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Summary.  Auxiliary variables associated with both key survey variables and response 

propensity are important for post-survey nonresponse adjustments, but rare. Interviewer 

observations on sample units and linked auxiliary variables from commercially available 

household databases are promising candidates, but these variables are prone to error. The 

assumption of missing at random (MAR) that underlies standard weighting or imputation 

adjustments is thus violated when missingness depends on the true values of these 

variables, leading to biased survey estimates. This article applies pattern-mixture model 

estimators to this problem, analyzing data from a survey in Germany (PASS) that links 

commercial data to a national sample. 
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1. Introduction 

We consider nonresponse adjustment of survey estimates based on an auxiliary 

variable fully observed for a sample of n units from some population. Effective auxiliary 

variables for nonresponse adjustment should be highly predictive of both key survey 

variables and the response propensity (Beaumont, 2005; Bethlehem, 2002; Groves, 2006; 

Lessler and Kalsbeek, 1992; Little and Vartivarian, 2005). In an effort to collect data on 

auxiliary variables with these properties, some survey programs have requested that 

interviewers record judgments about selected features of all sample units (Kreuter et al., 

2010; West, 2012), but these interviewer observations can be prone to measurement error 

(Campanelli et al., 1997; Groves et al., 2007; McCulloch et al., 2010; Pickering et al., 

2003; Tipping and Sinibaldi, 2010; West, 2012). Some survey programs have also 

considered linking proxies of key survey variables available in commercial databases to 

sampling frames, but these variables may also be prone to error (DiSogra et al., 2010). 

Using these error-prone auxiliary variables in nonresponse adjustments can be 

problematic. Weighting class or regression nonresponse adjustments based on error-prone 

auxiliary variables result in bias when missingness depends on the true underlying value 

(Lessler and Kalsbeek, 1992, p. 190; West, 2012). This article proposes methods for 

correcting for this bias, and applies them to survey data collected from a national sample 

in Germany.  

We consider data as in Figure 1, where X1 is an auxiliary variable measured with 

error for all n sampled individuals,  X2 is the underlying true value of X1, recorded for 

each of r survey respondents, and X3 is a survey variable of substantive interest, also 

measured for the r respondents only. The objective is to make inferences about means of 
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the variables X2 and X3, using the auxiliary variable X1 to adjust for nonresponse. The 

auxiliary variable X1 may also represent a proxy variable related to key survey variables 

and response propensity that combines information on multiple auxiliary covariates, 

possibly through principal components analysis or linear predictors (e.g., Andridge and 

Little, 2009, 2011).  
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Figure 1: Missing data pattern under study. 

Given the necessary resources, surveys can link error-prone auxiliary proxy 

variables from varying sources (e.g., interviewer observations, commercially available 

household databases) to full samples, introducing the scenario illustrated in Figure 1. In 

this article, we focus on the German Labor Market and Social Security (PASS) survey, a 

panel study that collects annual labor market, household income, and unemployment 

benefit receipt data from a nationally representative sample of 12,000 households from 

the German population. PASS survey managers link auxiliary socio-economic variables 

from a commercial data source to the PASS sampling frame to assist with stratified 
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sampling and estimation tasks. In this article, we use these linked variables to apply 

alternative nonresponse adjustments to respondent data from the first wave of the PASS 

survey (2006). We contrast the performance of more popular adjustments assuming 

ignorable, missing at random (MAR) mechanisms with a proposed adjustment method for 

the case when missingness depends on the true values of the auxiliary proxy that are only 

measured for survey respondents. 

Our proposed method, presented in Section 2, is based on a pattern-mixture model 

(PMM; Little, 1994; Little and Rubin, 2002, Section 15.5). PMMs stratify the sample 

cases based on patterns of missing data and formulate distinct models for the variables 

within each stratum. Unidentified parameters are identified by exploiting parameter 

restrictions based on assumptions about the missing-data mechanism. Little (1994) 

derived maximum likelihood (ML) and Bayesian estimators of means and covariances for 

incomplete data assuming a bivariate normal PMM, under ignorable and non-ignorable 

mechanisms. Little and Wang (1996) extended this work to multivariate incomplete data 

with fully observed covariates. More recently, Shardell et al. (2010) applied PMMs to the 

analysis of normal outcome data provided by proxy respondents in surveys, which may 

be subject to measurement error, and Baskin et al. (2011) used proxy pattern-mixture 

analysis, or PPMA (Andridge and Little, 2011), to estimate non-response bias in means 

of health expenditure variables in the Medical Expenditure Panel Survey (MEPS). In the 

present application, we develop a trivariate normal PMM suitable for the survey context 

described by Figure 1.  

Previous methods of nonresponse adjustment with error-prone auxiliary variables 

have assumed that the missing data are MAR, meaning that missingness depends only on 
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the fully observed auxiliary variables (Rubin, 1976). We develop PMM estimators for the 

case where missingness (or a failure to respond to the survey) is assumed to depend on 

the true auxiliary variable X2, but not the auxiliary proxy variable X1, after conditioning 

on X2. Simulations comparing the PMM estimators with more common estimators are 

described in Section 3. In Section 4, we generalize our proposed method to the case of 

additional auxiliary variables measured without error. Section 5 presents applications of 

our methods to the PASS survey data, and compares our PMM estimates with weighting 

class and sequential regression imputation (Raghunathan et al., 2001) estimates that 

assume MAR mechanisms. Section 6 summarizes our work and discusses further 

extensions. R code implementing the proposed estimators is available upon request from 

the authors (email: bwest@umich.edu).    

  

 

2. Pattern-Mixture Model: Estimation and Inference 

2.1. Pattern-Mixture Model (PMM) Estimates 

For sample unit i, let mi be a missing data indicator, equal to 0 if a unit responds 

to the survey and 1 otherwise. Unit nonrespondents have missing values for X2 and X3. 

For the missing data pattern mi = m, we assume 

( )
( ) ( ) ( ) ( )

1 1 11 12 13
( ) ( ) ( ) ( ) ( ) ( )

2 3 2 12 22 23 3
( ) ( ) ( ) ( )

3 3 13 23 33

~ , ,

m m m m
i

m m m m m m
i

m m m m
i

x
x N N
x

µ σ σ σ
µ σ σ σ µ
µ σ σ σ

            ≡ Σ                 
, (1) 

a trivariate normal distribution with nine parameters. The marginal distribution of mi 

is ( )1~im Bernoulli π . There are 2 × 9 + 1 = 19 model parameters in total across both 

patterns. 
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The following 12 parameters are clearly identified from the observed data in 

Figure 1: (0) (0) (1) (1) (0) (0) (0) (0) (0) (0) (0)
id 1 1 11 1 11 2 12 22 3 13 23 33( , , , , , , , , , , , )θ π µ σ µ σ µ σ σ µ σ σ σ= . 

The following 7 parameters are not identified: (1) (1) (1) (1) (1) (1) (1)
nid 2 3 12 13 22 23 33( , , , , , ,  )θ µ µ σ σ σ σ σ= . 

Let ( )m
jk kβ ⋅  denote the slope coefficient for variable k in the linear regression of variable j on 

variable k for pattern m, and let ( )
0
m

j kβ ⋅  denote the intercept coefficient in this regression. 

Also, let ( )m
jj kσ ⋅  denote the residual variance in the regression of variable j on variable k for 

pattern m, and let ( )m
jl kσ ⋅  denote the residual covariance of variable j and variable l given 

variable k for pattern m. The assumption that missingness of X2 and X3 depends on X2 

(the “true” values of the auxiliary variable X1, measured in the survey) implies that the 

distribution of X1 and X3 given X2 is the same for complete and incomplete cases, 

yielding seven parameter restrictions: 

(0) (1) (0) (1) (0) (1) (0) (1)
10 2 10 2 10 2 12 2 12 2 12 2 30 2 30 2 30 2 32 2 32 2 32 2
(1) (0) (1) (0) (1) (0)
11 2 11 2 11 2 33 2 33 2 33 2 13 2 13 2 13 2

;  ;  ;  ;
;  ;  

β β β β β β β β β β β β
σ σ σ σ σ σ σ σ σ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = = = = = = =
= = = = = =  

  

With seven restrictions and seven unidentified parameters, the model is just-

identified, and ML estimates are straightforward extensions of those given in Little 

(1994). Specifically, we transform idθ  to the alternative parameterization 

(0) (0) (1) (1)
id 1 1 11 1 11 10 2 12 2 30 2 32 2 11 2 13 2 33 2( , , , , , , , , , , , )φ π µ σ µ σ β β β β σ σ σ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= , 

where the parameter restrictions imply that the last seven parameters are the same for 

complete and incomplete cases. Define the corresponding sample quantities 

1ˆ ( ) /n r nπ = − , or the sample proportion of nonrespondents; ( ) ( )
1 11ˆ ˆ and m mµ σ , or the sample 

mean and variance of X1 for pattern m (the variances have denominators r and n – r 

respectively, that is, are not corrected for degrees of freedom); and 
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10 2 12 2 30 2 32 2 11 2 13 2 33 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , )β β β β σ σ σ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , or the least squares estimates of the parameters of 

the regression of 1 3 2 and  on X X X , for the complete cases (m = 0). These sample 

quantities are ML estimates of the components of idφ  provided that (1)
11 11 2ˆ ˆσ σ ⋅> , since 

(1)
11 11 2ˆ ˆ and σ σ ⋅  estimate parameters that are subject to the constraint (1)

11 11 2σ σ ⋅> ; otherwise  

(1)
11σ̂  is set to equal 11 2σ̂ ⋅ . ML estimates of the components of idθ  are also the 

corresponding least squares estimates.  

We obtain ML estimates of the remaining non-identified parameters nidθ  by 

expressing them as functions of idφ , and substituting the ML estimates idφ̂ .  For example, 

for (1)
2µ  we have: 

 

 

 

 

 

   

(1)
(1) (1) (1) 1 10 2
1 10 2 12 2 2 2

12 2

(1) (1) (0)
(1) (0)1 10 2 1 1
2 2

12 2 12 2

ˆˆ ˆ ˆˆ ˆ ,ˆ ˆ

µ βµ β β µ µ β
µ β µ µµ µβ β

⋅⋅ ⋅
⋅

⋅
⋅ ⋅

−= + ⇒ =
− −⇒ = = +

 (2) 

where (0)
2µ̂  is the sample mean of X2 for the complete cases. ML estimates of the other 

six parameters in nidθ  are defined in a similar manner, as follows: 

(1) (0)
(1) (0) 1 1
3 3 32 2

12 2

ˆ ˆˆˆ ˆ ˆ
µ µµ µ β β⋅

⋅
−= +  (3) 

(1) (0)
(1) (0) 11 11
12 12

12 2

ˆ ˆˆ ˆ ˆ
σ σσ σ β ⋅

−= +   (4) 

(1) (0)
(1) (0) 11 11
13 13 32 2

12 2

ˆ ˆˆˆ ˆ ˆ
σ σσ σ β β⋅

⋅
−= +  (5) 

(1) (0)
(1) (0) 11 11
22 22 2

12 2

ˆ ˆˆ ˆ ˆ
σ σσ σ β ⋅

−= +  (6) 
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(1) (0)
(1) (0) 11 11
23 23 32 2 2

12 2

ˆ ˆˆˆ ˆ ˆ
σ σσ σ β β⋅

⋅
−= +  (7) 

(1) (0)
(1) (0) 2 11 11
33 33 32 2 2

12 2

ˆ ˆˆˆ ˆ ˆ
σ σσ σ β β⋅

⋅
−= +  (8) 

The ML estimates of the parameters of the marginal distribution of X are obtained by 

combining the parameter estimates of idθ  and nidθ . For example, the ML estimate of the 

mean 2µ  of X2 is then (by simple algebra): 

(1) (0)
(0) 1 1

2 2 1
12 2

ˆ ˆˆ ˆ ˆ ˆ
µ µµ µ π β ⋅

−= + , (9)  

as in Little (1994). These ML estimators are unstable if the estimated regression 

coefficient 12 2β̂ ⋅  is close to zero, as when X1 has substantial measurement error and is 

consequently weakly correlated with the true variable X2. Thus, the method requires a 

proxy variable that has a reasonably strong correlation with the true variable. 

2.2. Bayesian Inference 

Large-sample standard errors for the ML estimates derived above can be based on 

linearized variance estimators (e.g., Little, 1994). Confidence intervals based on ML 

estimates and these variance estimates have been shown in simulation studies to yield 

below nominal coverage, particularly when the sample size is small and the auxiliary 

variable is weakly associated with the outcome variable (Andridge and Little, 2011, p. 

166). Better confidence interval coverage is obtained by a Bayesian approach, assuming 

noninformative prior distributions and simulating draws from the posterior distribution of 
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the parameters. We extend the Bayesian methods in Little (1994) to our trivariate normal 

model. We assume noninformative priors for the 12 identified parameters:  

1
1(0) (0) (0)

(1) (1) (1)
1 11 11

~ (0.5,0.5)

( , )

( , ) 1/

Beta

p

p

π
µ
µ σ σ

−Σ ∝ Σ
∝

 

Draws ( )
id

dφ  from the posterior distribution of the identified parameters idφ  are obtained as 

follows (we assume r > 3 and n – r > 1): 

1) ( )
1 ~ ( 0.5,  0.5)d Beta n r rπ − + + ;     

2) (0)( ) (0) ( ) ( ) 2
11 11 1 1 1ˆ / , ~d d d

rr u uσ σ χ −= ;  

3) (0)( ) (0) ( ) (0)( ) ( )
1 1 1 11 1ˆ / , ~ (0,1)d d d dz r z Nµ µ σ= + ; 

4) (1)( ) (1) ( ) ( ) 2
11 11 2 2 1ˆ( ) / , ~d d d

n rn r u uσ σ χ − −= − ;  

5) (1)( ) (1) ( ) (1)( ) ( )
1 1 2 11 2ˆ / ( ), ~ (0,1)d d d dz n r z Nµ µ σ=+ − ; 

6) 
( ) ( )

11 2 13 211 2 13 2
( ) ( )

13 2 33 213 2 33 2

ˆ ˆ
~  Inv-Wishart , 2

ˆ ˆ

d d

d d r
σ σσ σ
σ σσ σ ⋅ ⋅⋅ ⋅

⋅ ⋅⋅ ⋅

     −         ;  

7) ( ) ( ) (0)
12 2 12 2 11 2 22

ˆ ˆ~ ( , / ( ))d dN rβ β σ σ⋅ ⋅ ⋅ ; ( ) (0) ( ) (0) ( )
10 2 1 12 2 2 11 2

ˆˆ ˆ~ ( ,  / )d d dN rβ µ β µ σ⋅ ⋅ ⋅− ; and 

8) ( ) ( ) (0)
32.2 32 2 33 2 22

ˆ ˆ~ ( , / ( ))d dN rβ β σ σ⋅ ⋅ ; ( ) (0) ( ) (0) ( )
30 2 3 32 2 2 33 2

ˆˆ ˆ~ ( ,  / )d d dN rβ µ β µ σ⋅ ⋅ ⋅− , 

where Inv-Wishart (S, d) denotes the inverse Wishart distribution with d degrees of 

freedom and scale matrix S  (see Gelman et al., 2004, Appendix A).  

To satisfy the constraint that (1)
11 11 2σ σ ⋅>  , the draws in 4) and 6) must be such that 

(1)( ) ( )
11 11 2

d dσ σ ⋅>  (Little, 1994). Draws that fail this condition are discarded and repeated. The 

drawn values from the sequence above then replace the ML estimates in Equations (2) to 

(9) to generate draws from the posterior distributions of the other parameters. Inferences 
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are based on a large sample (say, 1,000) of these draws. In particular, the mean of the 

draws simulates the posterior mean, and the 2.5% and 97.5% percentiles of the simulated 

draws simulate a 95% credible interval for the mean. 

 

 

 

 

2.3. Multiple Imputation 

A useful alternative inferential method is multiple imputation (MI; Little and 

Rubin, 2002; Andridge and Little, 2011). Parameters of the model are drawn from their 

posterior predictive distributions, as above. The missing values of X2 and X3 are then 

drawn from their conditional distributions given these draws, namely 

( )( ) (1)( ) (1)( ) (1)( )
2 20 1 211 1 22 1~ ,d d d d

i ix N xβ β σ⋅ ⋅ ⋅+  and (10) 

( )( ) (1)( ) (1)( ) (1)( ) ( ) (1)( )
3 30 12 3112 1 32 12 2 33 12~ , ,d d d d d d

i i ix N x xβ β β σ⋅ ⋅ ⋅ ⋅+ +   (11) 

where the superscript (d) denotes the d-th set of draws, and the parameters are drawn as 

appropriate functions of the draws in Section 2.2. For example,  

(1)
(1) 11 11 2
211 (1)

12 2 11

σ σβ β σ ⋅⋅
⋅
−= , so

(1)( ) ( )
(1)( ) 11 11 2
211 ( ) (1)( )

12.2 11

d d
d

d d

σ σβ β σ ⋅⋅
 −=    .  

This procedure is repeated B times to create B complete data sets, which can then 

be analyzed using MI combining rules (Rubin, 1987). The within-imputation components 

of variance can readily incorporate complex sample design features like sample weights, 

which otherwise need to be incorporated by modifying the basic PMM. We also note that 

this method does not require draws { }( )
1

dπ , since the imputations are exclusively within 

pattern m = 1, and the MI analysis of the filled-in data sets does not need to condition on 

pattern. This feature is useful when we develop extensions to include other auxiliary 

variables in the imputation model (Section 4).  
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3. Simulation Studies 

3.1. Methods Compared 

We describe two sets of simulations to compare empirically the performance of 

the PMM estimates (using Bayesian methods for inference) with other common methods 

of compensating for unit nonresponse in surveys. Five approaches to estimation and 

inference for the means of the variables X2 and X3 were compared: 

1) PMM estimates and 95% credible intervals for the means based on the 

Bayesian approach described in Section 2.2 (denoted by PMM). 

2) PMM estimates based on the multiple imputation approach described in 

Section 2.3 (denoted by PMM-MI), with missing values of X2 and X3 are 

imputed multiple (5) times.  

3) Standard multiple imputation (MI), assuming normal data and an ignorable 

missing data mechanism. Missing values of X2 and X3 are imputed multiple 

(5) times using an iterative conditional sequential regression imputation 

approach, as implemented in the mi package of R (Su et al., 2009). Multiple 

imputation combining rules described by Little and Rubin (2002) are used for 

estimates and standard errors of the two means, with degrees of freedom for 

the t distribution computed using the methods for large samples in Barnard 

and Rubin (1999).  

4) A “global” weighting (GW) approach. The complete cases are weighted by the 

inverses of the individual response propensities, estimated from a logistic 

regression of the response indicator (1 - mi) on X1, and weighted estimates of 
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the means are computed. Taylor series linearization was used to compute 

estimates of the standard errors of these estimated means, and corresponding 

95% confidence intervals for the means.  

5) Complete-case (CC) analysis, where analysis is based only on cases with no 

missing values, with no adjustment of any form for nonresponse, and standard 

methods for simple random samples are used to compute estimates of means, 

standard errors, and 95% confidence intervals. 

 

 

3.2. Simulated Data 

We first simulate data from the PMM of Section 2, meaning that the PMM approaches 

are expected to out-perform the other approaches. Samples are generated from the 

following PMM: 

( )
1 1

( )
2 3 2

( )
3 3

1 0.25
| ~ , 1 0.5

0.25 0.5 1

m
i

m
i i

m
i

x
x m m N
x

µ ρ
µ ρ
µ

            =                     
 for m = 0,1; 

1~ ( )im Bernoulli π , 

where 0.9ρ =  for low measurement error and 0.6ρ =  for high measurement error. 

When 0.9ρ = , (0) (0) (0)
1 2 3( , , ) (1.1,1,9.5)µ µ µ =  and (1) (1) (1)

1 2 3( , , ) (2, 2,10)µ µ µ = , and 

when 0.6ρ = , (0) (0) (0)
1 2 3( , , ) (1.4,1,10.5)µ µ µ =  and (1) (1) (1)

1 2 3( , , ) (2, 2,11)µ µ µ = . The target 

marginal means of X2 and X3 are (1) (0)
2 1 2 1 2(1 )µ π µ π µ= + −  and (1) (0)

3 1 3 1 3(1 )µ π µ π µ= + − . 

Under this model, nonrespondents have higher means than respondents for the two 

variables of interest (X2 and X3), and missingness is a function of values on X2. The 

parameter values are chosen to satisfy the seven parameter restrictions described in 
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Section 2.1. The parameter π1 determining the proportion of missing cases is set to 0.75 

or 0.25 (corresponding to high or low unit nonresponse). We generate 1,000 samples of 

size n = 1,000 from this PMM for each value of 1  and π ρ .  

The second set of simulations created nonresponse with a nonignorable selection 

model. Samples were generated from the trivariate normal model 

1

2 3

3

1 1 0.25
~ 1 , 1 0.5

10 0.25 0.5 1

i

i

i

x
x N
x

ρ
ρ

                              
, 

where the parameter ρ was set to 0.9 for low measurement error and 0.6 for high 

measurement error. The X1 variable has a weaker association with X3 than the “true” 

auxiliary variable X2, to reflect attenuation of the relationships due to measurement error 

in X1 (Fuller, 1987). Missing values of X2 and X3 were created using the model 

2
2

2

exp( )( 0 | , , )
1 exp( )

i
i i

i

xP m x
x

α λα λ α λ
+= = + + , 

where α (with possible values 0 and -1) determines the expected response rate, and λ 

(with possible values 2, 1, and 0) determines the dependence of response on the “true” 

auxiliary variable X2, allowing for analyses of sensitivity to assumptions about the non-

ignorable missing data mechanism. For each sample case, a random UNIFORM(0,1) 

deviate was drawn, and the values of X2 and X3 were retained if this draw was less than 

or equal to 2( 0 | , , )i iP m x α β= , and deleted otherwise. 

For each simulation, we computed the empirical relative bias (%), empirical root 

mean squared error (RMSE), 95% confidence / credible interval (CI) coverage, and mean 

95% CI width for the estimators of the two means defined by the five approaches above, 

based on 1,000 samples simulated under the alternative missing data mechanisms. 
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3.3. Results of Simulation Studies 

Tables 1 and 2 present simulation results for each of the five estimation methods 

(PMM, PMM-MI, MI, GW, and CC) under the normal pattern-mixture and selection 

models specified in Section 3.2. Simulations were performed using R. 

Empirical Bias and RMSE. When the data are simulated according to a PMM, the 

PMM and PMM-MI estimators have the smallest empirical bias and RMSE when 

missingness depends on the true value, X2, as expected (Table 1). Notably, the PMM-MI 

estimator vastly out-performs the MI estimator, which assumes an ignorable (MAR) 

mechanism, when the missing data mechanism is nonignorable. The results in Table 1 

and Table 2 also show that the empirical bias and RMSE of the MI estimator both 

increase as a function of measurement error in the auxiliary proxy X1, regardless of the 

missing data mechanism, and become larger than that of the GW estimator under a PMM 

with decreased response rates (Table 1). This is also expected, given the bias in 

regression coefficients engendered by measurement error in the covariates (Fuller, 1987).  

The PMM and PMM-MI estimators also perform well (in terms of empirical bias 

and RMSE) when the data are simulated from a selection model (Table 2). Under the  

normal selection model and an MCAR mechanism (Table 2), the PMM and PMM-MI 

estimators have slightly higher empirical RMSEs under high measurement error, 

reflecting some loss of efficiency from estimating the nonignorable model parameters. 

Under both missing data mechanisms (Tables 1 and 2), the GW and MI estimators have 

less empirical bias than the CC estimators when the missing data mechanism is non-

ignorable, but are still biased, with a bias that increases as dependence of missingness on  
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Table 1: Selected simulation results under the pattern-mixture model. 

ρ π1 Method 
2µ̂

Rel. 
Bias 

2µ̂
RMSE 

2µ̂
95% 
CI 
Cover. 

2µ̂
95% CI 
Mean 
Width 

3µ̂
Rel. 
Bias 

3µ̂
RMSE 

3µ̂
95% 
CI 
Cover. 

3µ̂
95% CI 
Mean 
Width 

0.9 0.75 

PMM 3 51 948 194 -2 81 915 287 
PMM-MI 10 51 968 240 -1 134 952 429 
MI -1635 290 1 227 -470 471 16 428 
GW -837 170 625 406 -212 225 281 322 
CC -4282 752 0 249 -382 382 0 249 

0.9 0.25 

PMM -1 36 951 140 -1 40 929 146 
PMM-MI 7 37 961 165 2 47 984 269 
MI -385 59 714 137 -72 80 556 153 
GW -384 61 846 176 -72 79 547 151 
CC -1999 253 0 143 -130 131 86 143 

 

 

 

 

 

 

0.6 0.75 

PMM -2 104 946 415 -1 90 943 342 
PMM-MI 59 112 901 437 7 93 889 351 
MI -2972 524 0 288 -281 314 81 343 
GW -2746 485 1 293 -241 272 51 279 
CC -4277 751 0 248 -344 380 0 248 

0.6 0.25 

PMM 16 43 959 174 1 39 959 155 
PMM-MI 7 45 964 189 1 41 948 164 
MI -1274 163 10 143 -82 95 377 152 
GW -1274 163 12 150 -82 94 332 146 
CC -1997 252 0 143 -118 130 72 143 

NOTES: ρ = corr(X1, X2), and defines amount of measurement error in X1; π1 defines the proportion of 
population units with values arising from the model for pattern m i = 1 (non-respondents); PMM = pattern-
mixture model estimates based on Bayesian inference approach (Section 2.2); PMM-MI = pattern-mixture 
model estimates based on the multiple imputation approach (Section 2.3); MI = multiple imputation 
estimates after regression prediction (assuming a MAR mechanism) and application of Rubin’s combining 
rules; GW = global weighting estimates; CC = complete case estimates; CI = confidence / credible (for 
PMM) interval. Rel. Bias = Relative Bias (%) x 100. RMSE = Empirical RMSE x 1000. 95% CI Cover. = 
Number of intervals covering the true mean out of 1000. 95% CI Mean Width = Mean CI width x 1000. 

X2 and measurement error in X1 increases. None of the estimators for the mean of the X3 

variable are badly biased in this setting, reflecting the fact that missingness depends on 

X2. However, higher proportions of nonrespondents in the case of the PMM tend to 

increase the empirical bias and RMSE of the estimators for the mean of X3 (Table 1), 

unlike in the case of the normal selection model (Table 2). The PMM and PMM-MI 
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estimators both appear robust to the model generating the missing data and the amount of 

measurement error in the auxiliary variable. The pattern of results evident in Table 2 also  

 

  
    

  

 

  

 

Table 2: Selected simulation results under the normal selection model, with α = 0 in the 
response propensity model. 

ρ λ 
Mean 
RR 
(%) 

Method 
2µ̂

Rel. 
Bias 

2µ̂
RMSE 

2µ̂
95% 
CI 
Cover. 

2µ̂
95% CI 
Mean 
Width 

3µ̂
Rel. 
Bias 

3µ̂
RMSE 

3µ̂
95% 
CI 
Cover. 

3µ̂
95% CI 
Mean 
Width 

0.9 2 78 

PMM 2 32 957 130 -1 38 938 143 
PMM-MI 17 34 965 144 2 39 972 182 
MI 711 77 379 123 101 108 247 151 
GW 752 86 574 183 109 116 192 151 
CC 2911 293 0 122 144 148 14 136 

0.9 
 

 

 

 

 

1 70 

PMM -18 34 956 132 -1 38 951 149 
PMM-MI -5 35 959 158 -9 133 980 285 
MI 541 63 612 128 80 88 507 160 
GW 540 64 774 165 79 87 462 153 
CC 2538 256 0 138 127 132 61 146 

0.9 0 50 

PMM -24 34 953 138 -1 45 929 167 
PMM-MI 1 37 973 180 6 137 990 311 
MI -24 34 951 139 -1 47 944 195 
GW -23 33 994 175 -1 45 944 176 
CC -22 43 958 176 -1 45 937 176 

0.6 2 78 

PMM -25 43 951 167 -1 39 942 153 
PMM-MI 6 45 940 181 1 40 948 161 
MI 2043 207 0 124 113 118 147 145 
GW 2064 209 0 127 114 119 104 140 
CC 2902 292 0 122 146 150 20 137 

0.6 1 70 

PMM 4 45 943 176 -1 43 934 160 
PMM-MI -22 47 940 190 1 43 931 166 
MI 1737 177 3 139 94 102 342 158 
GW 1738 177 2 143 94 102 302 148 
CC 2568 259 0 138 128 134 89 146 

0.6 0 50 

PMM -21 53 945 209 -2 48 948 185 
PMM-MI 13 53 933 209 1 48 936 179 
MI -11 42 943 175 -1 44 960 196 
GW -15 40 969 176 -1 43 955 175 
CC -14 45 954 176 -1 43 955 176 

NOTES: ρ = corr(X1, X2), and defines amount of measurement error in X1; α = 0; λ determines dependence 
of missingness on X2; Mean RR = average response rate across 1000 simulations; PMM = pattern-mixture 
model estimates based on Bayesian inference approach (Section 2.2); PMM-MI = pattern-mixture model 
estimates based on the multiple imputation approach (Section 2.3); MI = multiple imputation estimates 
after regression prediction (assuming a MAR mechanism) and application of Rubin’s combining rules; GW 
= global weighting estimates; CC = complete case estimates; CI = confidence / credible (for PMM) 
interval. Rel. Bias = Relative Bias (%) x 100. RMSE = Empirical RMSE x 1000. 95% CI Cover. = Number 
of intervals covering the true mean out of 1000. 95% CI Mean Width = Mean CI width x 1000. 
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holds under lower response rates, with α = -1 in the normal selection model.    

Confidence / Credible Interval Coverage and Width. Under both missing data 

models, the coverage of 95% confidence intervals based on the MI, GW, and CC 

estimators is far below nominal when missingness depends on X2, and decreases with 

increased dependence of missingness on X2 and more measurement error in the auxiliary 

variable. In contrast, 95% credible intervals based on the PMM and PMM-MI estimators 

have close to nominal frequentist coverage in nearly all cases. Interestingly, for higher 

levels of measurement error (under both missing data models), the mean widths of the 

Bayesian credible intervals based on the PMM estimators and the 95% confidence 

intervals based on the PMM-MI estimators tend to be higher than that for the other three 

estimators. This finding reflects the fact that increased measurement error in the auxiliary 

variable increases the uncertainty in the predictive distribution of the missing values. The 

PMM-MI approach also tends to produce wider confidence intervals than the other 

approaches. This finding reflects efficiency losses due to the small number of multiple 

imputations (5) relative to the information loss from the missing data, and the efficiency 

can be increased by increasing this number of imputations.  

Similar patterns of results were found for the case where α = -1 in the normal 

selection model (introducing lower response rates). In the cases of non-ignorable missing 

data mechanisms, the lower response rates simply served to increase the bias and RMSE 

of the MI, GW, and CC estimators while reducing their coverage. The PMM and PMM-

MI estimators still performed quite well in the presence of lower response rates, but were 

once again found to have higher mean confidence interval width in the case of higher 

measurement error.  
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4. Including Other Fully Observed Auxiliary Variables 

We may wish to include other auxiliary variables as predictors in models for 

imputing missing values. Suppose that in addition to the data in Figure 1 there is a set of 

k such fully-recorded auxiliary variables C, including a vector of 1s for the intercept, and 

that missingness of X2 and X3 is assumed to depend on both X2 and C. Since the auxiliary 

variables C are fixed in the model, interactions and nonlinear terms involving  the 

auxiliary variables can be included. 

For the missing data pattern mi = m, we assume the following generalization of 

the model described in Section 2. Conditional on values ci of the auxiliary variables C,  

( )
( ) ( ) ( ) ( )

1 1 11 12 13
( ) ( ) ( ) ( ) ( ) ( )

2 3 2 12 22 23 3
( ) ( ) ( ) ( )

3 3 13 23 33

~ , ,

m m m m
i c c i c c c

m m m m m m
i c c i c c c xc c i xx c

m m m m
i c c i c c c

x c
x N c N c
x c

β σ σ σ
β σ σ σ β
β σ σ σ

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

            ≡ Σ                 
,       (12) 

a trivariate normal distribution with 3k + 6  parameters. In (12), ( )m
ic cβ ⋅  denotes the 

regression coefficients for the set of auxiliary variables C in the linear regression of 

variable i on C for pattern r, and ( )m
ij cσ ⋅  denote the residual covariance (variance if i = j) of 

variables i and j, given C, for pattern m. In addition, the marginal distribution of mi given 

ci is 

( )1| , ~ ( , )i i im c Bernoulli cγ π γ ,  

where π1 is the probability of missingness, and γ is a vector of k regression parameters in 

a logistic regression of the missingness indicator mi on the auxiliary variables C. The 

following parameters are identified from the observed data: 

(0) (0) (0) (0) (0) (0) (0) (0) (0) (1) (1)
id 1 2 3 12 13 23 11 22 33 1 11( , , , , , , , , , , , )c c c c c c c c c c c c c c cθ γ β β β σ σ σ σ σ σ β σ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= . 
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The following 2k + 5 parameters are not identified: 

(1) (1) (1) (1) (1) (1) (1)
nid 2 3 12 13 23 22 33( , , , , , , )c c c c c c c c cθ β β σ σ σ σ σ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= . 

The assumption that missingness of X2 and X3 depends on X2 and C implies that 

the distribution of X1 and X3 given X2 and C is the same for complete and incomplete 

cases, yielding 2k + 5 parameter restrictions. Hence the model is just-identified (as 

described earlier). 

ML estimates of the identified parameters idθ  are computed as before, with the 

regression coefficients on C computed by applying OLS regression to the two patterns. 

The non-identified parameters nidθ  are similar functions of the identified parameters 

given earlier, except that the expressions condition on the auxiliary variables C. Define 

the following sample estimates: 

( )
1 1
( )
11 1

ˆ  ML estimate of  from logistic regression of  on ;
ˆ OLS regression coefficients of  on , missing-data pattern ;
ˆ  Residual variance of  given ,  missing-data pattern ;
ˆ

m
c c
m

c

jc

M C

X C m
X C m

γ γ
β
σ
β

⋅
⋅

=
=
=

(0)

2 2 2 2

(0)

OLS regression coefficient of  on , complete cases,  = 2,3;
ˆ Coefficient of  from OLS regression of  on  and , complete cases, 1,3;

ˆ  Covariance of ,  given ,  comp

c j

j c j

jk c j k

X C j

X X C X j

X X C

β
σ

⋅

⋅
⋅

=
==
= lete cases.

 

The ML estimates are then computed as follows, given the notation above (where C 

includes the column of 1s used for the intercept terms in the models): 

(1) (0)
(1) (0) 1 1
2 2

12 2

ˆ ˆˆ ˆ
ˆ

c c c c
c c c c

c

β ββ β β⋅ ⋅⋅ ⋅
⋅
−= + ; 

(1) (0)
(1) (0) 11 11
12 12

12 2

ˆ ˆˆ ˆ ˆ
c c

c c
c

σ σσ σ β⋅ ⋅⋅ ⋅
⋅
−= + ; 

(1) (0)
(1) (0) 11 11
22 22 2

12 2

ˆ ˆˆ ˆ ˆ
c c

c c
c

σ σσ σ β⋅ ⋅⋅ ⋅
⋅
−= + ; 

(1) (0)
(1) (0) 1 1
3 3 32.2

12 2

ˆ ˆˆ ˆ ˆ
ˆ

c c c c
c c c c c

c

β ββ β β β⋅ ⋅⋅ ⋅
⋅
−= + ; 

(1) (0)
(1) (0) 11 11
13 13 32 2

12 2

ˆ ˆˆˆ ˆ ˆ
c c

c c c
c

σ σσ σ β β⋅ ⋅⋅ ⋅ ⋅
⋅
−= + ; 
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(1) (0)
(1) (0) 11 11
23 23 32 2 2

12 2

ˆ ˆˆˆ ˆ ˆ
c c

c c c
c

σ σσ σ β β⋅ ⋅⋅ ⋅ ⋅
⋅
−= + ; 

(1) (0)
(1) (0) 2 11 11
33 33 32 2 2

12 2

ˆ ˆˆˆ ˆ ˆ
c c

c c c
c

σ σσ σ β β⋅ ⋅⋅ ⋅ ⋅
⋅
−= +  

 

  

 

 

For Bayesian inference, assuming noninformative priors for the identified parameters, a 

sequence of draws from the posterior distribution of the identified parameters in this case 

can be computed by adding covariates C to the expressions described earlier, and these 

draws then replace the ML estimates in the above expressions to simulate draws from the 

posterior distribution of the other parameters. The following sequence of draws is 

repeated many times to simulate the posterior distributions and make inferences as 

before: 

1) ( ) ~ ( | data), the posterior distribution of d pγ γ γ ;  

2) (0)( ) (0) ( ) ( ) 2
11 11 1 1ˆ / , ~d d d

c c r kr u uσ σ χ⋅ ⋅ −= ;  

3) 
(0)( ) (0) (0) 1 (0)( ) (0)

1 1 11
ˆ~ ( , ),  where  is the sum of squares 

and cross-products matrix of the covariates ,  for  = 0;

d d
c c c c cc c ccN S S

C m
β β σ−⋅ ⋅ ⋅

4) (1)( ) (1) ( ) ( ) 2
11 11 2 2ˆ( ) / , ~d d d

c c n r kn r u uσ σ χ⋅ ⋅ − −= − ;  

5) 
(1)( ) (1) (1) 1 (1)( ) (1)

1 1 11
ˆ~ ( , ),  where  is the sum of squares 

and cross-products matrix of the covariates ,  for  = 1;

d d
c c c c cc c ccN S S

C m
β β σ−⋅ ⋅ ⋅ ; 

6) 
( ) ( )

11 2 13 211 2 13 2
( ) ( )

13 2 33 213 2 33 2

ˆ ˆ
~  Inv-Wishart ,

ˆ ˆ

d d
c cc c

d d
c cc c

r k
σ σσ σ
σ σσ σ ⋅ ⋅⋅ ⋅

⋅ ⋅⋅ ⋅

     −        
7) ( ) ( ) (0)

12 2 12 2 11 2 22
ˆ ˆ~ ( , / ( ))d d

c c c cN rβ β σ σ⋅ ⋅ ⋅ ⋅ ; ( ) (0) ( ) (0) ( )
10 2 1 12 2 2 11 2

ˆˆ ˆ~ ( ,  / )d d d
c c cN rβ µ β µ σ⋅ ⋅ ⋅−

8) ( ) ( ) (0)
32.2 32 2 33 2 22.

ˆ ˆ~ ( , / ( ))d d
c c c cN rβ β σ σ⋅ ⋅ ; ( ) (0) ( ) (0) ( )

30 2 3 32 2 2 33 2
ˆˆ ˆ~ ( ,  / )d d d

c c cN rβ µ β µ σ⋅ ⋅ ⋅−
If the objective of the analysis is inference about marginal means of X2 or X3 (as 

opposed to the regression parameters or variance-covariance parameters), we can apply 

the MI approach described in Section 2.3 to make inferences that essentially “integrate 



 21 

out” values of the auxiliary variables C. We first draw parameters for pattern m = 1 of the 

PMM defined in (12) from their posterior distributions (without needing the draws ( )dγ , 

given that our focus is on the pattern m = 1), and then impute missing values for X2 and 

then X3 by taking random draws from their conditional distributions defined by the drawn 

parameters (as shown in Section 2.3):  

( )( ) (1)( ) (1)( ) (1)( )
2 2 1 211 1 22 1~ ,d d d d

i c c ci c i cx N x sβ⋅ ⋅ ⋅+β x  and (13) 

( )( ) (1)( ) (1)( ) (1)( ) ( ) (1)( )
3 3 12 3112 1 32 12 2 33 12~ , .d d d d d d

i c c ci c i c i cx N x x sβ β⋅ ⋅ ⋅ ⋅+ +β x  (14) 

The SWEEP operator facilitates computation of the parameters in these conditional 

distributions given the draws for pattern m = 1 of the PMM; for example, we 

have (1) (1) (1) (1) (1)
2 1 2 . 1 . 12. 11./c c c c c c c cs s⋅ = −β β β . This process is repeated B times to create B complete 

data sets. The means of X2 and X3 and their standard errors are then computed for each 

data set using standard complete-case methods (potentially incorporating complex 

sampling features), and MI combining rules are applied for making inferences. 

 

5. Application: The Labor Market and Social Security (PASS) Survey  

We applied our methods to data from the German Labor Market and Social 

Security (PASS) survey, a panel study that collects annual labor market, household 

income, and unemployment benefit receipt data from a nationally representative sample 

of 12,000 households from the German population (Trappmann et al., 2011). According 

to the PASS survey web site (http://fdz.iab.de/en/FDZ_Individual_Data/PASS.aspx), 

“PASS is a new central source for analyses of the labour market and poverty situation in 

Germany as well as the situation of recipients of benefits in accordance with the German 

Social Code Book II.” German households known to have received unemployment 
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benefits are sampled at a higher rate than other households, so sampling weights are 

needed to make representative inferences about the German population. To assist with 

both stratified sampling and estimation, the PASS survey purchases auxiliary variables 

describing area-level features for sampled households from the German consumer 

marketing organization Microm. These variables are then linked to the sampled 

households at the address level, and linking rates are consistently higher than 95%. See 

Trappmann et al. (2011) for additional details.  

For this application, we identified continuous variables from the Microm database 

(available for all sample units) and the PASS survey (Wave 1 respondents in 2006) for 

analysis. Specifically, 48,250 sampled households had information available on a 

continuous auxiliary variable measuring the average purchasing power (in Euros) of 

households in the same city block. This variable followed an approximately normal 

distribution, and was considered as an error-prone auxiliary proxy (X1) of reported 

monthly household income. Monthly household income and area (in square meters) of 

the housing unit were both measured for 11,969 respondents to the PASS survey in Wave 

1 (a 24.8% unweighted response rate). We also extracted the base sampling weights, 

stratum identifiers, and sampling error cluster codes for the Wave 1 respondents, given 

the stratified multistage design employed for the survey. 

Monthly household income (log-transformed) was considered as the X2 variable, 

and unit nonresponse (on X2 and X3) was assumed to be a linear function of this variable. 

This assumption was supported by strongly significant (p < 0.001) associations of both 

average household purchasing power and the base sampling weight with a response 

indicator in a logistic regression model fitted to the full sample. For every 10,000 euro 



 23 

increase in the average purchasing power of households in a given city block, the 

expected odds of an individual household responding were reduced by about 15% 

(estimated odds ratio = 0.853, 95% CI = 0.822, 0.885), and larger values on the base 

sampling weight (generally indicating households not receiving unemployment benefits) 

were also associated with reduced odds of responding. Area of the housing unit (also log-

transformed) was considered as the X3 variable. The correlation between the auxiliary  

measure of average purchasing power and the reported household income (log-

transformed) was 0.223, suggesting substantial error in the auxiliary proxy (the lowest 

correlation considered in the simulation studies above was 0.6). The correlation of 

average purchasing power with log-transformed housing unit area was 0.137, while the 

correlation of housing unit area and household income was 0.642.  

 

5.1 Analysis with One Error-Prone Auxiliary Variable 

In the first analysis, we applied the CC, GW, MI, and PMM-MI methods to 

estimate population means for monthly household income (in Euros) and housing unit 

area (in meters squared). The GW and MI estimators assumed an ignorable missing data 

mechanism, where missingness was a function of the auxiliary variable measuring 

average purchasing power of the households. The PMM-MI estimator assumed a non-

ignorable missing data mechanism, where missingness was a function of the household 

income variable measured in the survey. Each of these four methods also accounted for 

the complex design features of the Wave 1 PASS sample (weighting for unequal 

probability of inclusion, stratification, and cluster sampling); see Heeringa et al. (2010) 

for more details on these types of design-based procedures.  
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When applying the CC approach for the respondents only, weighted estimates of 

the means for log-transformed monthly household income and log-transformed housing 

unit area were computed using the Wave 1 base sampling weight, and TSL was applied 

(incorporating the stratum and cluster codes and the weighted cluster totals) for variance 

estimation. When applying the GW approach, the base weights were adjusted by the 

inverse of the predicted response propensity from a logistic regression model predicting 

the response indicator with the proxy income variable, and the base weights were ignored 

when estimating the logistic model (per Little and Vartivarian, 2003). The MI approach 

was implemented using the mi() function in R to perform multiple sequential regression 

imputations (as in the simulation studies), and complex sample design features were 

accounted for in the analysis of each imputed data set using the survey package in R 

(Lumley, 2010). Finally, we applied the PMM-MI approach described in Section 2.3 for 

the possible non-ignorable missing data mechanism, given that the standard PMM 

approach outlined in Section 2.2 does not recognize complex sampling features. 

Estimates of population means for household income and housing unit area computed 

using the four methods were exponentiated to return them to their original scales. Table 3 

presents results from applying these four different approaches. 

 

Table 3: Estimates of mean reported household income and mean housing unit area (in 
square meters), based on four different nonresponse adjustment methods*. 

Variable Method Estimated Mean 95% CI CI Width 
Reported 

Monthly HH 
Income in 
Euros (X2) 

CC 1,814.88 (1,772.99, 1,857.77) 84.78 
GW 1,838.57 (1,795.62, 1,882.54) 86.92 
MI 1,448.57 (1,412.88, 1,485.15) 72.27 

PMM-MI 1,797.24 (1,744.70, 1,851.36) 106.66 
Housing Unit 
Area, Meters 
Squared (X3) 

CC 89.21 (87.47, 90.99) 3.53 
GW 89.65 (87.91, 91.42) 3.51 
MI 78.30 (76.92, 79.69) 2.77 
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PMM-MI 85.94 (84.65, 87.24) 2.59 
* Full sample size: n = 48,250. Respondents: 11,969 (unweighted response rate = 0.248). PMM-MI 
estimates are based on B = 5 imputations of the missing data on reported monthly household income and 
housing unit area according to the approach described in Section 2.3. 

 

Table 3 shows that inferences based on the CC, GW, and PMM-MI approaches 

would be similar. We would make different inferences depending on whether the MI 

approach (assuming an ignorable model) or the PMM-MI approach (assuming a non-

ignorable model) is used in this analysis. In the PASS survey, nonrespondents tended to 

have higher income and significantly higher base sampling weights as a result (given the 

informative sampling). Given the weak relationship of the error-prone proxy variable 

with household income observed for the respondents, the imputed values for 

nonrespondents under the ignorable model all tended to be closer to the mean for the 

responding cases, which had lower income in general. When the base weights were 

applied to each imputed data set, these negatively biased predictions were inflated, and 

this resulted in the substantially different inferences for the means that are evident in 

Table 3. The PMM-MI approach incorporates the apparent dependence of missingness on 

income, and is not as heavily affected as a result. However, given the weak relationship 

of the auxiliary proxy with income (possibly due to error in the proxy), we see the same 

inefficiency in the PMM-MI estimates that was noted in the simulations. 

This analysis demonstrates the sensitivity of multiple imputation inferences based 

on error-prone auxiliary proxies to assumptions about the missing data mechanism. Given 

knowledge of the oversampling of low-income households in the PASS survey and the 

substantial differences in distributions of the base sampling weights between respondents 

and nonrespondents, use of an error-prone auxiliary proxy under assumptions of an 

ignorable missing data mechanism may result in bias. In practice, inferences based on the 
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PMM-MI and MI approaches should be compared to assess the sensitivity of inferences 

to the assumed missing data model. Better adjustments would include additional auxiliary 

variables measured with less error and (ideally) having stronger relationships with the 

key survey variables and response propensity, and we consider such adjustments in the 

next section. 

 

 

5.2. Analysis with Multiple Auxiliary Variables 

We now compare inferences based on the four approaches that account for the 

complex sample design features and include multiple auxiliary variables in the 

adjustments. We consider the informative (and error-free) base sampling weight as an 

additional auxiliary variable, alongside the auxiliary proxy of household income. The 

variable containing the base sampling weights was included in the logistic regression 

model used to compute predicted response propensities for the GW approach, and also 

included in the imputation models for the MI and PMM-MI approaches. This means that 

there are k = 2 additional auxiliary variables in the vector C from Section 4: a column of 

1s for the intercept, and the base sampling weights. The CC analysis results do not 

change in this case, given that the CC method is not affected by the choice of auxiliary 

variables for the nonresponse adjustment. Table 4 presents results from including the 

base sampling weights in the various nonresponse adjustments. 

Table 4: Estimates of mean reported household income and mean housing unit area (in 
square meters), based on four different nonresponse adjustment methods that included the 
base sampling weight as an additional auxiliary variable*. 

Variable Method Estimated Mean 95% CI CI Width 
Reported 

Monthly HH 
CC 1,814.88 (1,772.99, 1,857.77) 84.78 
GW 1,860.02 (1,815.87, 1,905.24) 89.37 
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Income in 
Euros (X2) 

MI 1,839.44 (1,784.94, 1,895.61) 110.67 
PMM-MI 2,235.28 (1,933.00, 2,584.83) 651.83 

Housing Unit 
Area, Meters 
Squared (X3) 

CC 89.21 (87.47, 90.99) 3.53 
GW 90.48 (88.68, 92.31) 3.63 
MI 89.67 (87.60, 91.78) 4.18 

PMM-MI 96.92 (91.31, 102.88) 11.57 
* Full sample size: n = 48,250. Respondents: 11,969 (unweighted response rate = 0.248). PMM-MI 
estimates are based on B = 5 imputations of the missing data on reported monthly household income and 
housing unit area according to the approach described in Section 4. 
 

 

The results in Table 4 suggest that the CC, GW, and MI estimates are all biased low 

when these improved adjustments are considered. Inferences based on the PMM-MI 

method would be significantly different than inferences based on the other three 

approaches, and suggest that the mean income in the German population is much higher 

than would be suggested by the approaches assuming ignorable missing data 

mechanisms. Notably, the GW and MI estimates are very similar to the CC estimates, 

which suggests that adjustments based on the error-prone auxiliary variable and the base 

sampling weights are not removing the bias that is arising from what may be a non-

ignorable missing data mechanism. Finally, we once again see the same inefficiency in 

the PMM-MI estimates that was noted in the simulations when the auxiliary proxy is 

measured with fairly substantial error. As was noted in the simulations, the relative 

reductions in bias from using the PMM-MI approach may result in estimates with lower 

RMSE overall despite the decrease in efficiency. 

6. Discussion 

We have proposed PMM estimators for survey nonresponse, where a fully 

observed continuous auxiliary variable is measured with error on each of n sample units, 

true values of the auxiliary variable (along with other continuous survey variables of 
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interest) are measured on survey respondents, and missingness depends on the true values 

of the auxiliary variable. Simulation studies suggest that under these conditions, the 

PMM estimators have reduced empirical bias, reduced empirical RMSE, and 95% 

credible sets with confidence coverage closer to nominal levels, compared with standard 

imputation and weighting approaches that assume ignorable (or MAR) missing data 

models. We also found the PMM estimators to be robust to the model generating the 

missing data, as these estimators performed equally well when missing data were 

generated under a normal selection model. 

We applied the proposed PMM estimators to descriptive analyses of real data 

from a large area probability sample survey in Germany (the PASS survey). The 

applications demonstrated the ability of the proposed PMM-MI estimator to 

accommodate complex sample design features when a non-ignorable missing data 

mechanism is suspected and auxiliary variables available for the imputation models may 

be prone to error. The applications also showed the importance of comparing multiple 

imputation inferences based on ignorable and non-ignorable models when auxiliary 

variables are error-prone, and examining the sensitivity of the inferences to assumptions 

about the missing data mechanism. When incorporating an additional auxiliary variable 

that was free from error and related to both the survey variables of interest and response 

propensity (the base sampling weights) in the nonresponse adjustments, the PMM-MI 

estimator yielded inferences that were substantially different from the methods assuming 

an ignorable missing data mechanism.  

In general, the forms of the proposed PMM estimators indicate situations where 

one can expect the most bias reduction: 1) missingness is substantially related to the 
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underlying true value; 2) the auxiliary proxy has substantial measurement error, making 

the MAR adjustment inadequate; and 3) the missing data rate is high. As shown in the 

simulation studies, if the measurement error in the auxiliary proxy is large enough that 

the correlation between the proxy and the true variable is low, then bias reduction will 

come at the expense of increased variance.  

There are many possible extensions of this work. This work only considered a 

single normally-distributed auxiliary variable measured with error, and extensions to two 

or more such error-prone variables or non-normal variables would be useful. For 

instance, some face-to-face surveys request that interviewers record binary (yes/no) 

judgments about features of sampled households, such as whether young children are 

present, and these types of judgments can be prone to error (West, 2012). Extensions of 

the proposed methods to accommodate errors in these types of error-prone binary 

auxiliary variables are needed. Further extensions might also include development of 

PMM estimators for additional binary variables measured in the survey, given the 

importance of binary outcomes in survey research, and work is currently ongoing in this 

area (Andridge and Little, 2009). We also assumed that there was no measurement error 

in the survey variables measured for respondents, and the impact of error in these 

variables on the methods discussed in this study also deserves future research attention. 

Finally, applying the proposed PMM methods to real survey data requires that the 

methods be implemented in statistical software packages. R functions enabling 

applications of the PMM estimators proposed in this article to real survey data are 

available upon request from the authors (email: bwest@umich.edu). Data producers 

could use the proposed methods (and R functions) to impute missing values on key 
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survey variables if non-ignorable missing data mechanisms are suspected, and then 

release multiple imputed data sets to the public. Secondary analysts could then apply 

standard complete case methods when analyzing each data set and make inferences based 

on straightforward MI combining rules.    
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