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Type the word ‘scientist’ into your favorite browser and search for images.
Most likely you will see photos of actual scientists from various fields. Now
repeat the search, using ‘data scientist.’ You will see far fewer photos, but
many animated figures standing by or pointing to various lists of must-have

skills that read like tiger parents’ assignments for their children.

As we advance deeper into the digital age, our societal demands for data
scientists naturally rise in both quantity and quality. Most of us have some
knowledge about other kinds of scientists (granted that such knowledge can
be quite flawed), but we are much less clear about who data scientists are and
what they do. Indeed, what exactly is data science (DS)? As you may have
guessed, the answer depends on whom you ask. Some say DS is CS (computer
science). Others think DS is simply S (statistics). You may even run into
someone who declares DS is just hyped-up BS (and I don’t mean “Bayesian

statistics”).
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Coming to Our Census: How Social
Statistics Underpin Our Democracy (and
Republic)
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ABSTRACT

The 2020 Census provides the opportunity to reflect on the key role
statisticlans, demographers, and other social scientists play in safeguarding
American democracy. Democracy requires numbers for its proper
functioning, and there is now a large statistical infrastructure of which the
constitutionally mandated census is the keystone. Mistrust of the
government is a major obstacle for the census, potentially affecting both
accuracy and completeness. The mistrust is stimulated by fears of individual
or household census data being willingly or inadvertently shared with other
government agencles (data privacy issues) or even foreign actors (hacking).
As two 2019 Supreme Court decisions in juxtaposition suggest, no checks or
balances protect the integrity of the census. The professional integrity of
statisticians is the best defense of the census.

Keywords: census, democracy, statistical infrastructure, data errors, data

privacy

This article is accompanied by multiple invited discussion pieces and a rejoinder by
the author.
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Building Representative Miniatures out of
Non-representative Big Data: An Interplay of
Data Quantity, Quality, and Privacy

Xiao-Li Meng, Harvard University

® Meng (2022). Miniaturizing Data Defect Correlation: A Versatile Strategy
for Handling Non-Probability Samples. Survey Methodology.

® Meng (2018) Statistical Paradises and Paradoxes in Big Data (I): From
The Law of Large Populations to The Big Data Paradox. Annals of
Applied Statistics, 12, 685-726.

® Bradley, Sejdinovic, Meng, Kuriwaki, Isakov, Flaxman (2021)

Unrepresentative Big Surveys Significantly Overestimated COVID5
Vaccination in the US. Nature Dec; 600(7890):695-700.
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It has been a decade ...

e We know that a 5% random sample is better than a 5% non-random
sample in measurable ways (e.g., bias, predictive power).
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® \We know that a 5% random sample is better than a 5% non-random
sample in measurable ways (e.g., bias, predictive power).

e But is an 80% non-random sample “better” than a 5% random
sample in measurable terms? 90%? 95%7? 99%? (Jeremy Wu of
US Census Bureau, 2012, Seminar at Harvard Statistics)
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It has been a decade ...

® \We know that a 5% random sample is better than a 5% non-random
sample in measurable ways (e.g., bias, predictive power).

e But is an 80% non-random sample “better” than a 5% random
sample in measurable terms? 90%? 95%7? 99%? (Jeremy Wu of
US Census Bureau, 2012, Seminar at Harvard Statistics)

e “Which one should we trust more: a 1% survey with 60%
response rate or a non-probabilistic dataset covering 80% of
the population?” (Keiding and Louis, 2015, Joint Statistical
Meetings; and JRSSB, 2016)
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® Law of Large Numbers:
Jakob Bernoulli (1713)
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e Central Limit Theorem:
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It has been a few centuries ..
® Law of Large Numbers:

Jakob Bernoulli (1713) e Landmark paper: Jerzy
¢ Central Limit Theorem: Neyman (1934)
Abraham de Moivre (1733): e The “revolution” lasted
error ﬁ n— sample size about 50 years (Je|ke
® Survey Sampling: B.ethl.ehem, 2009)_ _
* Graunt (1662); Laplace (1882) ® First implementation in
¢ The “intellectually violent US Census: 1940 led by
revolution” in 1895 by Anders Kizr, Morris Hansen

Statistics Norway
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Triumphs and Troubles of Probability Sampling

Triumphs: Ensuring learning is feasible and cost effective
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Triumphs: Ensuring learning is feasible and cost effective
® Census is not feasible in most studies
® Sampling makes a study feasible and even cost effective

® Sampling also reduces privacy cost since it is a random suppression
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Triumphs and Troubles of Probability Sampling

Triumphs: Ensuring learning is feasible and cost effective
® Census is not feasible in most studies

® Sampling makes a study feasible and even cost effective

® Sampling also reduces privacy cost since it is a random suppression
v

Troubles: Ensuring “repetitiveness” is increasingly challenging
® Non-response/coverage bias (not merely the rate) is on the rise
® Social media data are non-representative by design

® Administrative data are not probability samples

Thoughts: Handling data defects and privacy concomitantly
® Can we utilize the inherent data defects as data privacy protections?

® Can we engineer “representative miniatures” that trade data utility
and privacy more sensibly than adding noises to defective data?
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Statistical Thinking with R ...

Recording (Reporting/Responding) Indicator R for a finite
population X = {Xi,..., Xy} :

R; =1, if X; is included in a sample of size n, and R; = 0 otherwise
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Statistical Thinking with R ...

Recording (Reporting/Responding) Indicator R for a finite
population X = {Xj,..., Xy} :

R; =1, if X; is included in a sample of size n, and R; = 0 otherwise

Design Prob: Prob controlled and implemented by human

Ex: Prob sampling, Pr(R; = 1|X) = n/N
More: Bootstraps, clinical trials, differential privacy, permutation test, MC.

v
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Recording (Reporting/Responding) Indicator R for a finite
population X = {Xj,..., Xy} :

R; =1, if X; is included in a sample of size n, and R; = 0 otherwise

Design Prob: Prob controlled and implemented by human

Ex: Prob sampling, Pr(R; = 1|X) = n/N
More: Bootstraps, clinical trials, differential privacy, permutation test, MC.

v

Divine Prob: Existential Prob by God/Nature or by faith.

Ex: Real-World Evidence, but we assume R is random, and
Pr(Ri = 1|X) = m(X;). [Needed for define "missing at Random" ]
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Statistical Thinking with R ...

Recording (Reporting/Responding) Indicator R for a finite
population X = {Xj,..., Xy} :

R; =1, if X; is included in a sample of size n, and R; = 0 otherwise

Design Prob: Prob controlled and implemented by human

Ex: Prob sampling, Pr(R; = 1|X) = n/N
More: Bootstraps, clinical trials, differential privacy, permutation test, MC.

v

Divine Prob: Existential Prob by God/Nature or by faith.

Ex: Real-World Evidence, but we assume R is random, and
Pr(R; = 1|X) = 7(X;). [Needed for define “missing at Random" |

Device Prob: Probability constructs invoked for analysis.
Ex: logit[m(x)] = a + Bx
More: Prob distributions for expressing belief, prior knowledge,

assumptions, idealizations, compromises, desperation.
Xiao-Li Meng, Harvard University Menu 5 5/26
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® Population {Xi,.

, X, }; Estimand [, =

SELG(X).
N 1
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A Fundamental Identity for Estimation Error (Meng, 2018)

N .
e Population {Xi, ..., X, }; Estimand ji, = W

e Estimator: sample average

_ Y RG(X) _ X RiG(X)

Z,I'V:1 Ri NR

where R; = 1 if X; is recorded, and zero otherwise.

® Neither X nor R is assumed random.
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where R; = 1 if X; is recorded, and zero otherwise.

® Neither X nor R is assumed random.
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N .
e Population {Xi, ..., X, }; Estimand ji, = W

e Estimator: sample average

_ Y RG(X) _ X RiG(X)

Z,I'V:1 Ri NR

where R; = 1 if X; is recorded, and zero otherwise.

® Neither X nor R is assumed random.

Expressing the exact error w.r.t [ ~ U[1, ..., N] (a divine probability):

— E/[RIG/]

COV/(R/, G/)
/j/n ILI/N EI[RI]

— E,[G/] = EI[RI]
N—n

n

= Prc X X 0g
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Statistics & Probability Letters 18 (1993) 345-348
North-Holland

2 December 1993

On the absolute bias ratio
of ratio estimators

Xiao-Li Meng
Department of Statistics, University of Chicago, IL, USA

Received January 1993
Revised March 1993

Abstract: The elegant Hartley-Ross inequality on the absolute bias ratio (ABR = [Bias| /S.E.) of a ordinary ratio estimator is here
generalized to that of a scparate ratio estimator with stratified sampling. It is shown that, as long as the numcrators and
denominators used to form strata ratios are unbiased estimators, the absolute bias ratio of a separate ratio estimator will never
exceed the square oot of the sum of squares of the coefficient of variation of the denominators across strata. This provides, at
design stages, a simple bound in practice to assess the limit and magnitude of the bias ratio of any separate ratio estimator that

shares the same denominators. Exact expressions for biases of separate ratio estimators are also given.

Keywords: Combined ratio estimator; separate ratio estimator; stratified sampling.

iases of ordinary ratio

In sample surveys, ordinary ratio estimators are
typically employed to estimate (i) a population
total, Y, (i) a population mean, Y, or (iii) a
population ratio, ¥/X. In all of these cases, the
ratio estimator has the form

(1.1)

where ¥ and ¥ are the sample means of variable
x and y, respectively, and Q is a known quantity.
In cases (i) and (ii), Q is the population total and
mean of variable x, X and X respectively, and
the ratio estimator  of (1.1) is used to increase
the precision in estimating Y and ¥ by taking

Menu

of the positive ion between y
and x and the known values of X and X in the
population. In case (i), Q =1, and the popula-
tion quantities of variable x need not be known.
A comprehensive treatment of ratio estimator
(1.1) and other variations can be found in Cochran
(1977, Chapter 6).

It is well known that in general, r of (1.1) is
biased for R =(Y/X)Q. However, this bias is
typically unimportant because it is negligible
compared to the standard error of r. An elemen-
tary but elegant proof of this fact was given in
Hartley and Ross (1954), who noticed the follow-
ing simple identity

E(y)
E(®)

_ Cov(r, 7)

1 E(x)

(1.2)
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A Multiplicative Error Decomposition

Pn =y = pPrg X
—— —~—
Exact Error Data Quality
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A Multiplicative Error Decomposition

Fon = by = ﬁR,G
~——
Exact Error

N —n
X
Data Quality

X
n

Data Quantity
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A Multiplicative Error Decomposition

N —n
X o

n —~—
Problem Difficulty

fn — [y = ﬁR,(; X
S—— ~—~

Exact Error  Data Quality Data Quantity
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A Multiplicative Error Decomposition

N —n
X o

n ~—
Problem Difficulty

fin =iy = Ppe X
S—— ~—

Exact Error Data Quality Data Quantity

® Nothing is assumed random, only using divine probability via /.
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A Multiplicative Error Decomposition

_ _ n N —n
Hn—=Hy =  Pre X % Ve
—— ~— n ~—

Exact Error Data Quality Problem Difficulty

Data Quantity

® Nothing is assumed random, only using divine probability via /.

® Only assumption: sampled X; are in the target population.
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A Multiplicative Error Decomposition

_ _ n N —n
Hn—=Hy =  Pre X % Ve
—— ~— n ~—

Exact Error Data Quality Problem Difficulty

Data Quantity

® Nothing is assumed random, only using divine probability via /.

® Only assumption: sampled X; are in the target population.
Compare to the additive “Variance+Bias" decomposition

Pin — by :ﬁn E (Nn)"'E (Nn)_
————

Exact Error Samplmg Error Bias
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A Multiplicative Error Decomposition

_ _ n N —n
Hn—=Hy =  Pre X % Ve
—— ~— n ~—

Exact Error Data Quality Problem Difficulty

Data Quantity

® Nothing is assumed random, only using divine probability via /.

® Only assumption: sampled X; are in the target population.
Compare to the additive “Variance+Bias" decomposition

Pin — by :ﬁn E (Nn)"'E (Nn)_
————

Exact Error Samplmg Error Bias

® Must involve prob on R, design, divine, or device.

® |t's “phenotype”’ decomposition, not “genotype.”
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® Think about tasting soup
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are sufficient regardless of
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Why and when can we ignore the population size N7?

\ T

® Think about tasting soup

e Stir it well, then a few bits
are sufficient regardless of
the size of the container!
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e But what happens when we fail to stir (well)?
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Probability Sampling miniaturizes the ddc

1, where

weVN—1

For SRS, because V,(Z) =

="l _p = Vilbro) =

1

3 3 ) 99% of the time regardless of G.
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Probability Sampling miniaturizes the ddc

For SRS, because V,(Z) = 1, where
z=B B _p N=T = Vilee) =

Hence p ; € (— 3 3 ) 99% of the time regardless of G.

N—1’ VN—1
R N—n
Bn— By = Pg, X0¢
~ " _
1/VN VN

24
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Probability Sampling miniaturizes the ddc

For SRS, because V,(Z) = 1, where

2=l _p VT 5 V(e =

_ _ n N —n
Hn Ky = pR,G X n X0
~~ ——
a VN

® This cancellation is THE reason that we can ignore N for any G\
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Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: pg ¢ . Dy = Eg(2,)
i~ _ 5 VN _ MSE(fn)
1%56 =Srssg - 2V
oy S =, «=» =T 9AC
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Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: pp ¢ ddi: D; = Er(p2 )
ﬁn - ﬁN A i
B p WVN—1 _ MSE(an) _ _
= Defl = srgwsg ~ V)

ddi = Bifi = Design effect per subject in the population

® For SRS: D= (N-1)"1
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ﬁn - ﬁN A i
B p WVN—1 _ MSE(an) _ _
= Defl = srgwsg ~ V)

ddi = Bifi = Design effect per subject in the population

® For SRS: D= (N-1)"1
® Probability sample = D;joc N71
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Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: pp ¢ ddi: D; = Er(p2 )

ﬁn - ﬁN A -
Il _ g VNI _ MSE() o
= Deft = gpsmsg ~ 2V 1)

ddi = ﬁifi = Design effect per subject in the population
® For SRS: D= (N-1)"1
® Probability sample = D;joc N71
® MSE(jis) xn! <= Djox N1
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Data Defect Correlation (ddc) and Data Defect Index (ddi)

ddc: pp ¢ ddi: D; = Er(p2 )

ﬁn - ﬁN A -
Il _ g VNI _ MSE()
= Deft = gpsmsg ~ 2V 1)

ddi = ﬁifi = Design effect per subject in the population
® For SRS: D= (N-1)"1
® Probability sample = D;joc N71
® MSE(jis) xn! <= Djox N1

Deep Trouble
e when D; does not vanish with N~—1:

® or equivalently when p . does not vanish with N—1/2
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How Small is Our “Big Data"?

SAATOT
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How Small is Our “Big Data"?

The Effective Sample Size of a "Big Data" in terms of SRS size

_ n N f i
T4 (L AIV - DERR ] 1] 1-F7

Neff
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How Small is Our “Big Data"?

The Effective Sample Size of a “Big Data” in terms of SRS size

n f 1
Neff = = ~ ~
Tl A-AIIN-DER[RZ ] -1 T 1P

Why do we need random testing? (Walter Dempsey, Twitter)
e NY State: N ~ 20M;

)M>
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Why do we need random testing? (Walter Dempsey, Twitter)
e NY State: N ~ 20M;
® Suppose we conduct n = 10,000 COVID test: f = 1/2000
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How Small is Our “Big Data"?

The Effective Sample Size of a “Big Data” in terms of SRS size

n f 1
Neff = = ~ =
Tl A-AIIN-DER[RZ ] -1 T 1P

Why do we need random testing? (Walter Dempsey, Twitter)
e NY State: N ~ 20M;
® Suppose we conduct n = 10,000 COVID test: f = 1/2000
® Suppose the selective testing resulted in p = 0.005;

00005 1
°f = 0.0995 ~ 0.0052

20
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How Small is Our “Big Data"?

The Effective Sample Size of a “Big Data” in terms of SRS size

n f 1
Neff = = ~ =
Tl A-AIIN-DER[RZ ] -1 T 1P

Why do we need random testing? (Walter Dempsey, Twitter)
e NY State: N ~ 20M;
® Suppose we conduct n = 10,000 COVID test: f = 1/2000
® Suppose the selective testing resulted in p = 0.005;

00005 1
°f = 0.0995 ~ 0.0052

20

® Hence p = 0.005 implies a 99.80% loss of sample size!

v
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Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki

Cooperative Congressional Election Study by Ansolabehere, Schaffner, Luks, Rivers on Oct 4 -

Where Did p = 0.005 Come From? (Meng, 2018)

Xiao-Li Meng, Harvard University
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Where Did p = 0.005 Come From? (Meng, 2018)

Cooperative Congressional Election Study by Ansolabehere, Schaffner, Luks, Rivers on Oct 4 -
Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki

100%

Soll overestima e 12
“ Poll overestimated B ~0.00012 £ 0.00059
® Clinton support /'*
£ e
= .
by ’
gs 4 £
TP s0% + 53
gc
32
SE 4
FOo 4
5 .
g e
5 R4 Poll underestimated 0
= . . dmne +

ok Cinton support 0010 0,005 0.000 0.005 0.010
0% 50% 100% Cl . Clinton By, 1+
Final Clinton Popular Vote Share 1 - ~
. ~ T . .
Root Mean Squared Error: 0.06 Inton pVVt 0 000 0 0006

SAATOT

Xiao-Li Meng, Harvard University Menu 14



Where Did p = 0.005 Come From? (Meng, 2018)

Cooperative Congressional Election Study by Ansolabehere, Schaffner, Luks, Rivers on Oct 4 -
Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki

Turnout-adjusted Poll Estimate,
Clinton Support

Turnout-adjusted Poll Estimate,
Trump Support
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Studies of COVID-19 vaccine uptake vary in design

Facebook-Delphi

Axuos—lp'sos Census Household COVID Symptom
Coronavirus Index Pulse
Survey
Mode online online online
Sampling Ipsos Census Master Facebook Active User
frame KnowledgePanel Address File Base
n 1,000/wave 65,000/wave 250,000/wave
“Do you personally
know anyone who has
. already received the “ . “Have you had a
Question COVID-19 vaccine?” Have you received a | o/ 19
Wording i o COVID-19 vaccine? R
Answers include “Yes, vaccination?
| have received the
vaccine”
Target 2019 CPS March 2018 ACS, 1-year 2018 CPS March
Population Supplement, US 18+ est., US 18+ Supplement, US 18+
metropolitan
gender x age, race, statistical area
Weighting edu.catlon, Censu.s (MSA)., state x state“x age x gende\r“m(ml
Variables region, metropolitan education x gender x and “proprietary ¥ o

status, household
income, partisanship

age, state x Hispanic
ethnicity x gender x
age

covariates”
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Big Data Paradox: The Bigger the Data, The Surer We
Fool Ourselves

80% Delphi-Facebook (n = 250,000)

o";.

o Census Household Pulse (n~75,000)
~ ,
v

| _50%withonedose ___________ ; _/4'_' }/ __________
/
40% /' //

o
S
X

% Vaccinated (at least 1 dose)

o ¢
./
e
2t
20% o ¢
s
. .
..%
B /'?&//
0% -
Jan Feb Mar Apr May j )
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Estimated Effective Sample Sizes (dropping three 0Os!)

Delphi-Facebook effective sample size accounting for p

with +/- 5% and 10% benchmark error

Sample size © effective

B00 =+«
[
N
D )0 « o
© 200-
o
£
©
n
[
=
g 100
=
w
0m oo S -
Feb Mar Apr -
Date 3
Statistics
o = = E E DA
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Dramatic Reduction in Effective Sample Size (> 99.9%)

Delphi-Facebook reduction in effective sample size
with +/- 5% and 10% benchmark error

100_000% T T T T T
99975% ERREEREEEERET b
=
il
B
_g 99950% R A
1
X
90.025% = -+ -
[eLe K 100 A PP
Féb Mlar A;)r
Date
Statistics
o = = = = 9DaAlx
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Composition of Survey Respondents

Composition of U.8. Adults Survey Estimates
Axios-Ipsos Household Pulse  Delphi-Facebook ACS Household Pulse
Education Raw Weighted Raw Weighted Raw Weighted Benchmark Vax Will Hes
High School  35% 39% 14% 39% 19% 21% 39% 39%  40% 21%
Some College 29 30 32 30 36 36 30 44 38 18
4-Year College 19 17 29 17 25 25 19 54 36 10
Post-Graduate 17 14 26 13 20 18 11 67 26 7
Composition of U.S. Adults Survey Estimates
Axios-Ipsos Household Pulse  Delphi-Facebook ACS Household Pulse
Race/Ethnicity Raw  Weighted Raw Weighted Raw  Weighted Benchmark Vax Will Hes
White  71% 63% 75% 62% T4% 68% 60% 50%  33% 17%
Black 10 12 T 11 6 6 12 42 39 19
Hispanic 11 16 10 17 11 16 16 38 48 14
Asian 5 5 2 3 6 51 43 5

SAOTOTY,
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“Weight, Weight, Don't tell me ...”

There are always those “messy” weights ...
_ S RiwiG(X)
ity Riw;

Aw
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“Weight, Weight, Don't tell me ...”

There are always those “messy” weights ...
> ity RiwiG(X)
ity Riw;

Let CV,, be the coefficient of variation of W, given Rj =1

Hw =

— = ~ ]- — fw
Hw = By = Prasc X X Og
fw
where n n
fpo = — n, = ———— (Kish, 1965
N’ Ty cvz (Kish,1965)
v
s
Stati!;ECCV‘
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“Weight, Weight, Don't tell me ...”

There are always those “messy” weights ...
> ity RiwiG(X)
ity Riw;

Let CV,, be the coefficient of variation of W, given Rj =1

Hw =

— — A ]- - fw
Bw — My = Pry,g X f X 0Og
w
where n n
f = — ny = ———— (Kish, 1965
v N’ Y14 C VV%, ( ’ )
v
® Seeking w to make p,, . < P, and compensate for n, < n. o,
8
Statistic®
Xiao-Li Meng, Harvard University Menu 20
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Estimation Methods for Non-probability Samples
® A non-probability sample {(y;, X;),i € S}, S={i: R =1}
® An auxiliary probability sample {X;,i € $*}, S*={i:Rr=1}
e Key Assumption: y; L R;|X; (Missing at Random)
® A device model: p(y, R|x) = p(y|x)p(R|x)

2y
Statistic®
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Estimation Methods for Non-probability Samples
® A non-probability sample {(y;, X;),i € S}, S={i: R =1}
® An auxiliary probability sample {X;,i € $*}, S*={i:Rr=1}
e Key Assumption: y; L R;|X; (Missing at Random)
® A device model: p(y, R|x) = p(y|x)p(R|x)

Quasi-randomization: Estimate 7(x) = Pr,(R = 1|x)

vazl Riw;yi

il
, w; o< T (X
iy Riw; I %

b=

2y
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Estimation Methods for Non-probability Samples
® A non-probability sample {(y;, X;),i € S}, S={i: R =1}
® An auxiliary probability sample {X;,i € $*}, S*={i:Rr=1}
e Key Assumption: y; L R;|X; (Missing at Random)
® A device model: p(y, R|x) = p(y|x)p(R|x)

Quasi-randomization: Estimate 7(x) = Pr,(R = 1|x)

vazl Riw;yi

il
, w; o< T (X
iy Riw; ’ %

b=

Super-population/model assisted: also fit y = m(x)

_ S Rwilyi = m(X) | XL, RY (X))
ZI{V:]. Riwi Zl{vzl Ri

Xiao-Li Meng, Harvard University Menu 21 21/26
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Why Do They Work?

A _ Cov,(Rw,,y, — m(
iy — 7y, = AW Y

E,(Rw,)

X

!

)

Cov,(R", m(X)))

Xiao-Li Meng, Harvard University
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Why Do They Work?

Cov,(Rw,,y, — m(X,)) = Cov,(R*,m(X,))

[

e =W = E (R w,) TTTERY

Under a divine model for (R, Y|X) and sampling model for R*

E[fi+] — p ~ Ex {Cov,[m,w,,0,]}, where d, = E(y,|X;) — m(X,)
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Why Do They Work?

Cov,(Rw,,y, — m(X,)) = Cov,(R*,m(X,))

[

e =W = E (R w,) TTTERY

Under a divine model for (R, Y|X) and sampling model for R*

E[fi+] — p ~ Ex {Cov,[m,w,,0,]}, where d, = E(y,|X;) — m(X,)

® Quasi-randomization: making m,w, o 1, (Q)

P
2n 58
Statistic®
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Why Do They Work?

~ = COVI(RIWH-yI - rlh(Xl)) COVI(R* rh(Xl))
Mt _yN - + )
E/(R/W/) E/(R*)

Under a divine model for (R, Y|X) and sampling model for R*

E[fi+] — p ~ Ex {Cov,[m,w,,0,]}, where d, = E(y,|X;) — m(X,)

® Quasi-randomization: making m,w, o 1, (Q)

¢ Super-population: making 6, = E(y,|X;) — m(X,) =0, (S)
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Why Do They Work?

~ = COVI(RIWH-yI B rlh(Xl)) COV/(R/*7 'ﬁ(X/))
By — Yy = + 5
E/(R/W/) E/(R*)

Under a divine model for (R, Y|X) and sampling model for R*

E[fi+] — p ~ Ex {Cov,[m,w,,0,]}, where d, = E(y,|X;) — m(X,)

® Quasi-randomization: making m,w, o 1, (Q)

¢ Super-population: making 6, = E(y,|X;) — m(X,) =0, (S)

® Doubly robust: either (Q) or (S) makes Cov(m,w,,d,) =0, but we
don't need to know which one.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

D 6
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Why Do They Work?

P Cov, (R w,,y, — m(X,)) N Cov,(R", m(X)))
T E,(R,w,) E(R)

Under a divine model for (R, Y|X) and sampling model for R*

E[fi+] — p ~ Ex {Cov,[m,w,,0,]}, where d, = E(y,|X;) — m(X,)

® Quasi-randomization: making m,w, o 1, (Q)

Super-population: making 6, = E(y,|X;) — m(X,) =0, (S)
Doubly robust: either (Q) or (S) makes Cov(7,w,,d,) =0, but we
don't need to know which one.

“Double+ robustness”: the validity holds if and only if

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

N
Statistic®

Ex {COV/ [Tr/ Wi, 51]} =0
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Counterbalance Sub-sampling (CBS)

e If Pr(R; = 1|X,Y) = m;, sub-sample with Pr(S;

=1R =1)ocm; !
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Counterbalance Sub-sampling (CBS)

* If Pr(R; = 1|X, Y) = m;, sub-sample with Pr(S; = 1|R; = 1) oc 7;
® Hence Pr(S;R; = 1) & 1, creating an equal-probability sample
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Counterbalance Sub-sampling (CBS)

* If Pr(R; = 1|X, Y) = m;, sub-sample with Pr(S; = 1|R; = 1) oc 7;
® Hence Pr(S;R; = 1) & 1, creating an equal-probability sample

The Effective Sample Size of "Big Data” in terms of SRS size
fs 1

R

1—1gpg

np ~

where fg = n/N is the relative size of sample B.

S
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Counterbalance Sub-sampling (CBS)

* If Pr(R; = 1|X, Y) = m;, sub-sample with Pr(S; = 1|R; = 1) oc 7;
® Hence Pr(S;R; = 1) & 1, creating an equal-probability sample

The Effective Sample Size of "Big Data” in terms of SRS size
fs 1
1—fg 53

where fg = n/N is the relative size of sample B.

hg =~

v

Trading quantity for quality: create an unweighted sub-sample D such
that

fg 1 fo 1
A_< D )
1—przB 1—fD2

where fp = fgfs, and fs is the sub-sampling rate.

v

8
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Statistic®
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Estimand p = P(Y = 1); estimable p* = P(Y = 1|R =1)
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Estimand p = P(Y = 1); estimable p* = P(Y = 1|R =1)

® Reporting rates:
rn=Pr(R=1Y=y), r=—
® Sub-sampling rates:

Sy:Pr(5:1|R:1,Y:y)’ s = —

N v
W3 ‘A
g
5 Ea 3
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%;‘%

u}
8

I
u
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N
0
P
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Estimand p = P(Y = 1); estimable p* = P(Y = 1|R =1)

® Reporting rates:
rn=Pr(R=1Y=y), r=—
® Sub-sampling rates:
s, =Pr(S§=1R=1Y =y); s = 2

Counterbalancing: (r —1)(s —1) <0
(i) If 6 =r—1>0, then take any s

[1—(1—p")d]+

<s<1 1
1+(1+4+p*)6 — (1)
(i) f 6 =r—1<0, then take any s
1—(1—-p*)o
1<s< 2
RN 4
Xiao-Li Meng, Harvard University Menu 24 24 /26



An miniature illustration
Counterbalancing: (r —1)(s—1) <0
When § = r —1 > 0, take any s

L= (- p)]
1+(1+p*)5+ sost

Xiao-Li Meng, Harvard University
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An miniature illustration

Counterbalancing: (r—1)(s—1) <0
When § = r —1 > 0, take any s

[L— (1= p)ils

s<1
14+ 1+ p*)6 —

We do not know r, but
® Suppose a previous survey had r = 1.5
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Counterbalancing: (r—1)(s—1) <0
When § = r —1 > 0, take any s

[L— (1= p)ils

s<1
14+ 1+ p*)6 —

We do not know r, but
® Suppose a previous survey had r = 1.5
® We might feel comfortable to assume that the current r € (1.2,1.8)
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An miniature illustration

Counterbalancing: (r—1)(s—1) <0
When § = r —1 > 0, take any s

[t —(—p)ols
14+ 1+ p*)6 —

s<1

We do not know r, but
® Suppose a previous survey had r = 1.5
® We might feel comfortable to assume that the current r € (1.2,1.8)
® Suppose we observe p* = 0.6
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An miniature illustration

Counterbalancing: (r—1)(s—1) <0
When § = r —1 > 0, take any s

[L— (1= p)ils

s<1
14+ 1+ p*)6 —

We do not know r, but
® Suppose a previous survey had r = 1.5
® We might feel comfortable to assume that the current r € (1.2,1.8)
® Suppose we observe p* = 0.6

® Then the max of the lower bound is 0.7
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An miniature illustration

Counterbalancing: (r—1)(s—1) <0
When § = r —1 > 0, take any s

[L— (1= p)ils

s<1
14+ 1+ p*)6 —

We do not know r, but
® Suppose a previous survey had r = 1.5
® We might feel comfortable to assume that the current r € (1.2,1.8)
® Suppose we observe p* = 0.6
® Then the max of the lower bound is 0.7

e If r=1.5, then s =1/1.5 = 0.67 will be optimal, but any s € [0.7,1)
will lead to smaller MSE compared to not using CBS

v
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For those who just woke up ...

There is no free lunch
® Data quality and data quantity trade-off
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There is no free lunch
® Data quality and data quantity trade-off
® Data cleanness and data relevance trade-off
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® Data utility and data privacy trade-off

24
Statistic®

Xiao-Li Meng, Harvard University Menu 26 26/26



For those who just woke up ...

There is no free lunch
® Data quality and data quantity trade-off
® Data cleanness and data relevance trade-off

® Data utility and data privacy trade-off

24
Statistic®

Xiao-Li Meng, Harvard University Menu 26 26/26



For those who just woke up ...

There is no free lunch
® Data quality and data quantity trade-off
® Data cleanness and data relevance trade-off

® Data utility and data privacy trade-off

24
Statistic®

Xiao-Li Meng, Harvard University Menu 26 26/26



For those who just woke up ...

There is no free lunch
® Data quality and data quantity trade-off
® Data cleanness and data relevance trade-off

® Data utility and data privacy trade-off

But let's not overpay either
® Avoid add more noise than necessary

® Avoid weighted data when an unweighted sub-sample can provide
similar statistical information

Xiao-Li Meng, Harvard University Menu 26
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