Survey Quality Indicator Measures: Response Rates and Alternatives

2012 Federal Committee on Statistical Methodology Research Conference January 11, 2012 Washington, DC

Donsig Jang • Sixia Chen (Iowa State University) Flora Lan (National Science Foundation)

Background

- Survey goal is to provide high-quality data
- Roenoneo rato wae coneidorod an indicator of

- Data collection goal: High response rate

- But the threshold for a high response rate has changed due to decreasing response rates (90% to 70%, or even lower) from the early 1990s to mid-2000s
- Non-response bias $b(\overline{y}) = (1 \rho)(\overline{y}_r \overline{y}_{nr})$

Background (cont'd.)

- Response rates alone are not good indicators of nonresponse bias (Groves and Peytcheva 2008)
- Alternatives
 - Multiple thresholds of response rates by key domains
 - R-indicator (Schouten et al. 2009) measuring representativeness
 - Measure of response propensity rate variation among respondents
 - Leading to focus on less representing subpopulations during a late stage of data collection

Objectives

- Empirical evaluation of response rates and R-indicators using real survey data
 - Observe the relationship between the two measures
 - Understand the relationship between each measure (response rate or R-measure) and potential nonresponse bias
- Decision for data collection closeout
 - Based on response rate, R-indicator, both or other alternative indicators?

- Examine R-indicator and response rate trends over the data collection period
- Calculate key survey and frame variable estimates on a weeklybasis durin 9data collection
- Calculate upper-bound estimates for bias and root mean square errors for weekly estimates during data collection

Data: National Survey of Recent College Graduates (NSRCG)

- Sponsored by the National Science Foundation (NSF) and conducted every two or three years since 1974
- Targets recent graduates with bachelor's or master's degrees in science, engineering, or health

NSRCG (cont'd.)

- **2008: AY06, AY07**
- Two-stage sample design: school sample (first stage) and graduate sample (second stage)
 - Sample sizes: 300 schools and 18,000 graduates
 - For more information, visit
 <u>www.nsf.gov/statistics/srvyrecentgrads</u>
- Information collected on demographics, education, employment, etc.
- Mixed mode: Mail/Web with CATI follow-up
- Final response rates
 - 71.4 (unweighted), 69.7 (weighted)

Response Rates (Weighted)

Weighted RR by CompletionDates

Response Rates (Unweighted)

Unweighted RR by CompletionDates

R-Indicator

- Measures similarity or dissimilarity of response propensities
- A measure independent of specific outcome variables (similar to response rate)

$$R(\rho) = 1 - 2\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(\rho_{i}-\bar{\rho})^{2}} \implies \hat{R}(\rho) = 1 - 2\sqrt{\frac{1}{\hat{N}-1}\sum_{i\in\mathbb{R}}w_{i}(\hat{\rho}_{i}-\bar{\rho})^{2}}$$

where ρ_i is an individual response propensity

R-Indicator (cont'd.)

R indicator

Tracking Estimates for Frame Variables

Tracking Estimates for Survey Variables Unemployment rate estimates for Minority group

(Hispanic, Black, American Indians)

Upper Bounds for Bias and Root Mean Square Error

Upper bounds of bias and root mean square errors can be estimated using survey response data:

$$\hat{B}_{U}(\hat{\bar{y}}) = \frac{(1 - \hat{R}(\rho))\hat{S}(y)}{2\hat{\bar{\rho}}} \qquad \widehat{RMSE}_{U}(\hat{\bar{y}}) = \sqrt{\hat{B}_{U}^{2}(\hat{\bar{y}}) + v(\hat{\bar{y}})}$$

where $v(\hat{\overline{y}})$ is a variance estimator of $\hat{\overline{y}}$ and $\hat{S}(\hat{\overline{y}}) = nv(\hat{\overline{y}}) / deff(\hat{\overline{y}})$

Upper Bound Bias

Upper Bound Root Mean Square Error

Results

- Response rate curves are monotonically increasing, but in increments of only 1% across all key domains (gender and race/ethnicity) during the last three weeks (weeks 29–31)
- R-indicator curves are U-shaped, with the lowest values between week 13 (RR = 44%) and week 22 (58%) overall and for key domains
 - After week 22, R-indicator values for most domains steadily increase but not much

Results (cont'd.)

- The percentage of minority graduates among respondents is less than that of the full sample at the end of data collection, indicating the importance of weighting adjustment
- Survey estimates for "unemployment rate" of Minority group seem steady after week 25
- The upper bounds of potential bias indicators (bias and RMSE) for "unemployment rate" estimates are steadily decreasing, although the rates of decrease over the last few weeks are minimal

Discussion

- The last three weeks of 2008 NSRCG data collection added, at most, 1% point to the response rate—supporting the data collection closeout decision at week 31
- Other measures may have supported the
 - Though R-indicator showing a steady upward trend, the slope was very small
 - Key survey estimates stabilized after 20+ weeks

Discussion (cont'd.)

- Other measures may have supported_t he closeout of the data collection (cont'd.)
 - Bias and RMSE upper bound measures showed consistent results with response rates, R-indicators, and survey-estimate tracking
- Importance of tracking various measures during data collection—response rates, Rindicators, frame variables, key survey estimates, bias indicator measures
- The decision to close out data collection can be based on quality measures and other practical considerations: budget and datadissemination schedule

For More Information

Please contact:

- Donsig Jang
 - djang@mathematica-mpr.com

Sixia Chen

- sixia@iastate.edu
- Flora Lan
 - <u>flan@nsf.gov</u>

- Groves, R.M., and E. Peytcheva. "The Impact of Nonresponse Rates on Nonresponse Bias." *Public Opinion Quarterly*, vol. 72, 2008, pp. 1–23.
- Schouten, B., F. Cobben, and J. Bethlehem. "Indicators for the Representativeness of Survey Response." *Survey Methodology*, vol. 35, 2009, pp. 101–113.
- Sarndal, C.E. "Three Factors to Signal Non-Response Bias with Applications to Categorical Auxiliary Variables." *International Statistical Review*, vol. 79, 2011, pp. 233–254.

