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Goals of Weighting
and Estimation
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Relationship of sample, frame, and target population
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Goals of weighting and estimation

Project sample s to target population U

Correct for undercoverage by frame, U � Fpc (eligible units
that cannot be selected)

Correct for overcoverage by frame (ineligible units that can
be selected)

Undercoverage can be huge problem in nonprobability
samples—missing demographic groups (age,
race/ethnicity, education levels)
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Weighting Nonprobability
Samples
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Approaches to inference

Quasi-randomization
Estimate pseudo-inclusion probabilities and use inverses as
weights

Superpopulation modeling
Can give weights that apply to any y if generally useful set
of covariates used

Combine quasi-randomization and superpopulation model
Called “doubly robust” in observational data literature
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Quasi-randomization

Quasi-randomization with a reference survey

Reference survey: a probability survey or a census
Combine reference sample and nonprob sample
Fit weighted binary regression to predict probability of
being in nonprob sample

Code nonprob cases = 1, reference cases = 0
Wts for nonprob cases = 1, wts for reference cases =
survey weight
Estimates: Pr(in nonprob sample) within whatever
population the reference sample represents

Weights are inverses of “pseudo-inclusion” probabilities
Justification is like repeated sampling in design-based
world
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Superpopulation modeling

Superpopulation modeling

Reference survey unneeded
Fit linear regression model of y on covariates
Use fitted model to predict values for nonsample cases
Add sample values to nonsample predictions to estimate
pop total

Estimated total is approximately t̂ = t
T
Ux �̂

Predict for every unit in population and add up
Only pop totals of x ’s are needed—not individual x ’s for
nonsample units

Justification: estimator of total is model-unbiased if model
is correct
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Superpopulation modeling

Standard error estimation

Quasi-randomization: use design-based variance
estimator for with-replacement sampling
– Ignores fact that pseudo-probabilities are estimates
– Could replicate to reflect that (jackknife, bootstrap)
Superpopulation modeling
– Model-based variance estimators are available
– Replication also works
Combination (doubly-robust)
– Need to replicate to reflect all sources of variability
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Superpopulation modeling

Multilevel regression & poststratification

Variation on superpopulation modeling
Fit an elaborate model for a poststratum of units
Estimate a mean or proportion as

�̂y =
PG


=1
P̂
�̂


P̂
 = estimated proportion of pop in poststratum 


�̂
 = estimated mean per element in poststratum 


PS mean is estimated by random (or mixed) effects model
or Bayesian modeling approach
Begin with cross-classification of many covariates and
dynamically decide which crosses to retain
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Simulation Study



Outline The Inferential Problem Weighting Nonprobability samples Simulation Study Conclusion References

Simulation population

Simulation population

Pop based on Michigan BRFSS dataset in R PracTools
pkg [Valliant, Dever, & Kreuter 2017]

Demographics—age, race, education, income
Analysis vars—Self-reported general health, smoked 100
cigarettes in lifetime, good or better health, mean health
rating
N = 50; 000 in U ; select samples from persons who have
Internet access at home (about 65% of pop)
Similar to [Valliant & Dever, 2011] study but samples here
are selected to have substantial undercoverage problem
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Simulation population

Table: Distribution by age of population of persons, subgroup that has
Internet access at home, and samples

Proportions
Age Population Internet Sample

1 = 18-24 0.06 0.06 0.12
2 = 25-34 0.14 0.16 0.31
3 = 35-44 0.20 0.23 0.19
4 = 45-54 0.22 0.25 0.20
5 = 55-64 0.17 0.18 0.13
6 = 65+ 0.22 0.12 0.05

Total 1.00 1.00 1.00
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Simulation population

Table: Proportions of analysis variables in full population and subpop
of persons with Internet access at home.

Smoked 100 cigarettes Good or better health
Population Internet Population Internet

Yes 0.54 0.50 0.84 0.89
No 0.46 0.50 0.16 0.11

Internet subpop smokes less and is more healthy) weighting
has a lot to correct for
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Sampling & Estimation
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Sampling & Estimation

Sampling & Estimation

Select stratified srswor sample from Internet subpop;
strata = age
Fact that sample is stsrswor is unknown to analyst
Sample sizes n = 500 and 1; 000

Reference sample is same size as the nonprob sample
Repeat 10,000 times
Estimators

Quasi-random
Model-based: M1 (linear), M2 (raking)
Doubly robust (quasi-random + M1)

SE estimates: WR design-based; grouped JK (G = 50)
with all est steps repeated in each group



Outline The Inferential Problem Weighting Nonprobability samples Simulation Study Conclusion References

Results
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Results
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Conclusion

Poor population coverage is difficult to overcome

Quasi-random was least effective in eliminating bias

Linear model & raking have similar relbiases

Jackknife was somewhat better than WR replacement
variance estimator
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Conclusion (continued)

Caveat: Everything we do is
model-based one way of another

Nonresponse adjustment—depends on explicit or implicit
adjustment model
Calibration—efficiency depends on fit of model used to
calibrate
Coverage error correction—done either through NR
adjustment or calibration
Quasi-randomization—inclusion model
Superpopulation—structural model
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