Price indices and dynamical expenditure shares

Preliminary Estimation of Chained CPI-U

Kate Eckerle

Daniell Toth, Joshua Klick, Jeffrey Wilson Bureau of Labor Statistics, OSMR, MSRC FCSM October 26th, 2023

Outline

- Price indices + consumer substitution
 Tornqvist Equation
- ❖ BLS: two stage process
 Timeliness
 Preliminary Chained CPI-U
- New idea: Forecast monthly shares Vector timeseries model With exogenous terms

What is a price index?

- ❖ A price index is a number
- Should capture % change in cost of a set of items

- Inputs:
 - -prices (what do people pay), before and now
 - -amounts (how much do people buy)
- How should you combine these into one number?

Example

One way: ratio of weighted averages of prices

How to weight by importance? Item quantities

$$\frac{q_1 p_{\text{apple},t_1} + q_2 p_{\text{formula},t_1} + q_3 p_{\text{vacay},t_1} + \dots}{q_1 p_{\text{apple},t_0} + q_2 p_{\text{formula},t_0} + q_3 p_{\text{vacay},t_0} + \dots}$$

q_1	Š Š
q_2	PPP
q_3	

- Expenditure = Quantity x Price
 - total cost of a basket at today's prices, vs total cost of same basket at past prices
- Vector notation (items go down rows) $\frac{\mathbf{q} \cdot \mathbf{p}_t}{\mathbf{q} \cdot \mathbf{p}_{t-1}}$

Lowe Index

$$\frac{\mathbf{q} \cdot \mathbf{p}_t}{\mathbf{q} \cdot \mathbf{p}_{t-1}}$$

If fixed quantity vector:

-is concurrent with time of past prices -> called Laspeyres

-is defined at or over a time period non-overlapping with times of prices, called Lowe

*we'll indicate this with a b subscript for "base period" (for us precedes t and t-1)

$$P_{t,t-1}^{\text{Lowe}} = \frac{\mathbf{q}_{\text{b}} \cdot \mathbf{p}_{t}}{\mathbf{q}_{\text{b}} \cdot \mathbf{p}_{t-1}}$$

Consumer Substitution

...but, when item price goes up, people tend to buy less than

less

more

They *substitute* relatively cheaper alternatives, to differing degrees for different items.

$$P_{t,t-1}^{\text{Lowe}} = rac{\mathbf{q}_{ ext{b}} \cdot \mathbf{p}_{t}}{\mathbf{q}_{ ext{b}} \cdot \mathbf{p}_{t-1}}$$

Fixed quantity -> tend to overstate rise in cost of living when prices rise

Two Extremes

Absolute price insensitivity

Fixed quantity

weighted <u>arithmetic</u> mean

$$P_{t,t-1}^{\text{Lowe}} = \frac{\mathbf{q}_{\text{b}} \cdot \mathbf{p}_{t}}{\mathbf{q}_{\text{b}} \cdot \mathbf{p}_{t-1}}$$

"upper bound"

Perfect price sensitivity

Fixed Expenditure Share • weighted geometric mean

$$P_{t,t-1}^{ ext{Geo}} = \prod_{j} \left(rac{p_{j,t}}{p_{j,t-1}}
ight)^{s_{j, ext{b}}}$$
 items $s_{j, ext{b}} \equiv rac{E_{j, ext{b}}}{\sum_{k} E_{k, ext{b}}}$

"lower bound"

Bridge Between Extremes

Lowe + Geo Means connected by a continuous family of indices

Lloyd-Moulton

One parameter: $\sigma \in [0,1]$ "Elasticity of Substitution"

$$P_{t,b}^{\text{LM}} = \left(\sum_{j} s_{j,b} \left(\frac{p_{j,t}}{p_{j,b}}\right)^{1-\sigma}\right)^{1/(1-\sigma)}$$

$$\sigma = 0$$

$$P_{t,b}^{\text{Lowe}} = \sum_{j} s_{j,b} \frac{p_{j,t}}{p_{j,b}}$$

$$\sigma \to 1$$

$$P_{t,b}^{ ext{Geo}} = \exp\left(\sum_{j} s_{j, ext{b}} \log\left(rac{P_{j,t}}{P_{j, ext{b}}}
ight)
ight)$$

Tornqvist Formula

geometric mean index but with dynamical quantity information

$$P_{t,t-1}^{\text{Tornq}} = \prod_{j} \left(\frac{p_{j,t}}{p_{j,t-1}} \right)^{\frac{1}{2}(s_{j,t} + s_{j,t-1})}$$

monthly expenditure shares

$$s_{j,t} \equiv \frac{E_{j,t}}{\sum_{k} E_{k,t}}$$

$$s_{j,t} = \frac{p_{j,t} \ q_{j,t}}{\mathbf{p}_t \cdot \mathbf{q}_t}$$

The idea is that this would capture the "true" amount of substitution, which is item and time dependent.

BLS: two-stage process

Inputs: Prices (establishment) + Expenditures (household)

Market basket: 243 basic items (hierarchical) $j=1,2,\dots,N$ Geography: 32 areas (Primary Sampling Units of CE) $j=1,2,\dots,N$

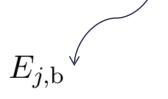
- \clubsuit 1st stage: compute a price index for each **item-area** con j ination
 - 243 x 32 = 7,776 basic price indices $P_{j,t} \leftarrow most$ with **Geo Means**
- 2nd stage: aggregate to reflect desired broader group
 Broadest level for CPI-U: All items, U.S. city average

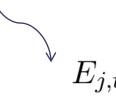
Aggregation

Plug basic price indices $P_{j,t}$ and aggregation weights into ANOTHER price index formula.

months: t = 1, 2, ..., T

item-areas: j = 1, 2, ..., N





Regular

$$P_{t,t-1}^{\text{Lowe}} = rac{\mathbf{Q}_{ ext{b}} \cdot \mathbf{P}_t}{\mathbf{Q}_{ ext{b}} \cdot \mathbf{P}_{t-1}}$$

Chained CPI

$$P_{t,t-1}^{\text{Tornq}} = \prod_{j} \left(\frac{P_{j,t}}{P_{j,t-1}} \right)^{\frac{1}{2}(s_{j,t} + s_{j,t-1})}$$

capture upper-level substitution

*both plutocratic, not democratic $Q_j^{\text{eff}} \equiv \frac{E_j}{P_i}$

$$Q_j^{\text{eff}} \equiv \frac{E_j}{P_j}$$

Timeliness problem

Hold-up: monthly shares, NOT prices

CE data comes with ~one year lag

$$P_{t,t-1}^{\text{Tornq}} = \prod_{j} \left(\frac{P_{j,t}}{P_{j,t-1}} \right)^{\frac{1}{2}(s_{j,t}+s_{j,t-1})}$$

$$s_t \equiv \mathbf{E}_t/|\mathbf{E}_t|_{\ell_1}$$

receive ~one year late!

While CPI-U final upon release, C-CPI-U issued as preliminary in month t.

Preliminary Estimate

2002 through 2014:

-calculated using Geometric Means (downward bias!)

Since Jan 2015:

-via constant elasticity of substitution model (i.e. based on LM)

$$P_{t,t-1}^{\text{CES}} = \frac{\left(\sum_{j} \left(s_{j,\sigma} \frac{P_{j,t}}{P_{j,v}}\right)^{1-\sigma}\right)^{1/(1-\sigma)}}{\left(\sum_{j} \left(s_{j,\sigma} \frac{P_{j,t-1}}{P_{j,v}}\right)^{1-\sigma}\right)^{1/(1-\sigma)}}$$

Why .6?

Originally based on work of Greenlees (2010)

❖sigma from Feenstra-Reinsdorf model:

$$\Delta \log(s_{j,Y}) = \alpha + (1 - \sigma)\Delta \log(r_{j,Y}) + \epsilon_j$$

$$\Delta \log(s_{j,Y}) \equiv \log(s_{j,Y}) - \log(s_{j,Y-1})$$

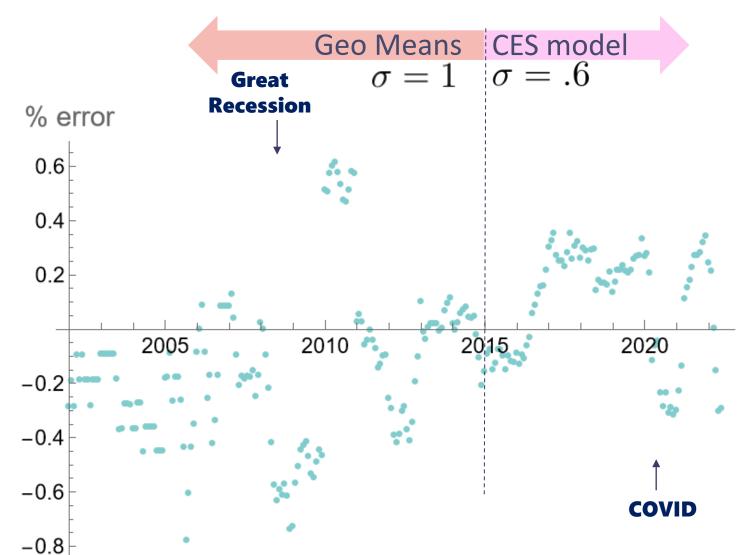
$$r_{j,\mathrm{Y}} \equiv \frac{P_{j,\mathrm{Y}}}{P_{j,\mathrm{Y}}}$$

annualized shares + prices relatives to obtain stable estimates (Y=year)

Fixed value selected:

$$\sigma = .6$$

Can we do better?



Surely an improvement, but assumes stability of this effective/net sigma...

- Errors correlated
- Shocks

Great Recession

COVID economy

Seasonal effects

Alternative: Forecast monthly shares

If one drops Feenstra-Reinsdorf, optimal sigma varies enormously year-to-year, and month-to-month. (Robert Cage + Joshua Klick)

❖ Cage + Wilson (2009):

Forecast monthly budget shares -> plug into Tornqvist

- Univariate time series models (ARIMA)
- Worked well for highly seasonal

...but, this will capture budget share dynamics that can be predicted without knowing about prices, or what other shares are doing.

Our idea

Whole idea behind superlative indices is that the state of relative prices changes affects allocation of spending across items...

Build an expenditure **forecast model** that **incorporates** item-area **price** indices (which recall are not lagged).

- 1. Avoid constraints
 - -model item-area expenditures, not shares
- 2. Allow interactions among item-area expenditures
 - -univariate -> **vector** timeseries model
- 3. Allow couplings to item-area prices (external)
 - -exogenous terms

Vector ARMAX

$$B y_{j,t} = y_{j,t-1}$$

$$\Delta = I - B$$

model
$$y_{j,t} \equiv \Delta \log(E_{j,t})$$
 with inputs $x_{j,t} \equiv \Delta \log(P_{j,t})$

$$\begin{pmatrix}
I - \sum_{k=1}^{p} \boldsymbol{\phi}_{p} B^{p} \\
\hat{O}_{1}
\end{pmatrix} \mathbf{y}_{t} = \begin{pmatrix}
\sum_{k=0}^{r} \boldsymbol{\beta}_{k} B^{k} \\
\hat{O}_{2}
\end{pmatrix} \mathbf{x}_{t} + \begin{pmatrix}
I - \sum_{k=1}^{q} \boldsymbol{\theta}_{k} B^{k} \\
\hat{O}_{3}
\end{pmatrix} \boldsymbol{\epsilon}_{t}$$

$$\mathbf{y}_{t} = \hat{O}_{1}^{-1} \hat{O}_{2} \ \mathbf{x}_{t} + \hat{O}_{1}^{-1} \hat{O}_{3} \ \boldsymbol{\epsilon}_{t} + \boldsymbol{\xi}_{t}$$

$$\xi_{j,t} = \sum_{n=1}^{6} A_{j,n} \sin\left(2\pi \frac{nt}{12} + \delta_{j,n}\right)$$

Contact Information

Kate Eckerle
Research Mathematical Statistician
MSRC, OSMR

eckerle.kate@bls.gov

