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CDC WONDER

For the sake of illustration, we’ll look at county-level data for ages 35–44 from 2016



CDC WONDER

These ICD-10 codes represent “death due to heart disease”



CDC WONDER

County-level heart disease-related death counts for ages 35–44 in 2016 from all races
and all genders

All counts less than 10 are suppressed in public-use datasets



CDC WONDER

While CDC WONDER offers a wealth of data and does implement privacy protections,
there is still room for improvement:

◮ Utility: Suppression of small counts affects users’ ability to assess...

◮ Privacy

Is there a way that CDC can address these issues?
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CDC WONDER

While CDC WONDER offers a wealth of data and does implement privacy protections,
there is still room for improvement:

◮ Utility: Suppression of small counts affects users’ ability to assess...
◮ Urban/Rural disparities
◮ Racial disparities
◮ Differences by sex
◮ Differences by age
◮ Differences by cause-of-death

◮ Privacy
◮ Targeted attacks by clever intruders can overcome data suppression to uncover the

true counts

Is there a way that CDC can address these issues?



Synthetic Data

One option to address the issue of data suppression would be to release synthetic data:
e.g., if

◮ y = (y1, . . . , yI )
T denotes a restricted-use dataset,

◮ p (y |φ) is an appropriate statistical model for y with parameters φ, and

◮ p (φ |ψ) is a prior distribution for φ given hyperparameters, ψ,

then we can generate a synthetic dataset, z = (z1, . . . , zI )
T , from the posterior

predictive distribution,

p (z | y,ψ) =

∫

p (z |φ) p (φ | y,ψ) dφ.

More specifically, we can sample φ∗ from p (φ | y,ψ) and then sample z from p (z |φ∗).



Differentially Private Synthetic Data(Dwork, 2006)

The standard typically used for demonstrating formal privacy guarantees is the concept
of differential privacy (Dwork, 2006).

In this context, p (z | y,ψ) is ǫ-differentially private if for any similar1 dataset, x,

∣

∣

∣

∣

log
p (z | y,ψ)

p (z | x,ψ)

∣

∣

∣

∣

≤ ǫ. (1)

While ψ can be viewed as a vector of model parameters — selected a priori in hopes
that E [yi |ψ] ≈ yi in order to produce synthetic data with high utility — the elements
of ψ are primarily used to satisfy ǫ-differential privacy.

1‖x− y‖ = 2 and
∑

i
xi =

∑
i
yi — i.e., there exists i and i ′ such that xi = yi − 1 and xi′ = yi′ + 1

with all other values equal



Table of Contents

Motivating Example: CDC WONDER

Methods for Generating Differentially Private Synthetic Data
Multinomial-Dirichlet Model
Poisson-Gamma Model
Prior Predictive Truncated Poisson-Gamma Model

Analysis of the PA Cancer Death Data

Summary



Multinomial-Dirichlet model

Let y be a vector of sensitive count data of length I ≥ 2 with
∑

i yi = y· and assume

y |θ ∼ Mult (y·,θ) and θ ∼ Dir (α) .

It can (but won’t) be shown that if

minαi ≥ z·/ [exp (ǫ)− 1] ,

the multinomial-Dirichlet synthesizer, p (z | y,α), will satisfy ǫ-differential privacy.

◮ i.e., if our Dir (α) prior is informative enough, it can sufficiently mask the data.

Key drawback: Assumes homogeneity

◮ Shouldn’t Philadelphia have more deaths than Small Town, PA?

◮ Shouldn’t more deaths be attributed to old people than young people?



Poisson-Gamma model

In contrast, the Poisson-gamma framework assumes

yi |λi ∼ Pois (niλi ) and λi ∼ Gamma (ai , bi ) .

Since the yi are (conditionally) independent Poisson random variables, we can write

y |λ,
∑

i

yi = y· ∼ Mult

(

y·,

{

niλi
∑

j njλj

})

◮ Allows for heterogeneity in population sizes (via ni ) and underlying event rates
(via ai/bi )

But under what conditions will this satisfy ǫ-differential privacy?



Poisson-Gamma model

It can (but won’t) be shown that the Poisson-gamma synthesizer, denoted
p (z | y, a,b), will satisfy ǫ-differential privacy if

ai ≥
z·

eǫ/νi − 1
(2)

where νi ∈ [1, 2] denotes what amounts to a penalty term associated with the
additional information gained from using the Poisson-gamma model compared to the
multinomial-Dirichlet model.
Key drawback: Extreme “worst case scenario”

◮ Above criteria protects against group with ONE observed event (yi = 1) being
assigned ALL of the synthetic events (zi = z·).

◮ e.g., all cancer-related deaths in PA being assigned to a single rural county — this
shouldn’t be possible, so why should we worry about this???



Prior predictive truncated Poisson-gamma framework

Rather than focus on technical details, let’s consider a hypothetical example.

Suppose E [yi | a,b,n] = niλi0 = 10 for a given i and that our dataset consists of
y· > 26,000 events. Then 99.9% of the prior predictive distribution falls between
yi = 2 and yi = 22.

> qpois(.0005,10)

[1] 2

> qpois(.9995,10)

[1] 22

◮ If y· > 26,000, we should expect a reduction in model
informativeness on the order of

26,000

22− 2
> 1,300

Note: This approach is heavily dependent on having high quality prior information

◮ If E [yi | a,b,n] = niλi0 6≈ yi , then the prior predictive bounds will not be good.

◮ We will need to rely on subject-matter experts to know what is sufficient
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PA cancer death data from 1980 — 26,116 deaths from 47,034 strata

Attribute Levels

County i = 1, . . . , 67 Counties in Pennsylvania

Cancer Type

c = 1, . . . , 9 Forms of Cancer
Cancers of the lip, oral cavity, and pharynx (ICD-9: 140–149);

Cancers of the digestive organs and peritoneum (ICD-9: 150–159);
Cancers of the respiratory and intrathoracic organs (ICD-9: 160–165)

Cancers of the breast (ICD-9: 174–175);
Cancers of the genital organs (ICD-9: 179–187);
Cancers of the urinary organs (ICD-9: 188–189);

Cancers of all other and unspecified sites (ICD-9: 170–173, 190–199);
Leukemia (ICD-9: 204–208);

and all other cancers of the lymphatic and hematopoietic tissues (ICD-9: 200–203)

Age
a = 1, . . . , 13 Levels

Ages under 1; Ages 1–4; Ages 5–9; Ages 10–14; Ages 15–19; Ages 20–24; Ages 25–34;
Ages 35–44; Ages 45–54; Ages 55–64; Ages 65–74; Ages 75–84; and Ages 85 and older

Race r = 1, . . . , 3 Levels (Black, White, and Other)
Sex s = 1, 2 Levels (Male and Female)

Overview of the structure of the Pennsylvania cancer data. Cancer types are identified by their International Classification of Diseases, Ninth Revision
(ICD-9) codes. Data are publicly available — free of suppression — because they predate the privacy protections.



Prior information: National death rates vs. PA death rates
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Cause-specific death rates at the national level and for the state of Pennsylvania.
National-level rates are used as prior information for estimating the proper allocation of
deaths at the state and county level.
◮ We don’t need these to be perfect, we just need them to comparable.



Utility of synthetic data: Age-adjusted rates
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(b) Prior Predictive Truncation

Figure 1: Comparison of age-adjusted cancer-related death rates based on the two approaches
for generating synthetic data for ǫ = 1 and ǫ = 4.

◮ When ǫ = 1, the original model requires all ai > 15,000, whereas the prior
predictive truncation approach has a max (ai ) < 17 and most are less than 0.58



Utility of synthetic data: Age-adjusted rates

(a) True Age-Adjusted Rates (b) Synthetic Age-Adjusted Rates

Death Rate
(per 100,000)

Below 193
193 − 200
200 − 207
207 − 214
214 − 221
Over 221

◮ Because the prior information does not account for geographic disparities, as
ǫ → 0, estimates become geographically homogenous

◮ Point of emphasis: More difficult to identify true disparities, but also unlikely to
produce spurious disparities

ε = 4



Utility of synthetic data: Urban/rural and black/white disparities
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(a) Urban/Rural Disparity
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(b) Black/White Disparity

◮ Here again, as ǫ → 0, our estimates of the disparities shift from “the truth” to
“the prior”.
◮ Prior information did not include anything about urban/rural disparities, so the

effect is attenuated toward the null (i.e., no disparity)



Utility of synthetic data: Why we need to release the prior information

0 1 2 3 4

1.
0

1.
2

1.
4

1.
6

Privacy Budget (ε)

B
la

ck
/W

hi
te

 D
is

pa
rit

y
Truth
Prior

(a) Digestive Cancer; Females
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(b) Other Lymphatic Cancer; Males

◮ Digestive Cancer; Females: National black/white disparity is larger than in PA
◮ Other Lymphatic Cancer; Males: National black/white disparity is the opposite of

the disparity in PA
◮ Disclosing the prior information will help users determine if the results from the

synthetic data are driven by the data or are a reflection of the prior
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Summary

Using the prior predictive distribution to truncate the range of values for the
Poisson-gamma model can reduce the model’s informativeness by several orders of
magnitude, thereby producing substantial increases in utility

◮ The utility of the prior predictive truncation approach is heavily reliant on the
quality of the prior information; e.g., mortality rates differ by age, thus our prior
information ought to differ by age

◮ A small amount of our privacy budget can be used to protect the prior
information. Ideally, the prior would be based on relatively large counts (e.g.,
national death counts) such that adding DP noise would be unlikely to cause any
meaningful changes.



Thanks for listening!
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