

Assessing How Well Students in Economics Experiments Model Decision-Making for Non-Student Populations

Rosch, Fooks, Hellerstein, Lynch, Messer, Raszap Skorbiansky, Weigel, Zeballos

2018 Fed. Committee on Stat. Methodology Research and Policy Conference Washington, DC 7 March 2018

Disclaimer: The views expressed are those of the authors and should not be attributed to the Economic Research Service or USDA.

Outline

- 1. Experiments to inform policy-making
- 2. Selection of subjects
 - a. Challenges of experiments with farmers
 - b. Potential for using model populations
- 3. Research agenda on students as models for non-student populations in economic experiments
- 4. Measuring "representativeness"

Benefits of Using Experimental Data

- Complement survey and administrative data
- Identify causal responses to policy changes
- Isolate behavioral mechanisms, such as:
 - How insurance demand changes with differences in risk exposure
 - How auction bidding strategies change with differences in the numbers of competing bidders

Using Experiments to Inform Policy-Making

- Experimental evidence can be useful in answering many policyrelevant questions:
 - Test new auction mechanisms for the Conservation Reserve Program
 - Measure voter outreach methods for county commissioner elections
 - Measure the impact of subsidies for the Federal Crop Insurance
 Program
 - Assess consumer response to new food labeling information

Three Key Tradeoffs in Experiments

• Construct validity:

Does the experiment adequately replicate the real-world **<u>context</u>** such that behaviors within the experiment reflect behaviors in the real world?

• Internal validity:

Does the experiment adequately **<u>control</u>** for potential confounding factors?

• External validity:

Do the results generated by the experimental subjects **<u>represent</u>** other populations?

Preferred Experimental Subjects

- Policy-relevant populations, such as:
 - Conservation programs => eligible landowners
 - Crop insurance => eligible farmers
 - County commissioner elections => rural voters
 - Nutrition labels => consumers
- Just as with surveys, collecting experimental data from these populations requires <u>costs to the government</u> and <u>imposes</u> <u>burdens on participants</u>

Example: Challenges of Recruiting Farmers for Experiments

- Logistically difficult to recruit farmers
- Limited availability for experiments
- Require high participation fees
- In fact, relatively few published economic experiments used farmer subjects:
 - 73 studies used farmer subjects
 - 9 studies sampled US farmers
 - 6 of the 9 studies with US farmers had less than 70 subjects

What About Using a Model Population?

- Examples of model populations:
 - Animals for testing of new medications
 - Airplane prototypes used for wind tunnel testing
- College students are used by academic researchers to model nonstudent populations:
 - Businesses responses to new emissions trading platforms (Cason and Plott, 1996)
 - Stock traders responses to new information (Lei et al, 2001)
 - Public officials incentives to behave corruptly (Drugov et al, 2014)

Advantages to Using Students as Experimental Subjects

- Farmers:
 - Policy-relevant population
 - Understand context
 - Difficult to recruit
 - Require high participation fees
 - Limited time for the experiment

- College Students:
 - Not necessarily policy-relevant
 - Less familiar with context
 - Easy to recruit
 - Low participation fees
 - More time for experiment

But what can experiments with student samples tell us about farmer behaviors?

Comparing Experiments with Student and Farmer Subjects

- 8 published studies directly replicated with students and farmer samples
- Studies sample farmers from 4 different countries, involve many different methods, and investigate widely different topics
- Mixed outcomes:
 - 2 studies found different results between students and farmers for all tests
 - 1 study found no differences between students and farmers for all tests
 - 2 studies found some differences between students and farmers
 - 3 studies did not compare results between students and farmers

No Answers Yet...

- Insufficient data to assess students' abilities to model farmers' decision-making
 - Average behavior of farmers
 - Heterogeneity of farmer behaviors

... And What about Students' Abilities to Model Other Populations of Interest? ...

... More Research is Needed!

- Questions about external validity of model populations can only be answered with more experiments
- Use clues from studies comparing students and non-students in general to prioritize a research agenda:
 - Meta-analysis found 9 out of 13 experiments have "similar" results for student and non-student subjects (Frechette, 2011)
 - One study found differences between student and non-student subjects vary by type of economic game used (Belot et al, 2015)
 - Another study found differences in trust attitudes for student and non-student subjects correlates with differences in demographic characteristics (Falk et al, 2013)

Next Research Goals

- Measure how representative are students' and non-students' experimental results
- Characterize the conditions which influence how well students model decision-making for non-student populations
 - 1. Are there any **types of experiments** where student results are more likely to be similar to results from non-student subjects?
 - 2. Are there <u>characteristics of student subjects</u> that improve the generalizability of their results to non-student populations?

Several Challenges to Resolve

- 1. Inclusion and exclusion criteria for studies
- 2. Categorizing types of experiments
- 3. Defining "representativeness"
- 4. Selection of demographic characteristics

Defining Representativeness

- 1. Strongly representative model populations
 - average treatment effect for students has the same sign and a similar magnitude to the average treatment effect for non-students
- 2. Partially representative model populations
 - students and non-students have treatment effects that correlate with a population characteristic in a similar way
- 3. Unrepresentative model populations
 - average treatment effect for students is not similar to the average treatment effect for non-students, and correlations between observable demographic characteristics and treatment effects are not similar

Defining Similar

- Non-statistical test:
 - Same order of magnitude
- Tests of statistical significance:
 - Paired tests (e.g. paired t-test for independent samples)
 - Confidence intervals of bootstrapped differences
 - Convolutions approach (Poe et al, 1994)
 - Other?

Current Progress

- Still in the early stages of preparing first drafts
- Expected outputs:
 - Report for Office of Management and Budget
 - Academic version for publication
- Feedback on assumptions and approaches is most welcome!

For more information please contact: Stephanie Rosch stephanie.rosch@ers.usda.gov

