louis, 2015, Joint Statistical
Meetings; and JRSSB, 2016)
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It has been a few centuries ..
• Law of Large Numbers:

Jakob Bernoulli (1713)

• Central Limit Theorem:
Abraham de Moivre (1733):
error ∝ 1√

n
: n − sample size

• Survey Sampling:
• Graunt (1662); Laplace (1882)
• The “intellectually violent

revolution” in 1895 by Anders Kiær,
Statistics Norway

• Landmark paper: Jerzy
Neyman (1934)

• The “revolution” lasted
about 50 years (Jelke
Bethlehem, 2009)

• First implementation in
US Census: 1940 led by
Morris Hansen
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Triumphs and Troubles of Probability Sampling

Triumphs: Ensuring learning is feasible and cost effective

• Census is not feasible in most studies

• Sampling makes a study feasible and even cost effective

• Sampling also reduces privacy cost since it is a random suppression

Troubles: Ensuring “repetitiveness” is increasingly challenging

• Non-response/coverage bias (not merely the rate) is on the rise

• Social media data are non-representative by design

• Administrative data are not probability samples

Thoughts: Handling data defects and privacy concomitantly
• Can we utilize the inherent data defects as data privacy protections?

• Can we engineer “representative miniatures” that trade data utility
and privacy more sensibly than adding noises to defective data?
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Statistical Thinking with R ...

Recording (Reporting/Responding) Indicator R for a finite
population X = {X1, . . . ,XN} :

Ri = 1, if Xi is included in a sample of size n, and Ri = 0 otherwise

Design Prob: Prob controlled and implemented by human

Ex: Prob sampling, Pr(Ri = 1|X) = n/N
More: Bootstraps, clinical trials, differential privacy, permutation test, MC.

Divine Prob: Existential Prob by God/Nature or by faith.

Ex: Real-World Evidence, but we assume R is random, and
Pr(Ri = 1|X) = π(Xi ). [Needed for define “missing at Random” ]

Device Prob: Probability constructs invoked for analysis.

Ex: logit[π(x)] = α + βx
More: Prob distributions for expressing belief, prior knowledge,
assumptions, idealizations, compromises, desperation.
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A Fundamental Identity for Estimation Error (Meng, 2018)

• Population {X1, ...,XN
}; Estimand µ̄

N
=

∑N
i=1 G(Xi )

N ;

• Estimator: sample average

µ̄n =

∑N
i=1 RiG (Xi )∑N

i=1 Ri

≡
∑N

i=1 RiG (Xi )

nR

where Ri = 1 if Xi is recorded, and zero otherwise.

• Neither X nor R is assumed random.

Expressing the exact error w.r.t I ∼ U[1, . . . ,N] (a divine probability):

µ̄n − µ̄N
=

EI [RIGI ]

EI [RI ]
− EI [GI ] =

CovI (RI ,GI )

EI [RI ]

= ρ̂
R,G
×
√

N − n

n
× σ

G
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Why teaching is so important ...
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A Multiplicative Error Decomposition

µ̄n − µ̄N︸ ︷︷ ︸
Exact Error

= ρ̂
R,G︸︷︷︸

Data Quality

×

√
N − n

n︸ ︷︷ ︸
Data Quantity

× σ
G︸︷︷︸

Problem Difficulty

• Nothing is assumed random, only using divine probability via I .

• Only assumption: sampled Xi are in the target population.

Compare to the additive “Variance+Bias” decomposition

µ̄n − µ̄N︸ ︷︷ ︸
Exact Error

= µ̄n − E
R

(µ̄n)︸ ︷︷ ︸
Sampling Error

+ E
R

(µ̄n)− µ̄
N︸ ︷︷ ︸

Bias

• Must involve prob on R, design, divine, or device.

• It’s “phenotype” decomposition, not “genotype.”
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Why and when can we ignore the population size N?

• Think about tasting soup

• Stir it well, then a few bits
are sufficient regardless of
the size of the container!

⇐⇒

• But what happens when we fail to stir (well)?
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Probability Sampling miniaturizes the ddc

For SRS, because V
R

(Z ) = 1, where

Z =
µ̄n − µ̄N√

1−f
n S

G

= ρ̂
R,G

√
N − 1 ⇒ V

R
(ρ̂

R,G
) =

1

N − 1

Hence ρ̂
R,G
∈
(
− 3√

N−1
, 3√

N−1

)
99% of the time regardless of G .

µ̄n − µ̄N
= ρ̂

R,G︸︷︷︸
1/
√
N

×
√

N − n

n︸ ︷︷ ︸
√
N

×σ
G

• This cancellation is THE reason that we can ignore N for any G .
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Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: ρ̂
R,G

µ̄n − µ̄N√
1−f
n S

G

= ρ̂
R,G

√
N − 1

ddi: DI = ER(ρ̂2
R,G

)

Deff ≡ MSE(µ̄n)

SRS MSE
= DI (N − 1)

ddi = Deff
N−1

= Design effect per subject in the population

• For SRS: DI = (N − 1)−1

• Probability sample =⇒ DI ∝ N−1

• MSE (µ̄n) ∝ n−1 ⇐⇒ DI ∝ N−1

Deep Trouble

• when DI does not vanish with N−1;

• or equivalently when ρ̂
G ,R

does not vanish with N−1/2 ...

Xiao-Li Meng, Harvard University Menu 12 12 / 26



Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: ρ̂
R,G

µ̄n − µ̄N√
1−f
n S

G

= ρ̂
R,G

√
N − 1

ddi: DI = ER(ρ̂2
R,G

)

Deff ≡ MSE(µ̄n)

SRS MSE
= DI (N − 1)

ddi = Deff
N−1

= Design effect per subject in the population

• For SRS: DI = (N − 1)−1

• Probability sample =⇒ DI ∝ N−1

• MSE (µ̄n) ∝ n−1 ⇐⇒ DI ∝ N−1

Deep Trouble

• when DI does not vanish with N−1;

• or equivalently when ρ̂
G ,R

does not vanish with N−1/2 ...

Xiao-Li Meng, Harvard University Menu 12 12 / 26



Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: ρ̂
R,G

µ̄n − µ̄N√
1−f
n S

G

= ρ̂
R,G

√
N − 1

ddi: DI = ER(ρ̂2
R,G

)

Deff ≡ MSE(µ̄n)

SRS MSE
= DI (N − 1)

ddi = Deff
N−1

= Design effect per subject in the population

• For SRS: DI = (N − 1)−1

• Probability sample =⇒ DI ∝ N−1

• MSE (µ̄n) ∝ n−1 ⇐⇒ DI ∝ N−1

Deep Trouble

• when DI does not vanish with N−1;

• or equivalently when ρ̂
G ,R

does not vanish with N−1/2 ...

Xiao-Li Meng, Harvard University Menu 12 12 / 26



Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: ρ̂
R,G

µ̄n − µ̄N√
1−f
n S

G

= ρ̂
R,G

√
N − 1

ddi: DI = ER(ρ̂2
R,G

)

Deff ≡ MSE(µ̄n)

SRS MSE
= DI (N − 1)

ddi = Deff
N−1

= Design effect per subject in the population

• For SRS: DI = (N − 1)−1

• Probability sample =⇒ DI ∝ N−1

• MSE (µ̄n) ∝ n−1 ⇐⇒ DI ∝ N−1

Deep Trouble

• when DI does not vanish with N−1;

• or equivalently when ρ̂
G ,R

does not vanish with N−1/2 ...

Xiao-Li Meng, Harvard University Menu 12 12 / 26



Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: ρ̂
R,G

µ̄n − µ̄N√
1−f
n S

G

= ρ̂
R,G

√
N − 1

ddi: DI = ER(ρ̂2
R,G

)

Deff ≡ MSE(µ̄n)

SRS MSE
= DI (N − 1)

ddi = Deff
N−1

= Design effect per subject in the population

• For SRS: DI = (N − 1)−1

• Probability sample =⇒ DI ∝ N−1

• MSE (µ̄n) ∝ n−1 ⇐⇒ DI ∝ N−1

Deep Trouble

• when DI does not vanish with N−1;

• or equivalently when ρ̂
G ,R

does not vanish with N−1/2 ...

Xiao-Li Meng, Harvard University Menu 12 12 / 26



How Small is Our “Big Data”?

The Effective Sample Size of a “Big Data” in terms of SRS size

neff =
n

1 + (1− f )[(N − 1)ER [ρ̂2
R,G

]− 1]
≈ f

1− f

1

ρ̂2

Why do we need random testing? (Walter Dempsey, Twitter)

• NY State: N ≈ 20M;

• Suppose we conduct n = 10, 000 COVID test: f = 1/2000

• Suppose the selective testing resulted in ρ̂ = 0.005;

neff =
0.0005

0.9995
× 1

0.0052
≈ 20

• Hence ρ̂ = 0.005 implies a 99.80% loss of sample size!
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Where Did ρ̂ = 0.005 Come From? (Meng, 2018)
Cooperative Congressional Election Study by Ansolabehere, Schaffner, Luks, Rivers on Oct 4 -
Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki
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Studies of COVID-19 vaccine uptake vary in design

Axios-Ipsos
Coronavirus Index

Census Household
Pulse

Facebook-Delphi
COVID Symptom
Survey

Mode online online online
Sampling
frame

Ipsos
KnowledgePanel

Census Master
Address File

Facebook Active User
Base

n 1,000/wave 65,000/wave 250,000/wave

Question
Wording

“Do you personally
know anyone who has
already received the
COVID-19 vaccine?”
Answers include “Yes,
I have received the
vaccine”

“Have you received a
COVID-19 vaccine?”

“Have you had a
COVID-19
vaccination?”

Target
Population

2019 CPS March
Supplement, US 18+

2018 ACS, 1-year
est., US 18+

2018 CPS March
Supplement, US 18+

Weighting
Variables

gender x age, race,
education, Census
region, metropolitan
status, household
income, partisanship

metropolitan
statistical area
(MSA), state x
education x gender x
age, state x Hispanic
ethnicity x gender x
age

state x age x gender
and “proprietary
covariates”

Xiao-Li Meng, Harvard University Menu 15 15 / 26



Big Data Paradox: The Bigger the Data, The Surer We
Fool Ourselves
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Estimated Effective Sample Sizes (dropping three 0s!)
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Dramatic Reduction in Effective Sample Size (> 99.9%)
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Composition of Survey Respondents
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“Weight, Weight, Don’t tell me ...”

There are always those “messy” weights ...

µ̄w =

∑N
i=1 RiwiG (Xi )∑N

i=1 Riwi

Let CV
W

be the coefficient of variation of WI given RI = 1

µ̄w − µ̄N
= ρ̂

Rw ,G ×
√

1− fw
fw

× σ
G

where
fw =

nw
N
, nw =

n

1 + CV 2
w

(Kish, 1965)

• Seeking w to make ρ̂
Rw ,G < ρ̂

R,G
and compensate for nw < n.
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Estimation Methods for Non-probability Samples

• A non-probability sample {(yi ,Xi ), i ∈ S}, S = {i : Ri = 1}
• An auxiliary probability sample {Xi , i ∈ S∗}, S∗ = {i : R∗i = 1}
• Key Assumption: yi ⊥ Ri |Xi (Missing at Random)

• A device model: p(y ,R|x) = p(y |x)p(R|x)

Quasi-randomization: Estimate π(x) = Prp(R = 1|x)

µ̂ =

∑N
i=1 Riwiyi∑N
i=1 Riwi

, wi ∝ π̂−1(Xi )

Super-population/model assisted: also fit y = m(x)

µ̂+ =

∑N
i=1 Riwi (yi − m̂(Xi ))∑N

i=1 Riwi

+

∑N
i=1 R

∗
i m̂(Xi )∑N

i=1 R
∗
i

,
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Why Do They Work?

µ̂+ − ȳ
N

=
Cov

I
(R

I
w

I
, y

I
− m̂(X

I
))

E
I
(R

I
w

I
)

+
Cov

I
(R∗

I
, m̂(X

I
))

E
I
(R∗

I
)

,

Under a divine model for (R ,Y |X ) and sampling model for R∗

E[µ̂+]− µ ∼ Ex {Cov
I
[π

I
w

I
, δ

I
]} , where δ

I
≡ E(y

I
|XI )− m̂(X

I
)

• Quasi-randomization: making π
I
w

I
∝ 1, (Q)

• Super-population: making δ
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N

=
Cov

I
(R

I
w

I
, y

I
− m̂(X

I
))

E
I
(R

I
w

I
)

+
Cov

I
(R∗

I
, m̂(X

I
))

E
I
(R∗

I
)

,

Under a divine model for (R ,Y |X ) and sampling model for R∗

E[µ̂+]− µ ∼ Ex {Cov
I
[π

I
w

I
, δ

I
]} , where δ

I
≡ E(y

I
|XI )− m̂(X

I
)

• Quasi-randomization: making π
I
w

I
∝ 1, (Q)

• Super-population: making δ
I
≡ E(y

I
|XI )− m̂(X

I
) = 0, (S)

• Doubly robust: either (Q) or (S) makes Cov(π
I
w

I
, δ

I
) = 0, but we

don’t need to know which one.

• “Double+ robustness”: the validity holds if and only if

Ex {Cov
I

[π
I
w

I
, δ

I
]} = 0

Xiao-Li Meng, Harvard University Menu 22 22 / 26



Why Do They Work?

µ̂+ − ȳ
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Counterbalance Sub-sampling (CBS)

• If Pr(Ri = 1|X ,Y ) = πi , sub-sample with Pr(Si = 1|Ri = 1) ∝ π−1
i

• Hence Pr(SiRi = 1) ∝ 1, creating an equal-probability sample

The Effective Sample Size of “Big Data” in terms of SRS size

nB ≈
fB

1− fB

1

ρ̂2
B

,

where fB = n/N is the relative size of sample B.

Trading quantity for quality: create an unweighted sub-sample D such
that

fB
1− fB

1

ρ̂2
B

<
fD

1− fD

1

ρ̂2
D

,

where fD = fB fS , and fS is the sub-sampling rate.
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Estimand p = P(Y = 1); estimable p∗ = P(Y = 1|R = 1)

• Reporting rates:

ry = Pr(R = 1|Y = y); r =
r1
r0

• Sub-sampling rates:

sy = Pr(S = 1|R = 1,Y = y); s =
s1

s0
;

Counterbalancing: (r − 1)(s − 1) < 0

(i) If δ = r − 1 > 0, then take any s

[1− (1− p∗)δ]+
1 + (1 + p∗)δ

≤ s < 1 (1)

(ii) If δ = r − 1 < 0, then take any s

1 < s ≤ 1− (1− p∗)δ

[1 + (1 + p∗)δ]+
(2)
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An miniature illustration

Counterbalancing: (r − 1)(s − 1) < 0

When δ = r − 1 > 0, take any s

[1− (1− p∗)δ]+
1 + (1 + p∗)δ

≤ s < 1

We do not know r , but

• Suppose a previous survey had r = 1.5

• We might feel comfortable to assume that the current r ∈ (1.2, 1.8)

• Suppose we observe p∗ = 0.6

• Then the max of the lower bound is 0.7

• If r = 1.5, then s = 1/1.5 = 0.67 will be optimal, but any s ∈ [0.7, 1)
will lead to smaller MSE compared to not using CBS
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For those who just woke up ...

There is no free lunch
• Data quality and data quantity trade-off

• Data cleanness and data relevance trade-off

• Data utility and data privacy trade-off

• ...

But let’s not overpay either

• Avoid add more noise than necessary

• Avoid weighted data when an unweighted sub-sample can provide
similar statistical information

• ...
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