Adaptive Survey Design with Multiple Criteria: the American Community Survey

Stephanie Coffey, Principal Statistician

Jonathan Eggleston, Senior Economist | Kendall Houghton, Economist | Carl Lieberman, Economist

Federal Committee on Statistical Methodology Conference October 24th, 2023

Any opinions and conclusions expressed herein are those of the author and do not reflect the views of the U.S. Census Bureau.

Motivation for Adaptive Survey Design in the ACS

- Information collected in the ACS is critical
 - Largest continuous household survey in the US
 - Collects variety of information on household- and population-based topics
- Large overall sample sizes (3.5 million housing units per year)
 - Sequential multimode survey design to control costs
 - About 20% of ACS sample still ends up CAPI mode
- In the past (e.g., in 2022) data collection budgets were exhausted
 - Data collection was stopped for all CAPI cases no targeting
 - No chance to change the respondent set at time of work stoppage
 - Could exacerbate lead to nonresponse bias
- Goal: Create a Quality/Data-Driven Tool for Reallocating Effort

- Framework for Data Collection
 - Leverage tradeoffs
 - Min(budget) for a fixed level of data quality
 - Max(data quality) for a fixed budget
 - Balance resources and quality
 If we can save resources, willing to give up
 "some" data quality

- Framework for Data Collection
 - Leverage tradeoffs
 - Min(budget) for a fixed level of data quality
 - Max(data quality) for a fixed budget
 - Balance resources and quality
 If we can save resources, willing to give up
 "some" data quality

- Framework for Data Collection
 - Leverage tradeoffs
 - Min(budget) for a fixed level of data quality
 - Max(data quality) for a fixed budget
 - Balance resources and quality
 If we can save resources, willing to give up
 "some" data quality

- Framework for Data Collection
 - Leverage tradeoffs
 - Min(budget) for a fixed level of data quality
 - Max(data quality) for a fixed budget
 - Balance resources and quality
 If we can save resources, willing to give up
 "some" data quality

- Framework for Data Collection
 - Leverage tradeoffs
 - Min(budget) for a fixed level of data quality
 - Max(data quality) for a fixed budget
 - Balance resources and quality
 If we can save resources, willing to give up
 "some" data quality

- Need predictive models to determine the impact of stopping cases
- Typically care about:
 - *Quality* summary statistic (variance inflation, MSE(item), CVs, etc.)
 - *Cost* cost-per-outcome (response, nonresponse, etc.) 2 viewpoints
 - "Cut Costs" other interviewer behavior stays the same, costs are reduced
 - "Reallocate Costs" shifts resources from stopped cases to retained cases
 - *Response Behavior* will a case actually respond?
 - Likely nonrespondents have impact on cost, but not on quality (vs baseline)
- Use model output to identify which cases to stop and their impact on quality

- Need predictive models to determine the impact of stopping cases
- Typically care about:
 - Quality summary statistic (variance inflation, MSE(item), CVs, etc.)
 - *Cost* cost-per-outcome (response, nonresponse, etc.) 2 viewpoints
 - "Cut Costs" other interviewer behavior stays the same, costs are reduced
 - "Reallocate Costs" shifts resources from stopped cases to retained cases
 - *Response Behavior* will a case actually respond?
 - Likely nonrespondents have impact on cost, but not on quality (vs baseline)
- Use model output to identify which cases to stop and their impact on quality

• Juxtapose "importance" of case with "likelihood to respond"

Variance Inflation Factor Ratio of Alternate Strategy to Baseline Strategy

- Optimization tool is flexible
- Can be adjusted given goals

- Optimization tool is flexible
- Can be adjusted given goals
- Goal 1: Need to reallocate 5% of budget *Need to accept a 1% variance inflation*

- Optimization tool is flexible
- Can be adjusted given goals
- Goal 1: Need to reallocate 5% of budget *Need to accept a 1% variance inflation*
- Goal 2: Maximize resource shift for a 15% increase (or less) in variance inflation *You can obtain a 30% resource shift*

- Optimization tool is flexible
- Can be adjusted given goals
- Goal 1: Need to reallocate 5% of budget *Need to accept a 1% variance inflation*
- Goal 2: Maximize resource shift for a 15% increase (or less) in variance inflation *You can obtain a 30% resource shift*
- Goal 3: Balance cost and variance inflation Find best tradeoff – minimum of product

Mathematical Optimization

• Formalize Idea

•
$$\varphi(\mathbf{A}) = \min_{A(i \in S)} \left(\left(\frac{\hat{C}^A | s^A, R^A}{\hat{C}^0 | s^0, R^0} \right) \left(\frac{\hat{V}^A | s^A, R^A}{\hat{V}^0 | s^0, R^0} \right) \right)$$

where *O* is the baseline strategy (normal data collection), and *A* is the alternate strategy (some set, *s*, of cases stopped)

- Response propensity model
- Balancing propensity model (for ranking)
- Cost model
- Variance inflation formula

$$r_{it} = p(R = 1 | \mathbf{X})$$

$$b_{it} = p(R = 1 | \mathbf{Z})$$

$$\hat{c}_i^o + \hat{c}_f^o$$

$$\hat{V}^A / \hat{V}^0$$

- Examples in the literature
 - National Survey of College Graduates minimize RMSE of key statistic (salary)
 - National Survey of Family Growth minimize the MSE of several key statistics
 - Dutch Labor Force Survey minimize mode effects in multimode survey

- ACS is cross-sectional, with no past response data for modeling
 - Need covariates for the balancing model
 - Characteristics related to outcomes of interest
 - Broad set of administrative data [MAF, Commercial Housing Data, IRS, SSA, Demographic Data from 2010/2020 Census, etc.]
 - Assign characteristics to sample units for the balancing model [sex, age, race/ethnicity, marital status, income, program participation flags, housing structure vars, etc.]

- ACS is Pseudo-longitudinal
 - Data collected for one panel is not released independently
 - 12 months of data combined into annual estimates (or 60 months for 5-yr)
 - Interventions we make could impact estimates for a long time
 - Use two balancing propensity models to account for time: b_{1it} , b_{3it}

- ACS is Pseudo-longitudinal
 - Data collected for one panel is not released independently
 - 12 months of data combined into annual estimates (or 60 months for 5-yr)
 - Interventions we make could impact estimates for a long time
 - Use two balancing propensity models to account for time: b_{1it} , b_{3it}

- ACS is Pseudo-longitudinal
 - Data collected for one panel is not released independently
 - 12 months of data combined into annual estimates (or 60 months for 5-yr)
 - Interventions we make could impact estimates for a long time
 - Use two balancing propensity models to account for time: b_{1it} , b_{3it}

- ACS estimation geographies are Census tracts (average pop ~4,000)
 - Sample is spread across 12 months very small sample sizes
 - Can't run balancing propensity models at the tract level
 - Unstable, too noisy, sometimes only 1 or 2 cases!
 - Run balancing propensities at the state level
 - Could lead to stopping work on all cases in a tract

- ACS estimation geographies are Census tracts (average pop ~4,000)
 - Sample is spread across 12 months very small sample sizes
 - Can't run balancing propensity models at the tract level
 - Unstable, too noisy, sometimes only 1 or 2 cases!
 - Run balancing propensities at the state level
 - Could lead to stopping work on all cases in a tract
- Tract eligibility rules. At time of stop work, tracts must have:
 - At least 3 sample cases
 - At least one occupied interview
 - Retain enough sample to have two complete interviews

- ACS estimation geographies are Census tracts (average pop ~4,000)
 - Sample is spread across 12 months very small sample sizes
 - Can't run balancing propensity models at the tract level
 - Unstable, too noisy, sometimes only 1 or 2 cases!
 - Run balancing propensities at the state level
 - Could lead to stopping work on all cases in a tract
- Tract eligibility rules. At time of stop work, tracts must have:
 - At least 3 sample cases
 - At least one occupied interview
 - Retain enough sample to have two complete interviews
- This has led to a conservative stop work algorithm
 - Allowed us to develop models, code, evaluation metrics
 - Release version 1 of process for future improvements

What have we done so far?

- Development lasted from December 2022 June 2023
 - Data access and linkage
 - Model development
 - June 2023 end-to-end test stopped one case per state
- Implementation began July 2023
 - Stop Work Interventions Delivered for July, August, September, October
 - Midway through CAPI, carried out optimization procedures
 - Stopped 50% of the optimal number of cases for stop work (after restrictions)

What are we monitoring?

• Initial Monitoring

- Unweighted CAPI completion rate
- Mean balancing propensities
- CV(mean) balancing propensities
- R-Indicators (overall- and state-level)
- Future Monitoring
 - Attempts / hours on cases retained after stop work
- Longer-Term Monitoring
 - ACS 1-year estimates

Next Steps

- Consider different geographies for the balancing (quality) model
 - Urban-Rural? MSA? Something else?
 - How does changing the geography change stop work patterns?
- Improving cost/resource model
 - Add in additional covariates, geography, interviewer/workload characteristics
 - Incorporating mileage into the resource model
- Investigating impacts of resource reallocation
 - More hours on cases retained? More attempts?
 - Impact on response propensities for cases that are retained?
- Continuing to monitor outcomes
 - Completion rates, hours spent on cases, R-indicators, etc.

Contact & Acknowledgements

Stephanie Coffey <u>stephanie.coffey@census.gov</u>

Thanks to the entire ACS program...

survey operations, survey design, field operations, household nonresponse teams ...for their interest and support of our work!!!

