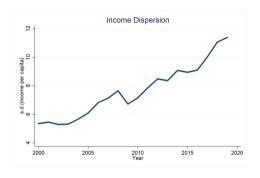
Geospatial Heterogeneity in Inflation:

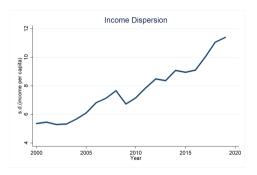
A Market Concentration Story

Seula Kim¹ Michael Navarrete²

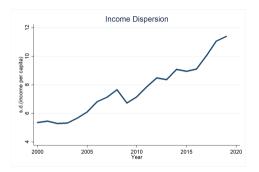

¹Princeton University

²University of Maryland

2023 FCSM Research & Policy Conference


October 26, 2023

Motivation


- Spatial income inequality has been on the rise in the United States
 - ▶ The dispersion of MSA-level (log) income has increased from 5.36 to 11.40 from 2000 to 2019

Motivation

- Spatial income inequality has been on the rise in the United States
 - ▶ The dispersion of MSA-level (log) income has increased from 5.36 to 11.40 from 2000 to 2019
- If inflation varies b/w rich and poor regions → "real" income inequality might have a different story

Motivation

- Spatial income inequality has been on the rise in the United States
 - ▶ The dispersion of MSA-level (log) income has increased from 5.36 to 11.40 from 2000 to 2019
- If inflation varies b/w rich and poor regions → "real" income inequality might have a different story
- Inflation is typically measured at the national level and presumed to be uniform across regions

Research Questions

- O Do inflation rates systematically vary across MSAs having different income level?
- O How is it related to local retailer market structure and power?

This Paper

Uses Nielsen Retail Scanner and Business Dynamic Statistics

This Paper

- Uses Nielsen Retail Scanner and Business Dynamic Statistics
- Finds the following evidence:
 - Food inflation rates vary across regions with different income level
 - ② The poorest decile experiences about 10 p.p. ↑ inflation than the richest decile over 2006-2016
 - The pattern holds for both aggregate and disaggregated food categories
 - 4 Larger (smaller) share of large (small) retailers in poorer areas
 - 6 The degree of market concentration is higher in poorer areas

This Paper

- Uses Nielsen Retail Scanner and Business Dynamic Statistics
- Finds the following evidence:
 - 1 Food inflation rates vary across regions with different income level
 - ② The poorest decile experiences about 10 p.p. ↑ inflation than the richest decile over 2006-2016
 - 3 The pattern holds for both aggregate and disaggregated food categories
 - 4 Larger (smaller) share of large (small) retailers in poorer areas
 - 6 The degree of market concentration is higher in poorer areas
- Documents suggestive evidence about heterogeneous market power acting as a potential source behind the differential inflation rates

Nielsen Retail Scanner (RMS)

- Nielsen contains detailed information for retail chains across U.S. markets
 - Covers 100 chains and over 40,000 individual stores
 - Weekly pricing, volume, store location, and merchandising conditions, etc.
 - Total sales worth over \$200 billion/yr; 50% of total sales in grocery stores; 55% in drug stores; 32% in mass merchandisers; and 2% in convenience stores
 - Over 2.6 million 12-digit universal product codes (UPCs), aggregated to product modules and groups

Nielsen Retail Scanner (RMS)

- Nielsen contains detailed information for retail chains across U.S. markets
 - Covers 100 chains and over 40,000 individual stores
 - Weekly pricing, volume, store location, and merchandising conditions, etc.
 - Total sales worth over \$200 billion/yr; 50% of total sales in grocery stores; 55% in drug stores; 32% in mass merchandisers; and 2% in convenience stores
 - Over 2.6 million 12-digit universal product codes (UPCs), aggregated to product modules and groups
- Build on the BLS concordance and construct a mapping b/w Nielsen and PCE food categories
- Map MSAs into into deciles based on income per capita

- BDS provides annual measures of business dynamics
- Public version of the Census firm data (Longitudinal Business Dynamics)

- BDS provides annual measures of business dynamics
- Public version of the Census firm data (Longitudinal Business Dynamics)
- Contains detailed information about establishment and firm characteristics
 - ► Total number of firms, employment, job creation and destruction
 - By different firm age/size bins, industry, and regions (MSAs)

- BDS provides annual measures of business dynamics
- Public version of the Census firm data (Longitudinal Business Dynamics)
- Contains detailed information about establishment and firm characteristics
 - ► Total number of firms, employment, job creation and destruction
 - By different firm age/size bins, industry, and regions (MSAs)
- We use it for retail trade sector (NAICS 44-45)

- BDS provides annual measures of business dynamics
- Public version of the Census firm data (Longitudinal Business Dynamics)
- Contains detailed information about establishment and firm characteristics
 - ► Total number of firms, employment, job creation and destruction
 - By different firm age/size bins, industry, and regions (MSAs)
- We use it for retail trade sector (NAICS 44-45)
- Use employment size and define large (500+) and small (20-) firms

Price Indices

$$\ln \Psi_t^G = \sum_{k \in \mathbb{C}_{t-1,t}} w_{kt} \ln \frac{p_{kt}}{p_{kt-1}},$$

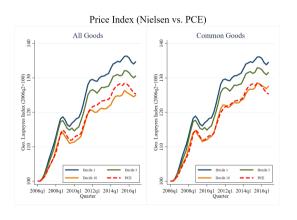
- w_{kt} is a weight assigned to product k (typically based on the product's market share) in quarter t
- The set $\mathbb{C}_{t-1,t}$ is the set of all "continuing" goods that are sold both in period t and in period t-1

Price Indices

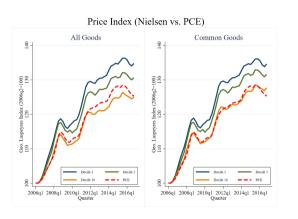
$$\ln \Psi_t^G = \sum_{k \in \mathbb{C}_{t-1,t}} w_{kt} \ln \frac{p_{kt}}{p_{kt-1}},$$

- w_{kt} is a weight assigned to product k (typically based on the product's market share) in quarter t
- ullet The set $\mathbb{C}_{t-1,t}$ is the set of all "continuing" goods that are sold both in period t and in period t-1
- Our main focus is the Laspeyres index
 - Laspeyres index uses lagged expenditure shares as weights ($w_{kt} = s_{kt-1}$)
 - Paasche index uses current expenditure shares $(w_{kt} = s_{kt})$

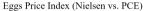
Price Indices

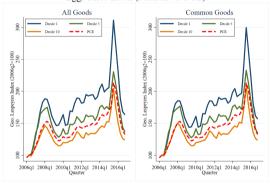

$$\ln \Psi_t^G = \sum_{k \in \mathbb{C}_{t-1,t}} w_{kt} \ln \frac{p_{kt}}{p_{kt-1}},$$

- w_{kt} is a weight assigned to product k (typically based on the product's market share) in quarter t
- ullet The set $\mathbb{C}_{t-1,t}$ is the set of all "continuing" goods that are sold both in period t and in period t-1
- Our main focus is the Laspeyres index
 - Laspeyres index uses lagged expenditure shares as weights ($w_{kt} = s_{kt-1}$)
 - Paasche index uses current expenditure shares $(w_{kt} = s_{kt})$
- As robustness check, we have used demand-based indices


e.g. Sato-vartia
$$(w_{kt} = \frac{\frac{(s_{k,t} - s_{k,t-1})}{(\ln s_{k,t} - \ln s_{k,t-1})}}{\sum_{k \in \mathbb{C}_{t-1,t}} \frac{(s_{k,t} - s_{k,t-1})}{(\ln s_{k,t} - \ln s_{k,t-1})}})$$

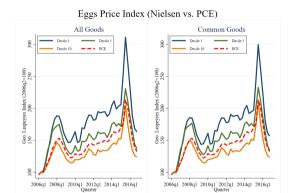
Spatial Heterogeneity in Inflation: Aggregate Food


Spatial Heterogeneity in Inflation: Aggregate Food

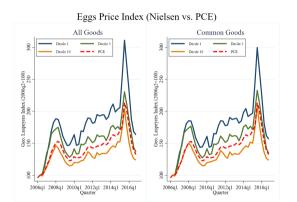


Food price has been growing faster in poorer areas

Spatial Heterogeneity in Inflation: Eggs



Spatial Heterogeneity in Inflation: Eggs



The pattern stays robust

Spatial Heterogeneity in Inflation: Eggs

- The pattern stays robust
- There was a bird flue episode in 2015 causing the price spike

Figure: Share of large firms (emp≥ 500)

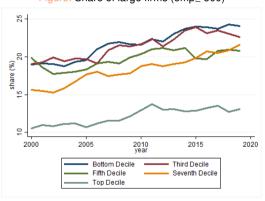
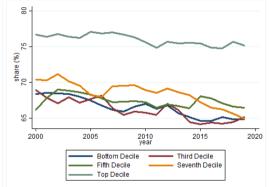
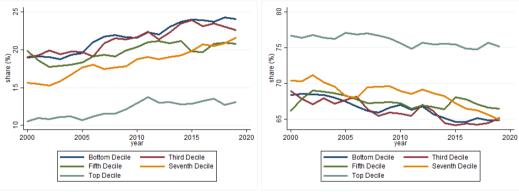
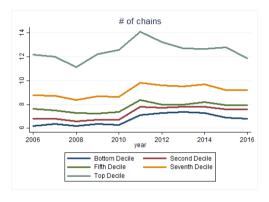


Figure: Share of small firms (emp< 20)



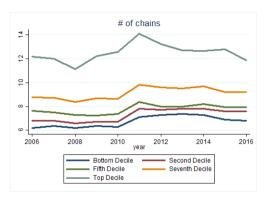


Figure: Share of small firms (emp< 20)

- More (less) large firms located in the bottom (top) decile
- Less (more) small firms located in the bottom (top) decile

- Less (more) number of chains are located in poorer (richer) areas
- Consistent pattern across time

Figure: Distribution of store numbers

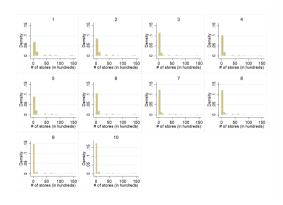
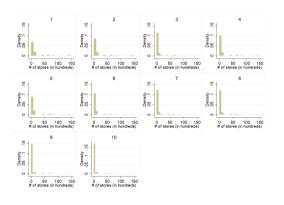



Figure: Distribution of store numbers

Higher fraction of large (small) chains in the bottom (top) decile (in terms of # of stores)

Market Concentration across Income Deciles

$$HHI_{idt} = \beta_0 + \beta_1 Decile_{dt} + \delta_i + \delta_t + \varepsilon_{idt}$$

Market Concentration across Income Deciles

$$HHI_{idt} = \beta_0 + \beta_1 Decile_{dt} + \delta_i + \delta_t + \varepsilon_{idt}$$

- HHI_{idt} is the Herfindahl–Hirschman index of retailer sales for PCE food category i, MSAs in income decile d in quarter t
- Decile_{dt} is an indicator for income decile
- δ_i , δ_t : PCE food category, year fixed effects

Market Concentration across Income Deciles

	ННІ
Decile	-0.004***
	[0.000]
Constant	0.145***
	[0.001]
Observations	10,920
*** p<0.01, ** p<0.05, * p<0.1	

Higher retailer concentration is observed in lower income decile

Potential Mechanism: Retailers' Market Power

Simple OLS Estimator

$$P_{st} = \beta_0 + \beta_1 HHI_{st} + \delta_s + \delta_t^{yr} + \delta_t^{qtr} + \varepsilon_{st}$$

- ullet P_{st} is the (geometric) Laspeyres index of eggs in MSA s, quarter t
- HHI_{st} is the HHI of retailer sales in MSA s, quarter t
- δ_s , δ_t^{yr} , δ_t^{qtr} : MSA, year, quarter fixed effects

OLS Estimation Results

	Price
нні	0.011*
	[0.006]
Constant	1.009***
	[0.003]
Observations	9,484
*** p<0.01, ** p<0.05, * p<0.1	

OLS Estimation Results

	Price	
ННІ	0.011*	
	[0.006]	
Constant	1.009***	
	[0.003]	
Observations	9,484	
*** p<0.01, ** p<0.05, * p<0.1		

- HHI increases price level
- Potential endogeneity issue exists

Triple Difference Estimator

$$\begin{split} P_{st} &= \beta_0 + \beta_2 HHI_{st} + \beta_4 \big(\textit{Treated}_s \times \textit{HHI}_{st} \big) \\ &+ \beta_5 \big(\textit{Treated}_s \times \textit{HHI}_{st} \big) + \beta_6 \big(\textit{Post}_t \times \textit{HHI}_{st} \big) \\ &+ \beta_7 \big(\textit{Treated}_s \times \textit{HHI}_{st} \times \textit{Post}_t \big) + \delta_s + \delta_t^{\textit{yr}} + \delta_t^{\textit{qtr}} + \varepsilon_{st} \end{split}$$

Triple Difference Estimator

$$\begin{split} P_{st} &= \beta_0 + \beta_2 HHI_{st} + \beta_4 (\textit{Treated}_s \times \textit{HHI}_{st}) \\ &+ \beta_5 (\textit{Treated}_s \times \textit{HHI}_{st}) + \beta_6 (\textit{Post}_t \times \textit{HHI}_{st}) \\ &+ \beta_7 (\textit{Treated}_s \times \textit{HHI}_{st} \times \textit{Post}_t) + \delta_s + \delta_t^{\textit{yr}} + \delta_t^{\textit{qtr}} + \varepsilon_{\textit{st}} \end{split}$$

- Treated_s is a binary variable indicating whether MSA s is near to where egg layers were culled during the 2015 Bird Flu according to the USDA report.
- Post_t is a binary variable equal to 1 if quarter t is after 2015q1
- P_{st}, HHI_{st}, and fixed effects are the same as before

Triple Difference Estimation Results

	Price	Price	Price
Bird Flu \times HHI \times Post		0.033***	0.018**
		[0.011]	[800.0]
$Bird\;Flu\;\times\;Post$	-0.006***	-0.023***	-0.017***
	[0.002]	[0.007]	[0.005]
HHI × Post		-0.014**	-0.008*
		[0.006]	[0.005]
$Bird\;Flu\;\times\;HHI$		-0.003	-0.030**
		[0.009]	[0.015]
HHI		0.013***	0.014***
		[0.002]	[0.005]
Fixed Effects	Yes	No	Yes
Observations	9,484	9,484	9,484

^{***} p<0.01, ** p<0.05, * p<0.1

Concluding Remarks

- Systematic diffs. in inflation rates and retailer market structure observed b/w poor and rich MSAs
- The poorest decile of MSAs faces (than the richest)
 - 1 Higher inflation rates for both aggregate and disaggregated food items
 - 2 Higher (Smaller) fraction of large (small) retailers
 - 6 Higher concentration rate of retailers
- Exploiting the 2015 bird flu episode, we find that more concentrated retailers charge higher prices
- Future work:
 - Structural estimation of market power and its contribution to price growth
 - 2 Identify and quantify the impact on spatial inequality

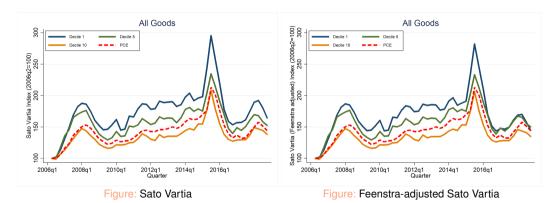
THANK YOU! ©

sk6285@princeton.edu / mnav@umd.edu

Appendix

Price Indices (Demand-based)

- Potential issues with Laspeyres or Paasche: no consideration on substitution effects
- Demand-based indices with CES assumption
 - ▶ Sato-Vartia: based on common goods (b/w t and t 1)


$$\ln \Psi_t^{SV} = \sum_{k \in \mathbb{C}_{t-1,t}} w_{kt} \ln \frac{p_{kt}}{p_{kt-1}}, \quad \text{where } w_{kt} = \frac{\frac{(s_{k,t} - s_{k,t-1})}{(\ln s_{k,t} - \ln s_{k,t-1})}}{\sum_{k \in \mathbb{C}_{t-1,t}} \frac{(s_{k,t} - s_{k,t-1})}{(\ln s_{k,t} - \ln s_{k,t-1})}}$$

Feenstra-adjusted Sato-Vartia: further take into account product turnover

$$\ln \Psi_t^{\textit{Feenstra-SV}} = \ln \Psi_t^{\textit{SV}} + \frac{1}{\sigma-1} \ln \frac{\lambda_{t,t-1}}{\lambda_{t-1,t}}, \quad \text{where } \lambda_{t,t-1} = \frac{\sum_{k \in \mathbb{C}_{t-1,t}} p_{k,t} q_{k,t}}{\sum_{k \in \Omega_t} p_{k,t} q_{k,t}}, \ \lambda_{t-1,t} = \frac{\sum_{k \in \mathbb{C}_{t-1,t}} p_{k,t-1} q_{k,t-1}}{\sum_{k \in \Omega_{t-1}} p_{k,t-1} q_{k,t-1}}$$

Spatial Heterogeneity in Inflation: Eggs (Demand-based)

- The patterns stays robust (even after considering product turnover)
- Entering goods have larger sales value than exiting goods across all deciles (more so in decile 1)

Spatial Heterogeneity in Large Firm Activity

$$LargeFirm_{st} = \beta_0 + \beta_1 Income_{st} + \delta_s + \delta_t + \varepsilon_{st}$$

- LargeFirm_{st} is the (employment) share of large firms in MSA s, year t
 - Large firms: firms with 500+ employees
- Income_{st} is income per capita in MSA s
- δ_s , δ_t : MSA, year fixed effects

Spatial Heterogeneity in Large Firm Activity

	Large firm share	Large firm emp. share	
Income	-0.040***	-0.040***	
	[0.006]	[0.009]	
Constant	19.896***	61.713***	
	[0.214]	[0.345]	
Observations	7,620	7,620	
*** p<0.01, ** p<0.05, * p<0.1			

Larger firms are more active in lower income decile