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▶ Problems with traditional probability surveys
▶ Labor intensive and time consuming data collection
▶ Increasing costs
▶ Decreasing response rates
▶ Restricted geography of data collection

▶ Proliferation of relatively inexpensive and expedient
nonprobability data sources:
▶ Web surveys (opt-in or online panels)
▶ Extracts from administrative records
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IPW estimation from nonprobability samples

▶ Naı̈ve unweighted estimates of population parameters
from nonprobability sample may be biased

▶ To correct for a bias, we focus on Inverse Propensity
Weighting (IPW) methods, based on estimated latent
response propensity πc (x) to a nonprobability survey

▶ Methods for estimation of πc (x) from combined
nonprobability (convenience) sample Sc and probability
(reference) sample Sr:
▶ pseudo-likelihood based approaches (Chen, P. Li, and Wu

(2020),Wang, Y. Li, and Valliant (2021))
▶ likelihood based approach (Savitsky et al., 2022)

▶ We present and compare theoretical properties of these
methods and illustrate the differences using numerical
study and simulations
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Combined sample S = Sc ⊕ Sr

πr (xi) = P (Ii = 1|i ∈ U,xi) are known reference sample selection
probabilities

πc (xi) = P (Ri = 1|i ∈ U,xi) are unknown response propensity to
convenience survey

Stack samples: S = Sc ⊕ Sr (overlapping units included twice)

Z is observed indicator on S: Zi = 1|i ∈ Sc and Zi = 0|i ∈ Sr

πz (xi) = P (Zi = 1|i ∈ S,xi) can be estimated
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Core Relationship for Independent Sampling
Probabilities (CRISP)

Response propensity πc (xi) to convenience survey can be
found from CRISP:

πz (xi) =
πc (xi)

πc (xi) + πr (xi)

Elliott (2009) and Elliott and Valliant (2017) present this formula
assuming negligible fraction of overlapping units.

The proof by Savitsky et al. (2022) makes no assumption about
the overlapping units.
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Implicit Logistic Regression (ILR)

Bernoulli log-likelihood for observed Z on ‘stacked’ S = Sc ⊕ Sr :

lILR (Z, πz (ϕ)) =
∑

Sc⊕Sr

Zi log πzi + (1− Zi) log (1− πzi)

Use CRISP to parameterize πzi (ϕ) as composite function:

πzi (πci (ϕ)) =
πci (ϕ)

πci (ϕ) + πri
, where logit [πci (ϕ)] = xiϕ

Parameters ϕ can be estimated by solving score equations ∂lILR

∂ϕ = 0

with Newton-Raphson iterations.
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Pseudo-ILR (PILR)

Bernoulli log-likelihood on ‘stacked’ Sc ⊕ U (Wang, Y. Li, and Valliant,
2021):

l (Z, πz (ϕ)) =
∑
Sc⊕U

Zi log πzi + (1− Zi) log (1− πzi)

Pseudo log-likelihood on S = Sc ⊕ Sr with wri = π−1
ri :

lPILR (Z, πz (ϕ)) =
∑

Sc⊕Sr

Zi log πzi + wri (1− Zi) log (1− πzi).

Use CRISP to parameterize πzi (ϕ) as composite function:

πzi (πci (ϕ)) =
πci (ϕ)

πci (ϕ) + 1
, where logit [πci (ϕ)] = xiϕ.

If Sr ≡ U then lPILR (ϕ) ≡ lILR (ϕ).
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Likelihood Estimating Equations (CLW)

Bernoulli log-likelihood of unobserved R on U (Chen, P. Li, and Wu,
2020):

l (R, πc (ϕ)) =
∑
U

Ri log πci + (1−Ri) log (1− πci)

=
∑
Sc

log

{
πci

1− πci

}
+
∑
U

log (1− πci)

Pseudo log-likelihood with survey weights wri = π−1
ri

lCLW (πc (ϕ)) =
∑
Sc

log

{
πci

1− πci

}
+
∑
Sr

wri log (1− πci),

Parameterize logit (πci (ϕ)) = x′
iϕ and solve score equations for ϕ.
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A key difference between the methods

▶ CLW directly models the response indicator to
nonprobability survey Ri ∼ Bernoulli (πc(xi)). If Ri is
observed, then CLW is optimal. However, Ri is generally
unobserved, unless Sr = U .

▶ ILR and PILR use CRISP to implicitly model Ri by
modeling Zi ∼ Bernoulli (πz (πc(xi))), the observed
indicator of Sc on ‘stacked’ sample S = Sc ⊕ Sr
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Hajek estimator of population mean

Hajek IPW estimator of finite population mean
µ = N−1

∑
i∈U Yi from the convenience sample with estimated

response propensity:

µ̂ =
1

N̂

∑
i∈Sc

yi
π̂ci

,

where N̂ =
∑

i∈Sc
(π̂ci)

−1.

How Var (µ̂) is inflated due to estimation of π̂ci?
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Estimating equations for η = (µ,ϕ)

µ - population mean, ϕ - propensity model parameters.
Consider the system of estimating equations:

Φ (η) =

(
S (µ)
S (ϕ)

)
= 0,

where
S (µ) = N−1

∑
i∈Sc

π−1
ci (yi − µ) = 0

and S (ϕ) = Sc (ϕ) + Sr (ϕ) are score equations for ILR, PILR
or CLW.
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Variances of η = (µ,ϕ)

Variances of parameter estimates are

Var (η̂) = H−1Var {Φ (η)}H−1,

where

Var {Φ (η)} =

(
Var (S (µ)) Cov (S (µ) ,Sc (ϕ))

Cov (S (µ) ,Sc (ϕ)) Var (S (ϕ))

)
,

H = −E

[
∂Φ (η)

∂η

]
is Hessian.
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Variances of η = (µ,ϕ) (cont’d)

Var (µ̂) = Var (S (µ))− 2bCov (S (µ) ,Sc (ϕ)) + bVar (S (ϕ))bT

Var(ϕ̂) = H−1
ϕϕ Var (S (ϕ))H−1

ϕϕ

where

Var (S (ϕ)) = Var (Sc (ϕ)) + Var (Sr (ϕ))

b = H−1
ϕϕHϕµ,Hαβ = −E

[
∂Φ (β)

∂α

]
All methods are asymptotically equivalent:
Var (η̂) ∼ O

(
n−1
r + n−1

c

)
However, Var (Sr (ϕ)) is a major contributor to the differences
between ILR, PILR and CLW methods.
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Design variance and “overlap” between Sc and Sr

Vd (.) is design variance with respect to sampling indicator Iri:

ILR: Var (Sr (ϕ)) = Vd

(∑
U
Iri

gi
1 + gi

(1− πci)xi

)
PILR: Var (Sr (ϕ)) = Vd

(∑
U
Irigi

1− πci
1 + πci

xi

)
CLW: Var (Sr (ϕ)) = Vd

(∑
U
Irigixi

)
gi = πc (xi)/πr (xi) - depends on overlap between Sc and Sr in
covariate-defined domains xi.
▶ “High” overlap: πc (xi) and πr (xi) are similar for all xi, and

gi ∼ nc/nr fluctuate around constant.
▶ “Low” overlap: πc (xi) and πr (xi) are dissimilar, and

gi ∈ (0,∞).
For ILR, gi

1+gi
∈ (0, 1).

For PILR, variability due to large gi is reduced by 1−πci
1+πci

.
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High and Low overlaps between Sc and Sr in covariate domains

▶ Covariates: X ∼ N (0, 1)

▶ Sc response propensity: logit (πci) = ϕ0 + ϕc ∗ xi, ϕc = 1.0

▶ Sr PPS size measure: logit (Mri) = 1.0 + ϕr ∗ xi

Figure: Low overlap: ϕr = −ϕc; High overlap: ϕr = ϕc
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Ratio of SE
(
ϕ̂1

ILR)
to SE

(
ϕ̂1

CLW)

Figure: Contour plots of the ratio of SE depending on sampling
fractions (fr, fc)
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Ratio of SE
(
µ̂ILR

)
to SE

(
µ̂CLW

)

Figure: Contour plots of the ratio of SE depending on sampling
fractions (fr, fc)
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Simulations scenarios

The purpose of simulations is to illustrate effects of sample
fractions, sizes and overlap (“high” and “low” ) between Sr and
Sc on estimates η̂ =

(
µ̂, ϕ̂

)
.

Sample PPS sample Sr Poisson sample Sc

fraction logit (Mri) = 1.0 + ϕr1 ∗ xi logit (πci) = ϕc0 + 1.0 ∗ xi
fr = .1, fc ≈ .1 nr = 100 nc ≈ 100

nr = 600 nc ≈ 600

fr = .01, fc ≈ .01 nr = 100 nc ≈ 100
nr = 600 nc ≈ 600

fr = .1, fc ≈ .01 nr = 1, 000 nc ≈ 100
fr = .01, fc ≈ .1 nr = 100 nc ≈ 1, 000

Covariates: xi ∼ N (0, 1)
fc ≈ .1, ϕc0 = −2.5 and fc ≈ .01, ϕc0 = −5.0

High overlap: ϕr1 = 1.0, Low overlap: ϕr1 = −1.0
Outcome variable on Sc: yi ∼ N

(
1 + xi, 1.5

2
)

Sc and Sr are sampled 500 times from a simulated population.
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Propensity parameter ϕ̂1 (true value is ϕ1 = 1.0 ) for sample fractions
(fc, fr) = (0.01, 0.1) and (0.1, 0.01), population size N = 10, 000

High overlap Low overlap
ϕ̂1 SD ŜE SE 95%CI ϕ̂1 SD ŜE SE 95%CI

nc = 100, nr = 1, 000
ILR 1.00 0.12 0.11 0.11 0.95 1.01 0.14 0.13 0.13 0.95

PILR 1.00 0.12 0.12 0.11 0.95 1.03 0.16 0.15 0.18 0.94
CLW 1.01 0.12 0.12 0.12 0.95 1.05 0.19 0.16 0.23 0.93

nc = 1, 000, nr = 100
ILR 1.00 0.14 0.14 0.15 0.94 1.01 0.15 0.15 0.15 0.95

PILR 1.01 0.16 0.16 0.16 0.95 1.05 0.26 0.25 0.29 0.94
CLW 1.05 0.23 0.22 0.22 0.95 1.29 0.62 0.51 0.68 0.92

SD - SD of ϕ̂1 over simulations
ŜE - estimated SE averaged over simulations.
SE - calculated SE for population.
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Figure: Relative residuals of the estimated propensity parameters ϕ̂1

for sample fractions (fc, fr) equal to (0.01, 0.1) (upper row) and to
(0.1, 0.01) (lower row) over the simulations
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Estimate of population mean µ̂ (true value is µ = 1.0) for sample fractions
(fc, fr) = (0.01, 0.1) and (0.1, 0.01), population size N = 10, 000

High overlap Low overlap
µ̂ SD ŜE SE 95%CI µ̂ SD ŜE SE 95%CI

nc = 100, nr = 1, 000
ILR 1.07 0.30 0.29 0.31 0.87 1.03 0.32 0.28 0.31 0.88

PILR 1.07 0.30 0.30 0.32 0.88 1.00 0.35 0.34 0.36 0.90
CLW 1.07 0.30 0.31 0.32 0.88 0.98 0.37 0.37 0.39 0.91

nc = 1, 000, nr = 100
ILR 1.02 0.14 0.14 0.14 0.94 1.01 0.13 0.13 0.13 0.95

PILR 1.00 0.17 0.18 0.16 0.96 0.96 0.24 0.27 0.26 0.96
CLW 0.97 0.23 0.29 0.21 0.95 0.75 0.54 Inf 0.60 0.95

SD - SD of µ̂ over simulations
ŜE - estimated SE averaged over simulations.
SE - calculated SE for population.
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Figure: Relative residuals of the estimated population mean µ̂ for
sampling fractions (fc, fr) equal to (0.01, 0.1) (upper row) and to
(0.1, 0.01) (lower row) over the simulations
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Comparison of the three methods for estimation of πc

▶ All three methods are asymptotically consistent and
similarly efficient under favorable conditions.

▶ ILR and PILR use “stacked” sets and employ CRISP
formula πz = πc/(πc + πr).
CLW models unobserved indicator of Sc on the population.

▶ ILR uses likelihood; PILR and CLW use pseudo-likelihood.

▶ ILR requires sampling probabilities πr for convenience
sample units. If they cannot be inferred from the probability
sample design, PILR should be used.

▶ ILR is more efficient especially in case of low overlap in
covariate domains, which is important for multivariate
models.
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What’s next ...

▶ Explore applying ILR to integrate BLS probability surveys with
administrative data. This may substantially improve estimates in
small domains (SAE) and for rare populations.

▶ The presented methods use CRISP to define composite
dependence of likelihood on model parameters. The CRISP
formula is general. Bayesian estimation has been implemented
by Savitsky et al. (2022). The methodology can be extended to
popular ML algorithms: CART, LASSO, Random Forest, Neural
Networks, etc.
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