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Background

 Linked survey and administrative data can be used to facilitate richer 
analyses by augmenting the information collected from the surveys with 
vital records and other administrative data

 Data linkage requires survey participants to provide consent for linkage 
and sufficient personally identifiable information (PII)

 There has been a growing reluctance of survey participants to provide the 
PII needed for linkage



Machine Learning to Predict Outcomes

 When data linkage is not possible, machine learning (ML) prediction 
models can be used to predict outcomes, such as morbidity and mortality

 ML models require quality and accurate training data and a validation 
source

 NCHS Data Linkage Program has developed an extensive repository of 
high-quality linked data files that can be used to address a wide-range of 
health-related research topics and a variety data science applications



Project Goal

 To evaluate selected ML prediction models using linked data as the 
training data and validation source to assess model performance for 
predicting all-cause mortality
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Data Source: Linked NHIS-NDI Data

• Monitors Health of the 
Non-institutionalized US 
population

• Cross sectional design
• Geographically clustered 
• Sampling weights 

• A complete source of death 
information for the US

• Mortality status, date of 
death, and cause of death 
from death certificates

NCHS Survey
National Health Interview 
Survey (NHIS) 2000-2001

Administrative Data
National Death Index
(Through 2019)



Selected Features
1. Age
2. Sex
3. Race and Ethnicity
4. Education
5. Marital Status
6. Poverty to Income Ratio (PIR)
7. Health Insurance
8. Inactivity
9. Smoking Status
10.Excessive Alcohol Consumption

11.Body Mass Index (BMI)
12.Hypertension
13.Diabetes
14.Coronary Heart Disease
15.Heart Condition
16.Heart Attack
17.Place for Care
18.Barrier to health Care: Cost
19.Psychological Distress



Sample Sizes
NHIS 2000 – 2001 

Sample Adults 
(n =65,700)

Not linkage eligible 
(n =3,692) Linkage eligible 

(n = 62,008)

Training set with 
complete data for all 
ML model features

(n = 23,210)

Training set 
NHIS 2000

(n = 30,626)

Validation set
NHIS 2001

(n = 31,382)

Validation set with 
complete data for all 
ML model features

(n = 23,739)



Distribution of Sample Size
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Training set (NHIS 2000)
Alive: n = 17,969
Deceased: n = 5,241

Validation set (NHIS 2001)
Alive: n = 18,842
Deceased: n = 4,897



Selected ML Models
All analyses were conducted using R v4.2.2 and the Caret package v6.0-94

 Generalized Boosting Model (GBM)
• No statistical assumptions 
• Sequence of independent trees that improves after each iteration

 Support Vector Machines (SVM)
• No probabilistic explanation for classification
• Slow to train and can be problematic for large datasets

 Naive Bayes (NB)
• Assumes conditional independence and that all features contribute 

equally to the outcome
• Easy to implement because only probabilities need to be calculated



Terminology and Evaluation Metrics

 Variable Importance
 Confusion Matrix

– Misclassification Error
– Sensitivity (Recall)
– Precision
– Balanced Accuracy 
– F1 Score
– Area Under the Curve (ROC-AUC) Pr
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Variable Importance Plots



Variable Importance Plots: Top 10 Features



Results

• Confusion Matrix
– Top 10 features

• ROC-AUC
• Metrics

– Error
– Recall
– Precision

– Balanced Accuracy
– F1-Score
– Run-time



Confusion Matrix : Top 10 Features



Area Under the Curve (AUC-ROC)



Evaluation Metrics

Model Error Recall Precision Balanced 
Accuracy

F1-
Score

Run-time

GBM
Complete 0.1212 0.6388 0.7383 0.7899 0.6849 2 min
Top 10 0.1239 0.5957 0.7752 0.7723 0.6648 35 sec
SVM
Complete 0.1324 0.5089 0.7715 0.7349 0.6133 30 min
Top 10 0.1320 0.4562 0.8262 0.7156 0.5878 1 min

NB
Complete 0.1618 0.7137 0.5891 0.7921 0.6454 2 sec
Top10 0.1560 0.7051 0.6044 0.7926 0.6509 1 sec



Summary
 GBM had lowest error rates and highest F1-scores
 SVM precision was greater than GBM, but was less efficient 

(longer run-time)
 NB was the most efficient and had higher recall and balanced 

accuracy measures
 Little change in overall performance across models when 

using  limited features (only top 10 variables)
 When trained with high-quality data ML models perform 

reasonably well for predicting all-cause mortality 



NCHS Data Linkage Program
Contact: Orlando Davy odavy@cdc.gov

Subscribe to the NCHS Data Linkage Program LISTSERV to receive updates! Email a message 
to list@cdc.gov.   Leave the subject line blank.    In the body of the message, type or paste: 
  

SUBSCRIBE NCHS-DATA-LINKAGE-PROGRAM last name, first name 

where ‘last name, first name’ is your last and first name.

Thank You!

mailto:odavy@cdc.gov
mailto:list@cdc.gov


Definitions and Formulas



Definitions

 Variable Importance (VI)
– A score indicating how much each variable contributes 

to the model prediction

 Hyperparameters
– External configuration parameters used to manage ML 

model training



Definitions: Hyperparameters
 GBM

1. Interaction.depth = 3
2. n.trees = 300
3. n.minobsinnode = 25

 SVM
1. C = 1.58

 NB
1. Laplace = 1
2. Kernel = False



Definitions

 Confusion Matrix
– A type of contingency table used to summarize  

the performance of classification algorithms
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Performance measures
 Misclassification Error

Precision     
Sensitivity (Recall)

 Specificity
 F1-Score
 Area Under the Curve (AUC)



Formulas

Misclassification Error

= FP+FN
TP+TN+FN+FP
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Formulas

Precision = TP
TP+FP

Sensitivity (Recall) = TP
TP+FN

Specificity = TN
TN+FP
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Definitions
 The Area Under the Curve (AUC-ROC) or Receiver Operating 

Characteristic (ROC) curve is a summary measure of 
performance for classification problems at various thresholds

 The curve is plotted with sensitivity against 1-Specificity 
where sensitivity is on the y-axis and 1-Specificity is on the x-
axis

 The 45° diagonal line serves as the reference line or random 
classification (AUC= .5)



Definitions
 Precision Recall Area Under the Curve (PR-AUC) gives a more 

informative picture of model performance when that data is 
highly imbalanced

 The curve is plotted with precision against recall where 
precision is on the y-axis and recall is on the x-axis

 Reference line is the fraction of positives in the data set



Definitions and Formulas

 F1-Score is the harmonic mean of Precision and Recall 
(Sensitivity)

=
1 + β2 × Precision × Recall
β2 × Precision + Recall

β = 1
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For more information, contact CDC
1-800-CDC-INFO (232-4636)
TTY:  1-888-232-6348    www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the 
official position of the Centers for Disease Control and Prevention.
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