Modeling ABS Survey Response Rates

An AmeriSpeak Case Study

October 24, 2023 Stas Kolenikov, Patrick Coyle, and David Dutwin 2023 FCSM Research & Policy Conference

Introduction

Our role: Survey statisticians

Sampling, weighting, nonresponse analysis

Goal: Create a sampling design calibration tool.

Method: Combine tract-level response rate data for surveys fielded by NORC to Census Planning Database (PDB) tract-level data on response propensity. Model survey response rate as a function of the ACS 2016-2020 Self-Response Rate.

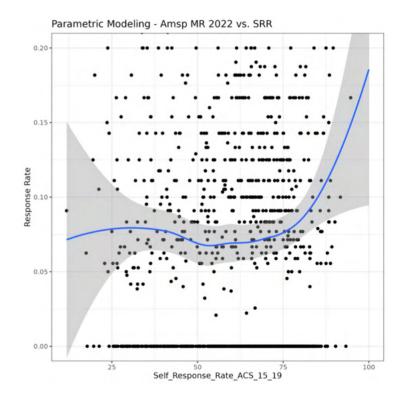
- Semi-parametric modeling: generalized additive models (GAM) (Wood 2017)
- Parametric modeling

Census Low Response Score

- Smoothed / predicted nonresponse rate to the Census self-completion modes (web, mail) in multi-mode surveys.
- Typical range of 0 to 40.
- Predictions are based on the tract / census block group demographic characteristics.
- Released in some versions of the Planning Data Base (https://www.census.gov/topics/research/guidance/planning-databases.html)

Semi-parametric modeling

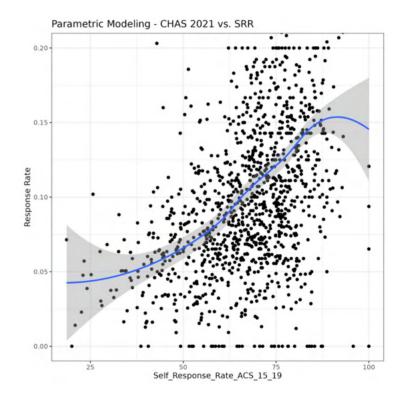
Model Descriptions


- Generalized additive models (GAM).
 - Smoothing splines (cubic spline basis)
 - Flexible nonlinearity

2022 AmeriSpeak Mail Recruitment

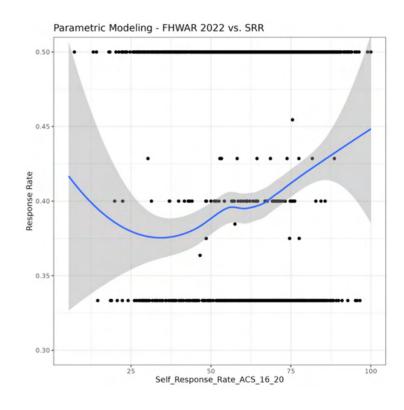
Weak correlation...

Statistic	Value
Effective degrees of freedom (edf)	2.266
F-statistic	0.542
p-value	0.087



2021 Colorado Health Access Survey

• Strong correlation...


Statistic	Value
Effective degrees of freedom (edf)	6.580
F-statistic	31.895
p-value	0.000

2022 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation

Statistic	Value
Effective degrees of freedom (edf)	1.236
F-statistic	3.124
p-value	0.000

Parametric modeling

Model Descriptions

- Data input:
 - $\circ x$, the ACS Self-Response Rates for census tracts divided by 100.
 - $\circ \ x_L$ and x_H , the min/max ACS Self Response Rates.
- User input: r_L and r_H , the min/max expected tract-level response rates for a new survey.
- Output: \hat{r} , the predicted tract-level response rates for a new survey.
- 1. Rescale:

$$\hat{r} = r_L + (r_H - r_L) * rac{x - x_L}{x_H - x_L}$$

2. Response rate power transform:

$$\hat{r} = r_L + (r_H - r_L) * x^lpha, \qquad lpha > 0$$

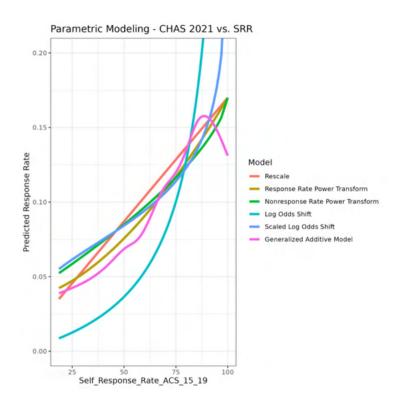
3. Nonresponse rate power transform:

$$\hat{r}=r_H-(r_H-r_L)*(1-x)^eta, \qquad eta>0$$

Model Descriptions

- Data input:
 - $\circ x$, the ACS Self-Response Rates for census tracts divided by 100.
 - $\circ \ x_L$ and x_H , the min/max ACS Self Response Rates.
- User input: r_L and r_H , the min/max expected tract-level response rates for a new survey.
- Output: \hat{r} , the predicted tract-level response rates for a new survey.
- 4. Log odds shift: `

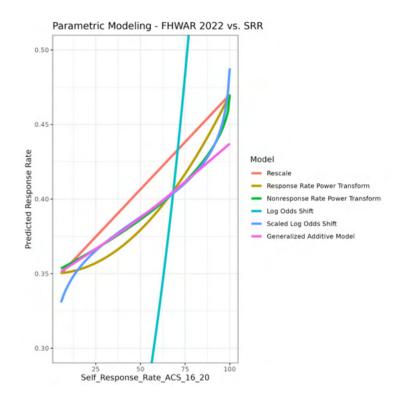
$$\log(\frac{\hat{r}}{1-\hat{r}}) = \log(\frac{x}{1-x}) + \alpha, \qquad \alpha < 0$$

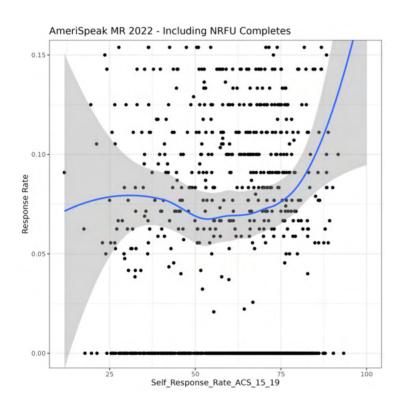

5. Scaled log odds shift: `

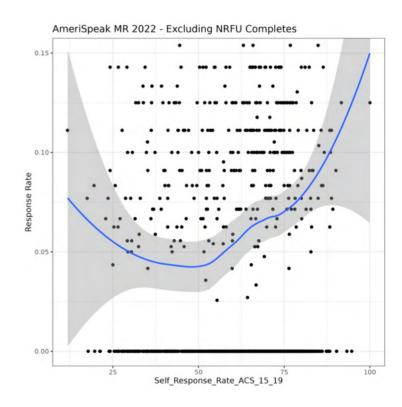
$$\log(\frac{\hat{r}}{1-\hat{r}}) = \beta * \log(\frac{x}{1-x}) + \alpha, \qquad \alpha < 0, \qquad \beta > 0$$

•

Parametric Modeling - CHAS 2021


Model	Parameters	RMSE
Rescale	slope = 1.266	0.061
Response Rate Power Transform	alpha = 1.73	0.061
Nonresponse Rate Power Transform	beta = 0.667	0.062
Log Odds Shift	shift = -3.253	0.082
Scaled Log Odds Shift	shift = -2.38, scale = 0.311	0.063
Generalized Additive Model	edf = 6.58	




Parametric Modeling - FHWAR 2022

Model	Parameters	RMSE
Rescale	slope = 0.772	0.451
Response Rate Power Transform	alpha = 2.031	0.451
Nonresponse Rate Power Transform	beta = 0.52	0.451
Log Odds Shift	shift = -1.125	0.470
Scaled Log Odds Shift	shift = -0.454, scale = 0.088	0.451
Generalized Additive Model	edf = 1.236	

AmeriSpeak - Evaluating Nonresponse Follow-Up (NRFU)

Conclusions

- AmeriSpeak boosts its response rate in particular areas with a nonresponse followup (NRFU) program and other interventions such as Spanish-language materials. This is effective at combating systematic nonresponse.
- Census did not release a Low Response Score with the 2022 PDB.
- Need for cross-validation in parametric modeling.

Thank you.

Research You Can Trust

Stas Kolenikov

Principal Statistician kolenikov-stas@norc.org

Patrick Coyle

Statistician coyle-patrick@norc.org

David Dutwin

Senior Vice President, Business Ventures and Innovation dutwin-david@norc.org

