Participation Metrics for Accelerometer-Based Research

Christopher Antoun Alexander Wenz

2021 FCSM Research and Policy Conference

Motivation

- Accelerometers used by researchers to measure physical activity
 - Common devices: Fitbit, AppleWatch, GENEActiv
- Non-participation is a key challenge
- Occurs at two hierarchical levels:
 - Sample members: missing because they do not participate
 - Measurements: missing due to non-wear (among participants)
- Unlike with surveys, no standards exist for computing participation rates
- Efforts to examine the level of non-participation bias are rare

Our aims

- Conceptual aim
 - Propose definitions and formulas for calculating participation rates in accelerometer-based studies
 - Propose methods for assessing non-participation bias
- Empirical aim
 - Illustrate these concepts using data from National Health and Nutrition Examination Survey (NHANES) 2011-2012 and 2013-2014

Basic steps in accelerometer-based studies

- 1. Implement screening
- 2. Invite eligible individuals to participate in study
- 3. Provide accelerometer devices
- 4. Collect devices
- 5. Extract and process data
 - 5a. Measurements aggregated into periods (e.g., 1 minute, 5 minutes)
 - 5b. Classification of wear vs non-wear periods using statistical algorithm

Sample members

Complication (1 of 2)

- Sample members that do not participate in screening step
 - Eligibility is unknown
 - Unclear whether they should be included in denominator of participation rate
- Addressing this issue: as in surveys, estimate proportion that are eligible using information from other cases
 - Or present two participation rates: one including all cases of unknown eligibility in the denominator and one excluding these cases

Complication (2 of 2)

- Individuals do not wear devices for the full study period
 - Unclear what amount of wear-time is sufficient to be deemed a participant
- Addressing this issue: develop a priori definition of what constitutes "sufficient" wear-time in a particular study
 - For example: ≥72 of 168 hours; ≥5 of 7 days with at least 10 hrs/day
 - Participant inclusion criteria vary across studies

Participation rate

Proportion of eligible cases who provided sufficient data

$$\frac{S}{S + IN + T + D + R + e(U)}$$

where

S = Sufficient (inferred) wear-time

IN = Insufficient (inferred) wear-time on returned device

T = Technical problem extracting or processing data on returned device

D = Device never returned

R = Refusal/Non-consent

U = Unknown eligibility (no screener completed)

e = Estimated eligibility rate

Assessing non-participation bias

- Compare characteristics of participants and non-participants
 - If sample is recruited from respondents to a previous survey, can use self-report information for both groups
 - Self reports of <u>physical activity</u> capture information directly about the behavior of interest

Illustration: NHANES 2011-2012 and 2013-2014

- Cross-sectional study of U.S. general population
 - Participants first interviewed in homes, subsequently examined in Mobile Examination Center (MEC), then given accelerometer
- Data source: Actigraph GT3X+ (waterproof) accelerometer
 - 80 Hz raw data aggregated to 1-minute measurement periods
 - Ages 3 yrs + (6+ for 2011)
- Protocol:
 - 24-hour wear requested over 7 complete days
 - Return device by mail (\$40 incentive paid upon receipt)

Participation rates

	2011 NHANES		2013 NHANES	
Step	N	Rate	N	Rate
Study Sample ^a	7,821		8,913	
Returned Device (w/ readable data)	6,917		7,776	
Adherent Participants ^b	6,467		7,114	
Participation rate		83%		80%

^a Responded to household interview; examined in Medical Examination Center; eligible for accelerometer study ^b Algorithm-estimated wear time of at least 10+ hours on 4+ days of the 7-day study period.

Assessment of non-participation bias

	2011 NHANES		2013 NHANES	
Step	N	Average Weekly PA (METs)	N	Average Weekly PA (METs)
Study Sample - BENCHMARK	6,549	3,097	6,979	3,156
Adherent Participants	5,385	3,060	5,597	3,103
Overall Discrepancy		-37 (-1%)		-53 (-2%)

Analysis restricted to participants aged 12+

MET: Unit of energy expenditure. Computed using NHANES responses as follows: METs = (Mins Moderate PA \times 4.0) + (Mins of Vigorous PA \times 8.0)

Measurements

Within-participant missing data

- Among those deemed to be participants, there may be missing measurements (due to non-wear or technical problems)
- Wear rate: proportion of wear periods of all measurement periods among participants

$$\frac{W}{W + NW + NC}$$

where

W = wear periodsNW = non-wear periodsNC = non-classifiable periods

Hereafter labeled as "non-wear" for simplicity

Assessing non-wear bias

- In practice, no information is available about physical activity during non-wear periods
- Addressing this issue:
 - Replace these periods with the average of wear periods from other participants at the same time of day.
 - Then compare characteristics of wear and non-wear periods.

Non-wear rates

	2011 N	HANES	2013 NHANES	
Step	N	Rate	N	Rate
Total Periods	10,080		10,080	
Classifiable Periods ^a	9,638		9,665	
Wear Periods	9,119		9,071	
Wear Rate		91%		90%

^b Classifiable into wear vs. non-wear categories, as reflected by algorithm-assigned "confidence value".

Future step is to assess non-wear bias: Compute \bar{y} by replacing non-wear periods with average of wear periods at the same time of day, and compare it to \bar{y}_w .

Discussion and Conclusion

- Estimates in accelerometer-based studies are based on data that exclude: (level 1) non-participants and (level 2) non-wear periods among participants
- To compute participation rates, we divided cases into highlevels groups -> more fine-grained categories can be used
- Our indicators of non-participation bias have limitations
 - Self-report data from different reference period; contains some amount of measurement error
 - Actual values of non-wear periods are generally unknowable
- Potential next step is to extend to other data sets

Thank You!

Chris Antoun

University of Maryland
JPSM and iSchool
antoun@umd.edu

Alex Wenz

University of Mannheim School of Social Sciences

a.wenz@uni-mannheim.de