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Key challenges to be solved with metadata —
particularly for federal statistical system

* Limited internal capacity
* Security
* Legal mandates surrounding access and use

* Data sharing|
cost

* burden

» data quality
* data documentation
e risk of bad analysis

— Jupyter
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- Administrative Data Research Facility: The
thun % Administrative Data Research Facility is a pilot
g ; project that enables secure access to analytical
tools, data storage and discovery services, and
THE PROMISE OF general computing resources for users, includ-
EVIDENCE-BASED POLICYMAKING ing Federal, state, and local government ana-
Reprt of the Camnisiort o0 Eissence-Rased Folieytning lysts and academic researchers. The Census
Bureau and academic partners developed the
project as part of the collaborative Training
Program in Applied Data Analytics sponsored
by the University of Chicago, New York Univer-
sity, and the University of Maryland. It is cur-
rently operating as a pilot with users accessing
the Facility as part of the training program. The
Facility operates as a cloud-based computing
environment, with Federal security approvals,
which currently hosts selected confidential
data from the U.S. Department of Housing and
Urban Development and the Census Bureau, as
well as state, city, and county agencies, and an
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Build technical environment

Users: Federal, state and local data owners
Analysts and researchers

Federal, state and local program managers
Technical Needs:

Management and Secure Stewardship

@covery and Col@

Analysis and Dissemination

Secure
Reusable
Scalable
Extensible
Interoperable



Functional characteristics
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Making Computational Research with Sensitive Data Possible and
Valuable

Brian E. Granger Julia Lane Fernando Perez
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Data Training Results
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In [ ]:

Inl[ 1:

In [ ]:

from sklearn.paiva bayes import GaussianhB

from sklearn.] mport DecisionTreeClassifier
from sqlalchei prt create_engine

#import pydot]
sns.set_style
sns.set_contel

e")
gter”, font_scales1.25, rcs{"lines.linewidth":1.25, "lines.markersize™:8})

Connect to-N

db_name = "appliedda”
hostname = "12.18.2.18"°
conn = psycopgl.connect(database=db _name, host = hostrname) #database conrection

The database connection allows us o make gueries o a database from Python,

df tables = pd.read sgl{"""SELECT * FROM ides.il wage limit 18;""", conn)

df_tables. head()

The Machine Learning Process

Go back fo Table of Confents

= Understand the problem and goal. This sounds obvious but is often nontrivial. Problems typically start as vagus
descriptions of a goal - improving health outcomes, increasing graduation rates, understanding the effect of a variable X on
an outcome Y, ete. It s really important to work with pecple who understand the domain being studied 1o dig deeper and
define the problem more concretely, What is the analytical formulation of the metric that you are trying to optimize?

= Formulate it as a machine learning_problam. 15 il a classification problem or a regression problem? Is the goal to bulld a
model that generates a ranked list prioritized by risk, or is it to detect anomalies as new data come in? Knowing what kKinds
of tasks machine learning can solve will allow you to map the problem you are working on to one or more maching leaming
setfings and give you access (o a suite of methods,

= Data exploration and preparation. Next, you need to carefully sxplore the data you have. What additional data do you
need or have access to? What variable will you use to match records for integrating different data sources? What variables
exist in the data se1? Are they conlinuous or categorical? What about missing values? Can you use the variables in thelir
original form, or do you nead to alter them in some way?

= Feature engineering. In maching |eaming language, what you might know as independent variables or predictors or factors




Search and Discovery
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PestgreSOL

python
o amm®
Jupyter
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Collaboration

Ubuntu Desktop

2

PrapareExport

4

SubmitExport

- ADRF Test

C 8 Secure | https/Jupyterhub.adef info

~ Jupyter ADRF Test oA

Logoa

OPDD N
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import pandas

# Tost Postgros

import psycopg?, datetime

conn_string = “host='stuffed’ dbname='appliedda’”
conn = psycopg2.connect{conn string)

cursor = conn.cursar()

print ‘Postgres working! at', datetime.datetime.n

Https



#CIEEEI;;; ' Elena Semenova .09 P
% la ges . HI DOC data gurus! Do you know what the following indicates in reality? A person admitted first time in >= 2008 year with no previous
' incarcerations for lower offence class (1-3) being in jail for a few days but has sentence and custody dates goes back >=10 years. Does it mean that
L he/she was hiding from law enforcement all those years? How does custody date could go back like that in such situations? Is it just a bad data?
=

Vivek Ananda 11.27 v

i It mostly is bad data please email me the doc number so we can verify in the system

sarfime, sutn .
#class-3-falll7 o | :
- G}@|D._=..--. @ ¢ :
I - When | LEFT & | 897 | 20 | 2 Adda tapic 'I
with 4% reco Thursday, January 4th =
r Elena Semenova 11 17 A & a =
1. Is there an . | asked that before and didn't get an answer. Does someone know how ildoc.ildoc_exitjailtime is calculated? It doesn't equal to any interval
2. If nat, how between dates in fields: exit_date, curadm_date, cccadm_date, ccovio_date, actmsr_date. Should we consider that value at all or rely on calculated
) el values between mentioned data? Also, ILDOC_EXTI data dictionary is missing some fields. Please confirm if cccvio_date means date of CCC
. EW. 529 violation (work release to community correctional center),
wBeau Ande

exclusively ot u clayton.hunter 111 2
he able to | we may need to check with @Vivek Ananda or @Dana Wilsan for confirmation, but based on the description of jailtimes in ADRF Explorer |
AE TD ol

suspect those are cumulative values for each individual - so cannot just be calculated based on that individual record
what you are

I B clayton.hunter 1156 2
el and ccvio date is a helper column that combines all ceviot columns into a single, date formatted column so that postgres date functions work

! -5”:.; properly {1 believe that is the case for all columns that end in _date )

loaked an - & o n
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Drew 12:05 P

TH:;“ & @Elena Semenova sorry about this, might have gotten lost in the shuffle a while back but Vivek did provide the following information on jailtime

auteind inan e-mail: 1ail time is calculated on how much time inmate spent in jail prior to coming to prison. He does get credit for time served at all

:";J::::I jalls prior coming to prison, Thought | had circulated, but maybe only updated on the metadata in the explorer (edited)
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July — December 2018:

Jan-June 2019:

July-Dec 2019

Jan-June 2020

Design Make Measure and Analyze | Improve
Platform | Activity - Data Model to incorporate additional metadata - Deploy Data Model | - Assess Data Model - Modify Data model with
about datasets, users, user profiles. and user | = Ilgfigx Telamery jonality input from Rich Context
interactions (i.e., annotations, and explicit T |/l dufe é EI“I rms Telemetry - Modify Telemetry
connections between datasets, people. and projects exwdres Module with input from
-Telemetry Module to automatically collect - Open source for rich context
structured events emitted by platform community feedback
Deliverable | Data model Operational Data QA report Stable and complete
Telemetry module Model Initial prototype version of the application
Functioning stabilized and fully integrated to the
Telemetry Module productionized ADREF Platform. Open
Functioning sourced
prototype
Initial Jupyter-ADRF
integration
Input Activity -Identify and prepare corpora (ICPSR; Bundesbank; | Generate Seed Review metadata Modify and refine
Elements Policy area) metadata generated developed by users metadata capture and
-Gather requirements ((ICPSR: Benchmark and revise documentation
Bundesbank; Policy
area)
Deliverable | Three corpora Metadata for three QA and improvement Plan for future
Set of requirements for metadata: comments and corpora: report on the quality of | improvement
annotations on files and datasets, discussions, and each element
contextual recommendations
Rich Activity -Design gamification strategy Deploy interface Review interface Modify and refine
Context - Design Pre/Post Survey design Administer Pre Administer post survey | interfaces, surveys and

- Develop Telemetry measures

- Research UX for the collaborative user interfaces
1) an interface to help users to ingest Datasets, ii) an
interface to help users to create comments and code
snippets for Datasets, and iii) an interface to help
users to search for Datasets

-Design learning approach

survey

Capture logging
information

Test gamification
strategy
Test learning
approach

Review logging
information

Review feed back to
platform

Revise learning
approach

learning model

Deliverable

Survey

Telemetry measures
Wireframes for the interfaces
Learning model

Survey results

Log results
Gamification results
Learming results

Survey results and
pre/post analysis
Revised UX, feedback
loop

Revised learning model

Functioning rich context
module incorporating
human and automated
elements with continuous
feedback loops to platform
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Rich Context Competition

PROBIFM DFSCR’PTION PARTICIPANT

Researchers and analysts who want o use data for evidence and policy can't easty find out who INFORMATION
eise worked with the data, on what topics and with what results. As a result, good research is

underutiized. great data go undiscoverad anc are undervalued, and time and resources ans Prablem Descnpton
westad redong empirical research Campettion Goal
We want you 1o help us develop and identily the best text analysis and machine leaming TR e
1echmiques 1o discover relationships batween data sets, resaarchers, publications, resaarch SpOnC

methods and liglds. We will use the résulls 1o create a rich context for empincal research - and The Bigges Pictire
tuild new metncs 1o descnbe data use Compettion Schechk

This challenge is the first step m tha! discovery process

schres
COMPETITION GOAL S —
The goal of this competition i3 ta autemate the discovery of rasearch datasels and the associated Phace 1

methods and research topi: fields in social science research publications. Participants shouwld use Dhass

any combination of machine learning and data analysis methods 10 identily the datasets used in a ) S X
corpus of social scence .I',l[ll?i.i!il':'l'ii; and Infer the scantific methods used In the analysis and the .l “ el

53

asearch fie
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Key challenges to be solved with metadata —
particularly for federal statistical system

* Limited internal capacity
* Security
* Legal mandates surrounding access and use

* Data sharing|
cost

* burden

» data quality
* data documentation
e risk of bad analysis

— Jupyter



Comments and questions?

* If interested in contributing — contact me at
e Julia.lane@NYU.EDU
* More info at https://coleridgeinitiative.org and http://jupyter.org
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