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Abstract 

Control charts are powerful tools for monitoring ongoing processes, providing evidence of the process’s stability 
and capability. We applied control chart techniques to the unit response rate (URR), a commonly used business 
survey quality indicator. At the U.S. Census Bureau, this measure is computed as part of survey processing and is 
subject to targeted benchmarks. Control charts will provide program managers a broader view of the unit response 
process and will help them to assess if their current procedures are capable of meeting a mandated benchmark. This 
paper presents our recommended methods for producing a p-chart for the URR. We employed simulation studies to 
address the challenges pertaining to this particular response indicator. Our objective was to find methods that could 
produce control limits that were reasonably precise and relatively easy to calculate. 

1. Introduction 

Business surveys in the Economic Directorate of the U.S. Census Bureau compute two types of response rates for 
usage as performance measures and quality indicators: a respondent level response rate and weighted-item level 
response rate. In this paper, we focus on the respondent level response rates, i.e., the unit response rates (URR). 
The URR is defined as the unweighted proportion of the sampled units that are eligible for data collection that 
“respond” to a survey. The URR is used as a performance measure (compared to predetermined benchmarks) and is 
an implied measure of data quality. It can also serve as a potential indicator of nonresponse bias. The Office of 
Management and Budget (OMB) offers the following guideline: “Given a survey with an overall unit response rate 
of less than 80 percent, conduct an analysis of nonresponse bias” (Federal Register Notice, 2006). The implication 
is that surveys with nonresponse rates greater than 20 percent may incur nonresponse bias. However, this is just a 
guideline as a survey may have a response rate lower than 80 percent and still be representative (Groves and Brick, 
2008). 

In this paper we move away from viewing the URR as simply a performance measure to be compared to a 
benchmark measure. Instead we seek to comprehend the variation of these response rates over time. By using 
control charts to monitor the URR, our focus switches from a single benchmark measure to a range of acceptable 
values that indicate if the response rate process is stable or not. By process2, we mean a set of activities that follow 
some logical flow, where value is added and some output/result is expected. 

All processes, including the response rate process that business surveys at the U.S. Census Bureau employs to get 
businesses to complete and return survey forms, have some form of variation. For example, the proportion of 
completed forms returned varies from one statistical period to the next. To understand this variation, one can track 
the unit response rates over time via a control chart. The control chart can help program managers to distinguish 
between variation that is inherent in the process and expected and variation that may not be. In addition to 

1 This report is released to inform interested parties of ongoing research and to encourage discussion of work in 
progress. Any views expressed on methodological or operational issues are those of the authors and not necessarily 
those of the U.S. Census Bureau. 

2 Source: Workbook on Leadership taught at a Six Sigma seminar conducted by Six Sigma Qualtec in Washington, 
D.C. on June 26, 2003. 
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monitoring variation, the control chart can be used to assess the response rate capability, particularly in light of 
mandated benchmark measures (Thompson and Oliver, 2010). 

With response rates, the concerns in a production setting arise when a decrease occurs, especially when there 
appears to be a trend. Control charts can detect trends – downward or upward. In the case of the former, programs 
managers may make deliberate changes to their response rate process to increase their response rates. In the case of 
the latter, program managers can use the control charts to validate the effectiveness of their process intervention. 

2. Analysis of the URR Process within a Statistical Process Control Framework 

Regardless of how well a production process operates, there will always be an inherent or natural variability that 
exists. This natural variability or “background noise” is considered normal. In the framework of statistical quality 
control, this variability is often referred to as “a stable system of chance causes.” A process that is operating with 
only chance causes of variation present is said to be in statistical control (stable). In practice, most processes do 
not remain stable forever. In fact, control charts were first introduced to monitor manufacturing processes, where 
user error, equipment error, or differences due to the input material can lead the process to be unstable. 

In a business survey environment, response processes could be affected by changes in reporting unit personnel, 
accounting practices, revised questionnaires, or the introduction of new collection methodology, for example. 
These sources of variability that are not part of the chance causes of variation are called special causes or 
assignable causes. A process that is operating in the presence of special causes is said to be out of control or 
unstable. If the special cause(s) is (are) found and corrected, the system returns to a state of control (Thompson & 
Oliver, 2010; Montgomery, 2005 pp. 148-149).  

The statistical process control framework generally assumes a large number of measurements are available in a 
relatively short time. However, this is simply not true for the response rate process of an ongoing survey. At best, 
we can obtain twelve unit response rate values in a given year for a monthly survey and as few as four for a 
quarterly. 

2.1 Formal Definition of the Unit Response Rate 

In Appendix D3-B, to the Census Bureau Standards (2011), the URR computed for statistical period t is defined as: 

tn
tR

t
U

t
E

t
R

t
URR

Where 

Rt = count of reporting units that were eligible for data collection in the statistical period and classified as a 
3response

Et = count of reporting units that were eligible for data collection in the statistical period 

Ut = count of reporting units in the statistical period whose eligibility for reporting could not be determined 

2.2 The Control Chart for the Unit Response Rate 

We propose using a p-chart to monitor the URR process. Consider a process that consists of nt independent trials 
conducted for statistical period (time) t where the outcome of each trial is dichotomous: “success” or “failure” (i.e., 
conforming or not conforming) and the probability of success on any trial (called Bernoulli trials) is p (Montgomery, 
2005). With respect to the URR, we monitor the number reporting units that “respond” (i.e., conform) to a survey 
during the designated statistical period (Rt), recognizing that the response process follows a Binomial distribution in 
the ideal sense only. In practice, not every reporting unit has the same probability, p, of responding to the survey. 

3 A respondent is an eligible reporting unit for which (1) an attempt was made to collect data; (2) the unit belongs 
to the target population; and (3) the unit provided sufficient data to be classified as a response. 
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For example, larger businesses are often more likely to respond than smaller ones – particularly the businesses that 
are included in the sample with certainty. 

A p-chart plots individual process measures (URRt) against a centerline (a process average) and control limits. To 
develop these statistics, we assume the following: 

The production process is operating in a stable manner across a predetermined number of consecutive 
statistical periods, T. 

The URR value is approximately constant across consecutive statistical periods. 

Conditioning on the statistical period t, the URR is an exact value. 

Each reporting unit in the tth statistical period has the same probability, p of “responding” to the survey. 

The response to the survey is binomially distributed: R bin (n , p) 

The true probability of responding, p is unknown and is estimated by a measure of central tendency obtained using 
the T most recent URR values: ,...,2,1, ˆˆˆˆ Iiii pppp that fall on the time interval [i, I]. In this paper, we consider two 

different estimators for p : a rolling process mean, meanp̂ and a rolling process median, medp̂ computed as follows. 

Given = URRt at time t, 

I

it
t

I

it t

t
mean p̂

Tn
R

T
p̂ 11

= mean value of URR over the studied time interval where T= I-i+1 

I
itp̂p̂ tmed  ]median[  = median value of URR over the studied time interval 

n
)p̂(p̂

σ̂ mm
m

1
= estimated standard error of mp̂ (m = mean or med) 

T

n
n

I

it
t

= average number of reporting units for the T consecutive statistical periods 

The Upper Control Limit (UCL) is computed as mm σ̂p̂ 3

mm σ̂p̂ 3 . 
, and the Lower Control Limit (LCL) is computed as 

The assumption is that the nt are approximately the same across statistical periods. 

The justification for development of the upper and lower control limits follows from the usage of a process mean to 
σ3 ˆestimate the centerline, invoking the Central Limit Theorem and assuming a stable process. Thus, at we would 

expect only 99.7 percent of the tp̂ to fall between σ̂p̂ 3 and σ̂p̂ 3 . The 0.3 percent that fall outside of this 
range either do so by chance occurrence or can be attributed to an assignable cause. An investigation would be 
needed to determine the reason. These control limits are typically called “3-sigma” control limits. The larger the 
value of the sample size, the smaller the width of the control limits (Montgomery, 2005, pp. 152-153). 

Although the above theory on p-charts calls for the mean as a measure of central tendency, we also incorporated the 
median due to the nature of our data. We recognize this as a limitation. 
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Tague (2004) provides the following general guidelines to indicate when a stable process may have become 
unstable: 

1. A single point plots outside the control limits. 

2. Two out of three consecutive points that plot on the same side of the centerline exceed 2 

3. Four out of five consecutive points plot on the same side of the centerline exceed 1 

4. Eight consecutive points plot on the same side of the centerline 

5. An obvious consistent, nonrandom pattern (e.g., an upwards or downwards monotone trend) 

2.2.1 Related Issues in Developing Control Charts for URR 

Upon first inspection, the derivation of the proposed formulae for the parameters for the URR control chart 
discussed in Section 2.2 appears to be relatively simple. All that is needed is an estimate of the process average to 
derive the control limits. However, the estimate of the response rate process average is affected by three separate 
factors: (1) the number of reporting units, nt, in the tth statistical period; (2) the number of consecutive statistical 
periods of estimates, T , used for the rolling average; and (3) the type of measure of central tendency used ( i.e. mean 
or median). 

If n is too small, then mσ̂ will be disproportionately large. The resulting control limits will be too wide, making it 
difficult to detect when the response rate process is out of control. If the number of consecutive statistical periods 
used for the rolling average, T, is too small, then a single outlier can overly affect the estimate of the process 
average. On the other hand, if T is too large, it will be more difficult for the control chart to indicate a potential shift 
in the process average when there is one. 

We provide two illustrations below to indicate how the estimate of the process average is affected by the choice of 
averaging method. The first example illustrates a response rate process where a one-time outlier of 0.80 occurs in 
statistical period t. The second example illustrates a scenario where this outlier was an indication of an actual shift 
in the process average from 0.70 to 0.80. 

Example 1: One Time Outlier with T = 5 

Rolling Average t: (0.69, 0.70, 0.70, 0.71, 0.80) meanp̂

meanp̂

meanp̂

meanp̂

meanp̂

meanp̂

0.72; medp̂

medp̂

medp̂

medp̂

medp̂

medp̂

= 0.70 
Rolling Average t+1: (0.70, 0.70, 0.71, 0.80, 0.72) 0.73; = 0.71 
Rolling Average t+2: (0.70, 0.71, 0.80, 0.72, 0.70) 0.73; = 0.71 
Rolling Average t+3: (0.71, 0.80, 0.72, 0.70, 0.69) 0.72; = 0.71 
Rolling Average t+4: (0.80, 0.72, 0.70, 0.69, 0.70) 0.72; = 0.70 
Rolling Average t+5: (0.72, 0.70, 0.69, 0.70, 0.71) 0.70; = 0.70 

In the above example, in statistical period t, the estimate of the process average includes a single outlier of 0.80. 
After first observing this outlier, one would question whether this particular value is an indication of a potential 
upward shift in the response rate process or is simply an aberration due to chance. 

meanp̂
Additional evidence would be 

needed to answer this question. In the meantime, is immediately affected by the one-time outlier. 
Consequently the values of the control limits will be affected until the one-time outlier value is no longer included in 

medp̂the computations. In contrast, the one-time outlier has very little effect on the control chart obtained using . 
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Example 2: Permanent Shift with T = 5 

Rolling Average t: (0.69, 0.70, 0.70, 0.71, 0.80) meanp̂

meanp̂

meanp̂

meanp̂

meanp̂

0.72; medp̂

medp̂

medp̂

medp̂

medp̂

= 0.70 
Rolling Average t+1: (0.70, 0.70, 0.71, 0.80, 0.81) 0.74; = 0.71 
Rolling Average t+2: (0.70, 0.71, 0.80, 0.81, 0.80) 0.76; = 0.80 
Rolling Average t+3: (0.71, 0.80, 0.81, 0.80, 0.80) 0.78; = 0.80 
Rolling Average t+4: (0.80, 0.81, 0.80, 0.80, 0.81) 0.80; = 0.80 

In this second example, the true process average has actually shifted to a higher value. Of course, additional 
evidence would be needed before one can conclude this, but as stated before, the mean provides an immediate 
indication of a potential shift. Via the mean, the estimate of the process average gradually increases over four 
subsequent time periods until the new process average is achieved. The median’s shift to the new process average is 
not gradual in our example; it jumps to this new process average value after a two statistical period “burn-in”. 

Note: The results above are for illustrative purposes only. Had we used an outlier less than 0.80 for example, the 
conclusions pertaining to the mean would be different. 

3. Methodology 

The purpose of our study was to recommend URR control chart settings for the following parameters: 

nt , the number of eligible reporting units used in computations for statistical period t 
T, size of the rolling average interval (number of statistical periods used to compute the process average) 
The measure of central tendency (mean or median) to use to calculate the estimate of the process average 

Most business surveys will have a sufficiently large average number of eligible reporting units, to produce a 
mσ̂reliable estimate of the response rate process average, mp̂ and the associated measure of precision, at the 

program level. However, if the user wishes to produce the URR for a smaller subpopulation such as industry, the 
resulting control chart parameters may not be particularly useful. We used the following logic to develop a lower 
bound on nt: 

Assume that a program manager would want to inspect any URR value that is larger or smaller than d = 0.02 units 
,3σof the process average. Then, in developing parameters for the control chart, we set the control limits at where 

n
)p(pσ 1 . Let 3σ = d, obtaining .p)p(1

2d

9n (See Montgomery, pp. 277-278). 

With a fixed value of d and p, we can solve for n. However, p varies by survey. What do we do? 

It can be shown that 
n

)p(pσ 1 is maximized for any n when p = 0.5. If d = 0.02 and p = 0.5, then n = 5,625. 

Thus, the conservative approach would require a minimum number of 5,625 eligible reporting units (on the 
average), allowing greater precision in the control limits for values of p other than 0.5 but enforcing the program-
manager derived limits regardless. 

Because our study involved examining the effects of varying parameter sizes on our control charts for our response 
rate process, we conducted a simulation study. For our simulation study, we generated a population of size 5,625. 
For each unit in the population, we created a time series of forty statistical periods, modeling the unit’s binary 
response such that the probability of response (“1”) for any unit was p = 0.70. Thus, the response propensity is 
independent both within and between statistical periods. Of course, in a survey setting, the unit response mechanism 
is not necessarily independent from one statistical period to the next, in the sense that a unit that responded in month 
t has a higher probability of responding in month t+1 than a unit that did not. Note that large population size ensures 
that any URR value that is greater or less than 0.02 from the centerline will be detected: the population size is much 
larger than actually needed. 
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In each statistical period, we calculated the URR by summing up the responding units. The unit response rates over 
the forty statistical periods varied but were all close to 0.70. To demonstrate that we had generated a stable response 
rate process, we plotted these forty URR values against the control chart constructed with centerline 0.70 and 

corresponding control limits of 
5625

0)(0.70)(0.33700. . All values fell between the control limits. We used the 

simulated response rate population to study the effects of a one-time outlier and a process shift on the control chart 
parameters, examining eight different values of T, ranging from 5 to 12. 

3.1 One-Time Outlier 

We introduced an extreme outlier URR of 0.80 into our stable response rate process in statistical period 21. Thus, 
starting with statistical period 21 and ending with statistical period 21 + (T-1), this outlier could have an impact on 
the computed rolling averages. For example, if T=5, then the estimates of the process averages calculated from the 
following time intervals may be affected by this outlier: [17, 21], [18, 22], [19, 23], [20, 24], and [21, 25]. We 
examined the effect of this high outlier by varying the size of the rolling average interval, T=5 to 12, and by using 
two types of averaging methods: mean and median. We then repeated this experiment using a more realistic 
response rate outlier of 0.74. 

3.2 Permanent Shift 

This second scenario presents a permanent shift in the URR process beginning in the statistical period 21. The true 
URR process average is 0.70 in statistical periods 1 through 20; from statistical period 21 through 40, the true URR 
process average is p = 0.80. We repeated this experiment for a more realistic process average of p = 0.74. 

4. Results 

4.1 One Time Outlier 

Figure 1 presents the URR control chart obtained using meanp̂ with a rolling average interval of size five (i.e., T=5) 
on the stable process data from the first twenty statistical periods. Hence, the process average was estimated using 
the mean of the five most recent URR values from statistical periods 16 through 20. The control chart obtained 
using the median instead of the mean to estimate the process average looks similar and is therefore not shown. 

Figure 1 Control Chart Prior to Outlier using and interval [16, 20] (i.e. T=5). 
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In Figure 2, there is an outlier in statistical period 21. This outlier can be indicative of a process shift or a one-time 
outlier. However at this point we do not have sufficient evidence to draw any conclusion. Despite this, our control 
chart is indicating a potential shift in the process. For our simulation, we knew ahead of time that this outlier was a 
one-time occurrence; therefore, it is obvious that the mean estimator is too sensitive in such a scenario. Because of 
the complexities of the response rate process, program managers may not be able to identify the reason for the 
outlier, therefore we choose to keep all points in the calculation of the rolling average. 

With an outlier of 0.80 present in statistical period 21, the computed estimate of the process average increases from 
the earlier value of 0.7017 (at t = 20) to 0.7214 (at t = 21). This increase in the process average shifts the control 
limits upwards, and as a result, 20 of 21 data points now fall below the estimated process average, with 14 of the 21 
points being outside of the newly revised limits. 

Figure 2 Control Chart with Outlier using and interval [17, 21]. 
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Figure 3 Control Chart with Outlier using and interval [18, 22]. 
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In Figure 3, the control limits were estimated using statistical period 18 through 22, which contain the outlying URR 
value. The effect of the outlier is still present despite the fact the URR value in statistical period 22 is much closer to 
the values observed before statistical period 21. This effect4 continues through statistical period 25. 
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Figure 4 Control Chart with Outlier using meanp̂ and interval [22, 26]. 

Finally, in Figure 4, we see that once the outlier is no longer used in the calculation of meanp̂ , the control chart once 
again shows an in-control process for the entire time-period under consideration. Figures 1 through 4 demonstrate 
the sensitivity of the process average computed using a mean to a large one-time outlier. This is why we 
investigated the median as an alternative estimator to the mean. 

In our graphical analysis of the effect of the mean estimator on the control chart, we concluded that a single outlier 
does adversely affect the estimates of the control chart parameters. To confirm our visual findings, we conducted a 
series of general linear hypothesis tests (Searle, 1971, pp. 188-203) to determine if the estimate is significantly 
different from the true process average of 0.70. We analyzed results for an extreme outlier URR of 0.80 and 
repeated the analysis using an outlier URR of 0.74. 

The results confirmed our visual findings on the sensitivity of the mean process average to a one-time outlier. In 
meanp̂general, is sensitive to both the magnitude of the outlier and the size of the rolling average interval, T. If the 

outlier is not extreme, using larger values of T (at least 9) greatly mitigates an outlier’s effect on the estimated 
process average computed with a mean. This comes at the cost of increasing the amount of time needed for the 
process chart limits to reflect a true process change, such as a permanent shift, as shown in the following section. 

In the discussion of the median that follows, we did not perform a series of general linear hypothesis tests. We were 
unable to find a comparable non-parametric test analog. 

4 With T=5, the estimates of the process average that are affected by the outlier of 0.80 are those estimated in the 
following time intervals (T=5): [17, 21], [18, 22], [19, 23], [20, 24], and [21, 25]. Figures for the other three 
affected intervals are not shown, as they are similar to Figures 2 and 3. 
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Figure 5 plots the same time series of URRs, but constructs the p-chart using a median to estimate the process 
average. The one-time outlier does not overly affect the control chart limits, and the control chart still depicts an in-
control URR process through statistical period 20. This is true for every estimate of the process average that 
includes the single outlier, because the outlier will always be at the tail end of the distribution and will never attain 
the median value. 
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Figure 5 Control Chart with Outlier using medp̂ and interval [17, 21]. 

4.2 Permanent Shift 

It is important to ensure that the process limits are not overly sensitive to a rare event, but are adaptive enough to 
quickly reflect a true process shift after a sufficient “burn-in” period (at least three statistical periods). 

In this scenario, the process average shifts from 0.70 to 0.80 in statistical period 21. In practice, neither estimator 
meanp̂ medp̂or will yield an estimate of the new process average immediately. The time it takes to reflect the shift -

the burn in period - is a function of the type of estimator used and the number of data points (statistical period) used 
in the estimator. 

This burn-in period for the mean estimator is illustrated in Figure 6 where true process average of 0.70 (through 
statistical period 20) shifts to 0.80 in statistical period 21. However, our estimate of the process average (blue 
dashed lines) has a burn-in period of five. At this point, our estimate derives only from URR values from the new 
response rate process. 
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0.7017 
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0.68 
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^ p p-mean 

Figure 6 Estimates meanp̂ in the Presence of a Permanent Shift for a Rolling Average of Size 5 

We once again conducted a series of general linear hypothesis tests to assess how estimates of the process average 
computed via the mean are affected when the process average shifts from 0.70 to 0.80 (extreme value) and from 
0.70 to 0.74 (less-extreme value), beginning in statistical period 21. Our results show that in general it takes the 
mean approximately T -1statistical periods beyond the initial appearance of the outlier to assume the new process 
average regardless of the value (0.80 or 0.74). 

Figure 7 shows that when using medp̂ , the burn-in period to reflect the true new process average (p = 0.80) is three 
statistical periods. In Figure 8, T is an even number, the burn-in period increases to four, and, there is an 
intermediary value (0.7515) during the burn-in period. 

0.8025 
0.7959 0.79590.80 

0.78 

0.76 

0.74 

0.72 
0.70700.70440.7019 

0.70 

0.68 
[16,20] [17,21] [18,22] [19,23] [20,24] [21,25] 

^ p p-med

Figure 7 Estimates medp̂ in the Presence of a Permanent Shift for a Rolling Average of Size 5 

10 



 

 
 

 

         

            
         

               
      

          
          

               
            
               

          
               

            
    

  

           
            

      
           

             
           
      

              
             

           
          

            

          
   

            

   

 

 
  

 

=:i=. -- -0.7025 0.7031 0.7057 

0.7515 

0.7938 
0.7992 0.8027 

0.68 

0.70 

0.72 

0.74 

0.76 

0.78 

0.80 

[15,20] [16,21] [17,22] [18,23] [19,24] [20,25] [21,26] 

p p-med^ 

Figure 8 Estimates medp̂ in the Presence of a Permanent Shift for a Rolling average of Size 6 

In general, when the shift in process average is permanent, the median assumes the new process in S subsequent 
statistical periods following the first appearance of the outlier, where S = greatest integer function [T/2]. The 
median achieves the new process average quicker than the mean for both values of p and occurs in a “jump” as 
opposed to changing gradually. 

To summarize our findings, when there is a one-time outlier, using the median as process average maintains 
generally consistent control chart limits. In contrast, the process average obtained with the mean can be 
dramatically affected by a single outlier, which in turn affects the location and width of the control limits. Using a 
larger value of T reduces the effect of a one-time outlier on the process average estimate. However, using a larger 
value of T increases the number of statistical periods needed for both the mean and the median to achieve a new 
process average (an increase or a decrease). During this “burn-in” period, the control charts will depict an out-of-
control process, which could in fact be stabilized much sooner than shown. In general, the median achieves the new 
process average quicker than the mean: [T/2] statistical periods following the first appearance of an outlier (low or 
high) versus approximately T-1. 

5. Conclusion 

The purpose of this study was to develop guidelines for producing control charts to monitor unit response rates 
produced by business surveys in the Economic Directorate of the U.S. Census Bureau. Our objective was to reframe 
the evaluation of unit response rates, considering the collective time-series of response rates as a process measure to 
be monitored instead of a performance measure to be evaluated. By studying the response process, the survey 
manager can determine whether fluctuations in the process are random and self-correcting, or whether a trend has 
occurred. More important, the survey manager can determine whether an intervention in the current procedures is 
necessary and whether the intervention effectively changes the process. 

Our review of the literature suggests that a p-chart is appropriate for monitoring the unit response rate processes. 
However, translating the p-chart from the manufacturing setting for which it was designed to a survey setting poses 
several challenges. In a survey setting, there are fewer measurements and these measurements are generated over a 
longer time interval. Consequently, estimating the process average is more of a challenge particularly in the event 
of outliers. Our research concluded that these problems can be overcome under the following conditions: 

 There are a sufficient number of response rates measures over the time period of interest to produce a 
reliable estimate of the process average. 

 An appropriate measure of central tendency (mean or median) is used to mitigate the effect of outliers. 
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An assumption underlying the calculation of the response rate measures is that we have sufficient number of 
reporting units. This can be determined mathematically; for example, using a conservative hypothetical response 
rate of 0.50 and a tolerance level of 0.02 the number of reporting units needed is 5,625. For a hypothetical response 
rate value different from 0.50, the number of reporting units needed is fewer. 

To determine the minimum number of response rate measures that can produce a reasonable estimate of the true 
process average we conducted simulation studies with the following scenarios that take into account the effect of 
potential outliers: 

 A response rate process that is stable until it encounters a one time outlier. 
 A response rate process that is stable until it encounters an outlier that marks a permanent shift in the 

process average. 

When the response rate process is stable, both the mean and the median produce reliable estimates of the process 
average for all values of T (the length of the rolling average). However, a one-time outlier has a detrimental impact 
on the utility of the control limits when the mean is used as a measure of central tendency. Although this effect can 
be mitigated by a larger value of T, this larger value increases the number of statistical periods needed for both the 
mean and the median to reflect a shift in the process average (an increase or a decrease). 

When the process shift is permanent, the rolling averages computed with the median approximate the new process 
change to the new level more slowly than those obtained with a mean, regardless of values of T. However, the shift 
is not gradual as it is with the mean. Using the median to compute the process average therefore provides a brief 
“burn in” period before shifting the limits, which again is desirable given the small number of point estimates. This 
"burn in" period is a function of the size of the rolling average. Based on our simulation study results, we 
recommend using the median to compute the estimate of the process average using T=5 or T=6 (the latter introduces 
an intermediary "burn in" value).  

Our approach to studying response rates within a statistical process control framework is not common, and we were 
not able to strictly adhere to all of the assumptions that readily work for a manufacturing process. Despite these 
limitations, our analysis shows that when the number of data points used to estimate the process average is small, the 
median is capable of producing reliable control limits with a rolling average size of 5 or 6 data points. 
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