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Fully synthetic data

▶ Synthetic data approaches have been proposed for data confidentiality and
privacy protection (Rubin, 1993).

▶ Releasing fully synthetic data sets can preserve confidentiality, since
identification of units and their sensitive data can be difficult when the
released data are not actual, collected values, where the agency

1. randomly and independently samples units from the sampling frame to
comprise each synthetic data set,

2. imputes the unknown data values for units in the synthetic samples using
models fit with the original survey data, and

3. releases multiple versions of these data sets to the public.

▶ Methods for inferences from these multiply-imputed data files have been
developed for a variety of statistical inference tasks.
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Complex sample surveys

▶ Previous research on multiple imputation (MI) for missing data suggests
that imputation models should account for the survey design features,
such as stratification, clustering, and survey weights (Reiter et al., 2006).

▶ Similarly, when using multiple imputation for synthetic data, the models
also should account for the survey design (Mitra and Reiter, 2006;
Fienberg, 2010).

▶ The key challenge is properly incorporating weights in the synthesis
model, which relates to the long-standing debate about the role of survey
weights in model-based inferences (Pfeffermann, 1993, 2011; Little, 2004).
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Existing methods

▶ Bayesian finite population inference approach conditional on design
features available for all population units

▶ Weighted finite population Bayesian bootstrap (WFPBB) (Dong et al.,
2014)

▶ Pseudo-likelihood approach (Pfeffermann, 1993; Savitsky and Toth, 2016;
Kim et al., 2021), in which each individual’s contribution to the likelihood
function of a synthesis model is raised to a power that is a function of the
survey weights
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Potential concerns

▶ The Bayesian finite population inference approach, while theoretically
principled, requires completing full populations, which can be
cumbersome, and the availability of design variables for all records in the
population, which may not be the case in some surveys.

▶ The WFPBB releases (multiple copies of) individuals’ genuine data
records, which creates obvious disclosure risks.

▶ Synthesizing weights does not have a theoretical basis; thus, it is unclear
if this approach can adequately capture uncertainty from complex designs.

▶ Pseudo-likelihood approaches also may not estimate sampling variability
correctly (Williams and Savitsky, 2021), and it is not clear how easily they
can be implemented with machine learning synthesizers like classification
and regression trees, which are commonly used in practical synthetic data
projects.
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New proposal (Mathur et al., 2023)

▶ We build on the WFPBB approach by first creating pseudo-populations
that account for the survey weights.

▶ We then take simple random samples (SRSs) from each
pseudo-population, estimate synthesis models from each SRS, and
generate draws from these models to create multiply-imputed, fully
synthetic public use files.

▶ We consider two synthetic survey data generation processes.

1. We generate multiple synthetic data sets from each SRS; we call this
Synrep-R.

2. We generate one synthetic data set from each SRS; we call this SynRep-1.

▶ For both approaches, we derive multiple imputation combining rules that
enable the estimation of variances.

7/20



Synrep-R
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Synrep-1
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Synthetic data generation process
1. Resample via Bayesian bootstrap: To inject sufficient sampling

variability, given the data from the “parent” sample D, we generate M
samples, (S(1), . . . ,S(M)), each of size n using independent Bayesian
bootstraps.

2. Use the WFPBB to make pseudo-populations: For each S(m), we

construct an initial Pólya urn using the set of {Yi, w(m)
i }. We then draw

N − n units using probabilities (p
(m)
1 , . . . , p

(m)
n ) determined from

p
(m)
i =

w
(m)
i − 1 + l

(m)
i,k−1(N − n)/n

N − n+ (k − 1)(N − n)/n
, (1)

for the kth draw, k ∈ {1, . . . , N − n}, where l
(m)
i,k−1 is the number of

bootstrap selections of Yi among the elements present in the urn at the
k − 1 draw. The N − n draws combined with the data in S(m) comprise
one pseudo-population, P(m). We repeat this for m = 1, . . . ,M to create
Ppseudo = {P(m) : m = 1, . . . ,M}.
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Synthetic data generation process (cont.)

3. Draw SRS from each pseudo-population: For m = 1, . . . ,M , take a
simple random sample D(m) of size n from P(m). Let
Dsrs = {D(m) : m = 1, . . . ,M}.

4. Generate synthetic data replicates: For m = 1, . . . ,M , estimate a
synthesis model using D(m), and draw from the predictive distributions to
form synthetic data replicates using either Step 4a or Step 4b.

4a. SynRep-R: For m = 1, . . . ,M , draw R > 1 synthetic replicates D(m,r)
syn of

size n, where r = 1, . . . , R, using each D(m). We release

Dsyn = {D(m,r)
syn : m = 1, . . . ,M ; r = 1, . . . , R} including indicators of

which m each D(m,r)
syn belongs to.

4b. SynRep-1: For m = 1, . . . ,M , draw one synthetic data sample D(m)
syn of

size n from each D(m). Release Dsyn = {D(m)
syn : m = 1, . . . ,M}.
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Combining rules for SynRep-R

For each D(m,r)
syn , let q

(m,r)
syn be the point estimate of Q, and let v

(m,r)
syn be the

estimate of the variance associated with q
(m,r)
syn . The analyst needs to compute

the following quantities.

q̄(m)
syn =

R∑
r=1

q(m,r)
syn /R, q̄syn =

M∑
m=1

q̄(m)
syn/M (2)

bsyn =
M∑

m=1

(q̄(m)
syn − q̄syn)

2/(M − 1) (3)

w(m)
syn =

R∑
r=1

(q(m,r)
syn − q̄(m)

syn)
2/(R− 1), w̄syn =

M∑
m=1

w(m)
syn/M (4)

v̄syn =

M∑
m=1

R∑
r=1

v(m,r)
syn /MR (5)

Tr =
(
1 +M−1) bsyn − v̄syn − w̄syn/R. (6)

We compute approximate 95% intervals for Q as q̄syn ± t0.975,M−1

√
Tr.
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Combining rules for SynRep-1

The analyst computes each (q
(m)
syn , v

(m)
syn ) by acting is if D(m)

syn is a SRS of size n
from the population. We require the following quantities for inferences.

q̄syn =

M∑
m=1

q(m)
syn/M (7)

bsyn =

M∑
m=1

(q(m)
syn − q̄syn)

2/(M − 1) (8)

v̄syn =

M∑
m=1

v(m)
syn/M (9)

Tm =
(
1 +M−1

)
bsyn − 2v̄syn. (10)

We compute approximate 95% intervals for Q as q̄syn ± t0.975,M−1

√
Tm.
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Repeated sampling properties

▶ We conduct simulation studies to compare the repeated sampling
performances of different inferential methods, estimating the finite
population mean.

▶ Alternative estimators include:

1. Pseudo-Pop as the procedure that uses a point estimator of Q̄ and variance
estimator of (1 + 1/M)B computed with the WFPBB-generated
pseudo-populations (P(1), . . . ,P(M))

2. Pseudo-SRS as the procedure that uses a point estimator of q̄ and variance
estimator of Raghunathan et al. (2003) computed with (D(1), . . . ,D(M))

3. SRSsyn as the procedure that generates synthetic data by using the
unweighted sample mean and standard deviation as plug-in parameters in a
normal distribution

4. Direct using the unweighted sample mean and standard deviation from D,
i.e., ignoring the survey weights

5. HT as the Horvitz and Thompson (1952) estimator and its estimated
variance using D.
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Under a PPS design with different (M,R) values
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Direct and SRSsyn are not plotted because they result in large biases (≈ 39%) and very low coverage rates (mostly close to 0). The

HT method is not plotted but results in unbiased estimates and near nominal coverage rates, as expected.
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Issues with negative variances

Table: Percentage of negative variance estimates in the PPS simulation studies. When
M = 50, all variance estimates are positive.

(M,R) Method Percentage of negative variances (%)

M2R10 Pseudo-SRS 36
M2R10 SynRep-2 37
M2R10 SynRep-1 43
M5R10 Pseudo-SRS 11
M5R10 SynRep-2 13
M5R10 SynRep-1 21
M10R10 Pseudo-SRS 3
M10R10 SynRep-2 3
M10R10 SynRep-1 10
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Under a SRS design
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Estimates from SynRep-R and SynRep-1 do not lose much efficiency relative to the

estimators from Pseudo-SRS. 17/20



Discussion

▶ SynRep-R and SynRep-1 represent a general strategy for constructing fully
synthetic data from complex samples: use the WFPBB to undo the
complex design, then replace the confidential values with synthetic data.

▶ There are many related topics worth further investigation, e.g.,

1. use model-based approaches to smooth the weights
2. extend to multivariate data and for various estimands of interest, e.g.,

subdomain means and regression coefficients
3. account for missing survey data
4. posterior sampling inference
5. comparison with other proposed methods for full synthesis with complex

samples
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