A Latent Class Modeling Approach for Differentially Private Synthetic Data for Contingency Tables

Andrés Felipe Barrientos

Assistant Professor Department of Statistics Florida State University

Joint work with Michelle P. Nixon, Aleksandra Slavković, and Jerry P. Reiter.

2021 FCSM conference November 2021

2 Differentially private modeling approach

3 Illustrations with 2016 ACS data

Privacy and data sharing

Agencies and companies often seek to share their data.

- Protection of individuals' private information is a must.
- Traditional strategies: disclosure control methods [Hundepool et al., 2012] or releasing synthetic data [Rubin, 1993].
- In recent years, agencies are looking for methods that provide formally quantifiable privacy guarantees, e.g., those that rely on differential privacy.

Problem setup

• Confidential dataset $\mathbf{X} = \{X_i = (X_{1i}, \dots, X_{pi})\}_{i=1}^n$, where X_{ij} is categorical.

Assume that the agency is willing to release summaries of X denoted by M(X) = (M₁(X),..., M_T(X)).

The goal is to generate a synthetic version of X using M(X) and a formally private mechanism.

Illustration with ACS PUMS

- We selected a subset of 10,000 individuals from the 2016 one-year ACS PUMS.
- Each M_t(X), t = 1,..., 10, denotes a two-way marginal table.

			Age						Ra	ce		
		Citizenship	0	1				Citizenship	0	1		
	-	0	11	596			-	0	299	308	•	
		1	443	8950			_	1	1731	7662		
			Sex		_				Inc	ome	_	
		Citizenship	0	1				Citizenship	0	1		
	-	0	273	334	-			0	294	313	_	
	-	1	4505	4888	_			1	2916	6477	_	
	Race					Se	x	_			Ince	ome
Age	0	1			Age	0	1			Age	0	1
0	110	344			0	239	215	-		0	445	9
1	1920	7626			1	4539	5007	_		1	2765	6781
	Sex					Inc	ome	_			Inc	ome
Race	0	1			Race	0	1			\mathbf{Sex}	0	1
0	945	1085			0	827	1203	:		0	1281	3497
1	3833	4137			1	2382	5587			1	1929	3293

Differential privacy

 Differential privacy is the best known formal privacy framework in use.

• $\mathcal{M}(\mathbf{X})$ is a randomized version of $M(\mathbf{X})$.

Definition

 ϵ -Differential Privacy [Dwork et al, 2006]: A randomized mechanism \mathcal{M} satisfies ϵ -differential privacy if for all data sets \boldsymbol{X} and \boldsymbol{X}' differing on at most one row, and $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$,

$$\frac{\Pr[\mathcal{M}(\boldsymbol{X}) \in \boldsymbol{S} | \boldsymbol{X}]}{\Pr[\mathcal{M}(\boldsymbol{X}') \in \boldsymbol{S} | \boldsymbol{X}']} \leq \exp(\epsilon) \,.$$

Differentially private summary statistics

•
$$\mathcal{M}(\mathbf{X}) = (\mathcal{M}_1(\mathbf{X}), \dots, \mathcal{M}_T(\mathbf{X}))$$
 is a randomized version of $M(\mathbf{X}) = (M_1(\mathbf{X}), \dots, M_T(\mathbf{X})).$

Theorem

Geometric Mechanism [Ghosh et. al, 2012]: For $M_t(\mathbf{X}) : \mathcal{D} \to \mathbb{Z}^{d_t}$, the mechanism \mathcal{M}_t that adds independently drawn noise from a two-sided-Geom $(\exp\{\frac{-\epsilon_t}{\Delta M_t}\})$ distribution to each of the d_t terms of $M_t(\mathbf{X})$ satisfies ϵ_t -differential privacy.

• Sensitivity
$$\Delta M_t = \sup_{\boldsymbol{X}, \boldsymbol{X}'} \|M_t(\boldsymbol{X}) - M_t(\boldsymbol{X}')\|_1$$
.

Illustration with ACS PUMS

F 0

Sequential composition [Mcsherry, 2009]: If each M_t provides ε_t-differential privacy. The sequence of M(X) = (M₁(X),..., M_T(X)) provides (ε = Σ_t ε_t)-differential privacy. We can use ε_t = ε/T.

``						•			-		'	
			Age						Ra	ce		
		Citizenship	0	1				Citizenship	0	1		
		0	11	596			-	0	299	308		
		1	443	8950				1	1731	7662		
			Sex						Inc	ome		
		Citizenship	0	1	-			Citizenship	0	1	-	
	-	0	273	334	-			0	294	313	-	
	-	1	4505	4888	_			1	2916	6477	_	
	Race					Se	x				Inco	ome
Age	0	1			Age	0	1			Age	0	1
0	110	344			0	239	215	-		0	445	9
1	1920	7626			1	4539	5007	_		1	2765	6781
	Sex					Inc	ome	_			Inc	ome
Race	0	1			Race	0	1			\mathbf{Sex}	0	1
0	945	1085			0	827	1203			0	1281	3497
1	3833	4137			1	2382	5587			1	1929	3293

Bayesian modeling approach

The released summary statistic is of the form

$$\mathcal{M}(\boldsymbol{X}) = (\boldsymbol{M}_1(\boldsymbol{X}) + \varepsilon_1, \dots, \boldsymbol{M}_T(\boldsymbol{X}) + \varepsilon_T).$$

- Some counts based on $\mathcal{M}(\mathbf{X})$ will not necessary match.
- Ideal modeling approach:

$$\mathcal{M}_{t}(\boldsymbol{X})|M_{t}(\boldsymbol{X}) \stackrel{ind}{\sim} \text{two-sided-Geom}_{d_{t}}\left(M_{t}(\boldsymbol{X}), \exp\left\{\frac{-\epsilon}{\Delta M_{t}T}\right\}\right),$$
$$M(\boldsymbol{X}) = (M_{1}(\boldsymbol{X}), \dots, M_{T}(\boldsymbol{X}))|\boldsymbol{\theta} \sim p_{M}(\cdot|\boldsymbol{\theta}),$$
$$\boldsymbol{\theta} \sim p_{\boldsymbol{\theta}}.$$

- lt is not easy to characterize $p_M(\cdot|\theta)$.
- We know that $M_t(\mathbf{X})|\boldsymbol{\theta} \sim \text{Multinomial}_{r_t}(n, P_t(\boldsymbol{\theta}))$.

Bayesian modeling approach using composite likelihood methods

Proposed modeling approach:

$$\mathcal{M}_{t}(\boldsymbol{X})|M_{t}(\boldsymbol{X}) \stackrel{ind}{\sim} \text{two-sided-Geom}_{d_{t}}\left(M_{t}(\boldsymbol{X}), \exp\left\{\frac{-\epsilon}{\Delta M_{t}T}\right\}\right),$$
$$M_{t}(\boldsymbol{X})|\boldsymbol{\theta} \stackrel{ind}{\sim} \text{Multinomial}_{d_{t}}(n, P_{t}(\boldsymbol{\theta})), \ t = 1, \dots, T,$$
$$\boldsymbol{\theta} \sim p_{\boldsymbol{\theta}}.$$

- ▶ Notice that the probabilities $P_1(\theta), \ldots, P_T(\theta)$ are related.
- We can define $P_t(\theta)$ by specifying a model for $X|\theta$.

Illustration with ACS PUMS

$$P_{1}(\theta) = \left(\begin{array}{cc} p_{1,(0,0)} & p_{1,(0,1)} \\ p_{1,(1,0)} & p_{1,(1,1)} \end{array}\right)$$

$$P_2(\theta) = \left(\begin{array}{cc} p_{2,(0,0)} & p_{2,(0,1)} \\ p_{2,(1,0)} & p_{2,(1,1)} \end{array}\right)$$

• Coherence: $p_{1,(1,0)} + p_{1,(1,1)} = p_{2,(1,0)} + p_{2,(1,1)}$

• We define $P_t(\theta)$ by specifying a model for $\boldsymbol{X}|\theta$.

Modeling $\boldsymbol{X}|\boldsymbol{\theta}$

We use the following mixture model [Dunson and Xing 2009]:

$$\begin{split} X_{ij} | z_i, \{ \Psi_h^{(j)} \}_{h=1}^{\infty} & \stackrel{ind}{\sim} Multinomial\{ 1, \Psi_{z_i 1}^{(j)}, \dots, \Psi_{z_i d_j}^{(j)} \}, \\ z_i | \{ \pi_h \}_{h=1}^{\infty} & \stackrel{ind}{\sim} Discrete\{ (1, \dots, \infty), (\pi_1, \dots, \pi_\infty) \}, \\ \pi_h &= V_h \prod_{l < h} (1 - V_l), \quad V_h \sim \beta(1, \alpha), \\ \Psi_h^{(j)} \sim Dirichlet(a_{j1}, \dots, a_{jd_j}), \\ \end{split}$$
where $\theta = \left(\pi_k = \{ \pi_h \}_{h=1}^k, \ \Psi_k = \{ \Psi_h^{(j)} \}_{h=1, j=1}^{k, p} \right). \end{split}$

Defining $P_1(\theta), \ldots, P_T(\theta)$

If M₁(X) is the contingency table of the first two variables, then

$$P_{1}(\theta) = \left(\begin{array}{cc} p_{1,(0,0)} & p_{1,(0,1)} \\ p_{1,(1,0)} & p_{1,(1,1)} \end{array}\right)$$

where, e.g.,

$$p_{1,(0,0)} = \Pr(X_{.1} = 0, X_{.2} = 0 | \theta) = \sum_{h=1}^{k} \pi_h \Psi_{h0}^{(1)} \Psi_{h0}^{(2)} \sum_{i=0}^{1} \sum_{j=0}^{1} \sum_{l=0}^{1} \Psi_{hi}^{(3)} \Psi_{hj}^{(4)} \Psi_{hk}^{(5)} .$$

Bayesian modeling approach and inference

Proposed approach:

$$\mathcal{M}_{t}(\boldsymbol{X})|M_{t}(\boldsymbol{X}) \stackrel{ind}{\sim} \text{two-sided-Geom}_{d_{t}}\left(M_{t}(\boldsymbol{X}), \exp\left\{\frac{-\epsilon}{\Delta M_{t}T}\right\}\right),$$
$$M_{t}(\boldsymbol{X})|\boldsymbol{\theta} \stackrel{ind}{\sim} \text{Multinomial}_{d_{t}}(n, P_{t}(\boldsymbol{\theta})), \ t = 1, \dots, T,$$
$$\boldsymbol{\theta} \sim p_{\boldsymbol{\theta}}.$$

- We use MCMC algorithms to sample from $\theta | \mathcal{M}(\mathbf{X})$.
- ▶ Inferences are performed using $(P_1(\theta), \ldots, P_T(\theta)) | \mathcal{M}(X)$.

Bayesian modeling approach and inference

▶ Instead of using $M(X)|\mathcal{M}(X)$, we use $M(X^S)|\mathcal{M}(X)$.

To make inferences about the confidential summary, we use

$$Pr(X_{(n+1)1} = c_1, \dots, X_{(n+1)p} = c_p | \mathcal{M}(\boldsymbol{X})) = \int Pr(X_{(n+1)1} = c_1, \dots, X_{(n+1)p} = c_p | \boldsymbol{\theta}) Pr(\boldsymbol{\theta} | \mathcal{M}(\boldsymbol{X})) d\boldsymbol{\theta}$$

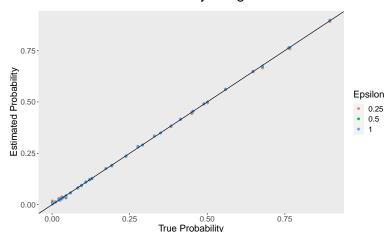
to generate synthetic datasets X^S and induce a distribution via $X^S \mapsto M(X^S)$.

Illustrations with ACS PUMS

- We selected a subset of 10,000 individuals from the 2016 one-year ACS PUMS.
- Each M_t(X), t = 1,..., 10, denotes a two-way marginal table.

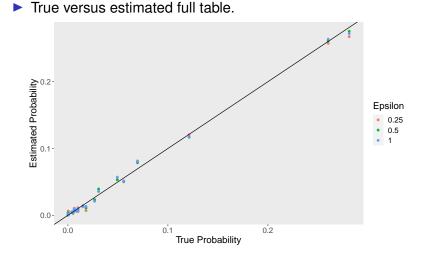
			Age						Ra	ce		
		Citizenship	0	1				Citizenship	0	1		
		0	11	596			-	0	299	308	•	
		1	443	8950			_	1	1731	7662		
			S	ex	_				Inc	ome	_	
		Citizenship	0	1				Citizenship	0	1		
	-	0	273	334	-			0	294	313	_	
	-	1	4505	4888	_			1	2916	6477	_	
	Race					Se	x	_			Inco	ome
Age	0	1			Age	0	1			Age	0	1
0	110	344			0	239	215	-		0	445	9
1	1920	7626			1	4539	5007	_		1	2765	6781
	Sex					Inc	ome	_			Inc	ome
Race	0	1			Race	0	1	_		\mathbf{Sex}	0	1
0	945	1085			0	827	1203	:		0	1281	3497
1	3833	4137			1	2382	5587			1	1929	3293

Illustrations with ACS PUMS

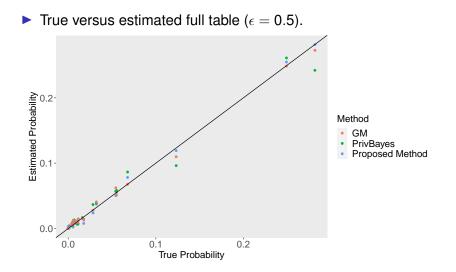


True versus estimated two-way marginal tables.

Illustrations with ACS PUMS



Comparisons with existing methods



Concluding remarks

- We present a novel method to create differentially private synthetic data for contingency tables based on marginal counts.
- The simulation results indicate that our approach preserves the summaries.
- The proposed approach is complementary to existing releasing mechanisms.
- Our general strategy can be extended to more complex data structures.

Thank you!