Synthetic population generation for nested data using differentially private posteriors

Hang J. Kim¹ Terrance Savitsky² Matt Williams³ Monika Hu⁴

¹University of Cincinnati (hang.kim@uc.edu)

²Bureau of Labor Statistics (Savitsky.Terrance@bls.gov)

³RTI International (mrwilliams@rti.org)

⁴Vassar College (jihu@vassar.edu)

FCSM Oct 25, 2023

Outline

1 Motivating Examples

2 Review of Differential Privacy

3 Extensions to Nested Privacy

Motivating Data Structures

Data Set with Nested Entities

- Students >> Teachers (class)
- Employees >> Owners (business)
- Patients >> Doctors (hospitals)
- Entities in each level may have disclosure concerns
 - poor performance
 - sensitive responses
 - competitive advantage
 - risk of regulatory intervention

Motivating Models

- Variance Decomposition
 - Attribute % of variability to group vs. individual factors

$$egin{aligned} y_{ig} &= \mu_g + \epsilon_i \ \mu_g &\sim \mathcal{N}(
u, au^2) \ \epsilon_i &\sim \mathcal{N}(0, \sigma^2) \end{aligned}$$

PISA 2000: Science Scores (US)

- Average Score (top)
- Between Class Variation (mid)
- Individual Variation (bottom)
- Different estimation methods (columns/colors)

Outline

1 Motivating Examples

2 Review of Differential Privacy

3 Extensions to Nested Privacy

Differential privacy (Dwork et al., 2006)

Let $D \in \mathbb{R}^{n \times k}$ be a database in input space \mathcal{D} . Let \mathcal{M} be a randomized mechanism such that $\mathcal{M}() : \mathbb{R}^{n \times k} \to O$. Then \mathcal{M} is ϵ -differentially private if

$$\frac{\Pr[\mathcal{M}(D) \in O]}{\Pr[\mathcal{M}(D') \in O]} \leq \exp(\epsilon),$$

for all possible outputs $O = Range(\mathcal{M})$ under all possible pairs of *neighboring* datasets $D, D^{'} \in \mathcal{D}$

- An output statistic f on database D: f(D)
- Global sensitivity $\Delta = \sup_{D,D' \in \mathcal{D}: \ \delta(D,D')=1} \mid f(D) f(D') \mid$
- Definition of neighborhood difference of an individual. We will focus on Leave One Out (LOO).
- Laplace Mechanism for additive noise, scaled to be proportional to Δ_G/ϵ with ϵ -DP guarantee

DP or not DP?

Why DP?

- Guarantee is global over all databases and provable.
- > DP is property of a probabilistic mechanism. Plausible deniability.
- No explicit assumptions about intruder behaviors or knowledge
- Additivity of privacy guarantee across releases based on worst case sensitivity (not averaging). Same privacy 'currency' for very different data uses (tables, model output, public use file creation, etc).
- > Privacy parameter ϵ is a finite resource that needs to be budgeted.

DP or not DP?

Why not DP?

- ► Worst case sensitivity often ∞. Mechanisms with e < ∞ can be challenging to prove (or implement).</p>
- In practice assumptions of bounded data space not correct (e.g. value of sales for a company).
- Supremum (maximum) criteria often severely injures data utility.
- Privacy is not really a single dimension ϵ and is context-specific.

The Exponential Mechanism

- Wasserman and Zhou (2010); Zhang et al. (2016); Snoke and Slavkovic (2018) propose the Exponential Mechanism (EM) to generate synthetic data with DP properties.
- The EM generates samples from

$$\hat{\theta} \propto \exp\left(u(\mathbf{x}, \theta)\right) \pi\left(\theta \mid \gamma\right),$$
(1)

where $u(x, \theta)$ is a utility function with bound Δ_u , $\pi(\theta \mid \gamma)$ is the "base" distribution to ensure a proper density function (Zhang et al., 2016; McSherry and Talwar, 2007).

- A single sample $\hat{\theta}_j$ has a DP guarantee of $\epsilon \leq 2\Delta_u$.
- Using a globally bounded u(x, θ) is difficult. Rejection and Metropolis Hastings sampling do not scale well with the dimension of θ.

The Posterior Mechanism and the Exponential Mechanism

- Consider the log-likelihood function as the utility function, i.e. $u(x, \theta) = \log (\prod_{i=1}^{n} \pi(x_i | \theta))$ and the prior distribution $\pi(\theta | \gamma)$ is the base measure.
- Posterior Mechanism is an instantiation of the Exponential Mechanism

$$\exp\left(\log\left(\prod_{i=1}^{n}\pi\left(x_{i}\mid\theta\right)\right)\right)\pi\left(\theta\mid\gamma\right)=\left(\prod_{i=1}^{n}\pi\left(x_{i}\mid\theta\right)\right)\pi\left(\theta\mid\gamma\right)$$

Sampling from a Posterior is well researched and supported!

Generalizing the (Exponential and) Posterior Mechanisms

- To reduce $\epsilon < 2\Delta_u$, modify the utility function $u(x, \theta)$.
- ▶ Rescale it: $u^*(x, \theta) = \frac{\epsilon}{2\Delta_u} u(x, \theta)$ if $\Delta_u < \infty$. (See McSherry and Talwar, 2007, among many others).
- Scalar-weighted pseudo-likelihood (posterior)

$$\exp\left(\frac{\epsilon \log\left(\prod_{i=1}^{n} \pi\left(x_{i} \mid \theta\right)\right)}{2\Delta}\right) \xi\left(\theta \mid \gamma\right) = \left(\prod_{i=1}^{n} \pi\left(x_{i} \mid \theta\right)^{\frac{\epsilon}{2\Delta}}\right) \pi\left(\theta \mid \gamma\right)$$

Pseudo Posterior Mechanism

▶ Savitsky et al. (2019) utilize record-indexed weights, $\alpha \in (0, 1]^n$

To downweight likelihood contributions with high disclosure risk

$$\xi^{\boldsymbol{lpha}}\left(\theta\mid\mathsf{x},\gamma
ight)\propto\left[\prod_{i=1}^{n}\pi\left(x_{i}\mid\theta
ight)^{\boldsymbol{lpha}_{i}}
ight]\pi\left(\theta\mid\gamma
ight)$$

- $\blacktriangleright \ \alpha_{i} \propto 1/\sup_{\theta \in \Theta} \mid f_{\theta}\left(x_{i}\right) \mid$
- Allows surgical downweighting of high risk records
- α_i induces an anti-informative prior
- Ensures $\Delta_{\alpha} < \infty$
- \blacktriangleright Expected to better preserve real data distribution for any target privacy budget, ϵ

Outline

1 Motivating Examples

2 Review of Differential Privacy

3 Extensions to Nested Privacy

Extending the Neighborhood

- Leave-one-group-out (LOGO) or delete-a-group (DAG)
- Neighbors D and D' differ by an entire group (school, hospital, business)
- ► Global sensitivity $\Delta_{\boldsymbol{G}} = \sup_{D,D' \in \mathcal{D}: \delta(D,D') = \mathbf{1}_{\boldsymbol{G}}} | f(D) f(D') |$

Extending to Latent Variables

Hierarchical Model

$$egin{aligned} & [y_{gi}|\mu_g] \sim \mathcal{N}(\mu_g,\sigma^2), \ & [\mu_g|
u] \sim \mathcal{N}(
u, au^2) \end{aligned}$$

with data as response y_{gi} and group indicator $\mathbf{1}_g$ and latent group mean $\mu_g.$

The utility function is then (the log of) the integrated likelihood

$$u_G(x,\theta) = \sum_{g=1}^G \log \int \left(\prod_{i=1}^{n_g} f(y_{gi}|\mu_g,\sigma^2)\right) f(\mu_g|\nu,\tau^2) \ d\mu_g$$

We assess the LOO and DAG sensitivities of u_G(x, θ) to measure the individual and group level DP bounds ε.

Extending the Weighting Approach

Where should we insert the weights?

$$\begin{split} u_G^A(x,\theta) &= \sum_{g=1}^G \alpha_g \log \int \left(\prod_{i=1}^{n_g} f(y_{gi}|\mu_g,\sigma^2) \right) f(\mu_g|\nu,\tau^2) \ d\mu_g \\ u_G^B(x,\theta) &= \sum_{g=1}^G \log \int \left[\left(\prod_{i=1}^{n_g} f(y_{gi}|\mu_g,\sigma^2) \right) f(\mu_g|\nu,\tau^2) \right]^{\alpha_g} \ d\mu_g \\ u_G^C(x,\theta) &= \sum_{g=1}^G \log \int \left[\left(\prod_{i=1}^{n_g} f(y_{gi}|\mu_g,\sigma^2)^{\alpha_{gi}} \right) f(\mu_g|\nu,\tau^2) \right]^{\alpha_g} \ d\mu_g \end{split}$$

Option (A) requires us to have analytic integration for estimation. (B) and (C) allow for data augmentation approaches for estimation. (C) allows for individual-level tuning.

Preliminary Simulation Results

- G = 100 groups with $n_g = 50$ individuals
- ▶ $p_g, p_{gi} \in [0, 1]$: approximate risk measures based on DAG and LOO
- All down-weighting schemes reduce group level sensitivity (Delta)
- Additional (vector) down-weighting of groups α_g after vector down-weighting of individuals α_{gi} - little gain in privacy or utility

Name	$alpha_g$	alpha_gi	sig2	tau2	$Delta_1Q$	$Delta_Med$	$Delta_3Q$
Un	1	1	1.001	4.088	447.6	488.7	563.3
NW1.0	1	$(1-p_gi)$	0.654	4.173	82.1	83.2	84.6
NW0.5	1	$.5(1-p_gi)$	0.67	4.157	43.3	44.6	46.7
NW0.1	1	$.1(1-p_gi)$	0.841	3.992	13	13.9	15.4
VW1.0	$(1-p_g)$	$(1-p_gi)$	0.63	3.756	66.5	68.3	69.5
VW0.5	$(1-p_g)$	$.5(1-p_gi)$	0.663	3.36	33.9	34.9	35.5
VW0.1	$(1-p_g)$	$.1(1-p_gi)$	0.909	2.893	12.3	12.3	12.3

Group Level Sensitivity

Challenges and Future Work

- Calculating the sensitivities for LOO and DAG require tractable integrals. Numeric and other approximations might be possible.
- Data augmentation can still be used for parameter generation.
- Most of the gains in privacy seem to come from the individual weights α_{gi} with little additional gains from α_g. We are investigating this more.
- Group level privacy ϵ are naturally larger than individual level. While an acceptable individual level ϵ might be in [0.1, 10] - its not clear what the target ϵ for groups should be $[n_g/10, 10n_g] = [5, 500]$?

References I

- Dwork, C., McSherry, F., Nissim, K. and Smith, A. (2006), Calibrating noise to sensitivity in private data analysis, in 'Proceedings of the Third Conference on Theory of Cryptography', TCC'06, Springer-Verlag, Berlin, Heidelberg, pp. 265–284. URL: http://dx.doi.org/10.1007/11681878₁4
- McSherry, M. and Talwar, K. (2007), Mechanism design via differential privacy, *in* 'Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science', pp. 94–103.
- Savitsky, T. D., Williams, M. R. and Hu, J. (2019), 'Bayesian Pseudo Posterior Mechanism under Differential Privacy', *arXiv e-prints* p. arXiv:1909.11796.
- Snoke, J. and Slavkovic, A. (2018), pMSE mechanism: Differentially private synthetic data with maximal distributional similarity., *in J. Domingo-Ferrer and F. Montes*, eds, 'Privacy in Statistical Databases', Vol. 11126 of *Lecture Notes in Computer Science*, Springer, pp. 138–159.
- Wasserman, L. and Zhou, S. (2010), 'A statistical framework for differential privacy', Journal of the American Statistical Association **105**, 375–389.
- Zhang, Z., Rubinstein, B. I. P. and Dimitrakakis, C. (2016), On the differential privacy of Bayesian inference, in 'Proceedings of the 30th AAAI Conference on Artificial Intelligence', AAAI, pp. 2365–2371.