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Abstract 

An increase in quality and detail of publicly available databases increases the risk of disclosure of sensitive 

personal information contained in such databases. The goal of Statistical Disclosure Control (SDC) is to develop 

methodology that aims at minimizing disclosure risk while providing society with as much information as possible 

needed for valid statistical inference. The Post Randomization Method (PRAM) is a disclosure avoidance method, 

where values of categorical variables are perturbed via some known probability mechanism, and only the perturbed 

data are released thus raising issues regarding disclosure risk and data utility. In this paper, we propose a number of 

EM algorithms to obtain unbiased estimates of the logistic regression model with data subject to PRAM, and thus 

effectively account for the effects of PRAM and preserve data utility. The effect of the level of perturbation and 

sample size on the estimates are evaluated, and relevant standard error estimates are proposed. 
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  1 Introduction 
The goal of Statistical Disclosure Control (SDC), and related ®elds such as Privacy-Preserving Data-Mining, is to 

provide society with as much information as possible while individual information is suf®ciently protected against 

public disclosure. Development of SDC methodology and its practice are important to of®cial statistics for many 

reasons,�a number�of which are discussed by Willenborg and de Waal (1996), Fienberg and Slavković (2010), and 

Ramanayake and Zayatz (2010). For example, there are laws requiring the protection�of the con®dentiality�of respon-

dents’ information by statistical of®ces such as Title 13�of the United States Code that outlines the role�of the U.S. 

Census. Disclosure control is also needed to maintain trust amongst respondents in order to obtain adequate response 

rates. Concerns about threats to data privacy have even led to the abolition of the census in the past (e.g., Netherlands 

in 1971; see van der Laan (2000)). 

Traditionally, publicly available data have been mostly in�the aggregate form, but nowadays there exists substan-

tial demand for high-quality detailed data products. Microdata are sets of records containing detailed information on 

individual respondents and many SDC methods have been developed for microdata. When SDC methods are applied 

to a dataset they lead to a publication of altered datasets, which would be available for a wider use and have reduced 

disclosure risk of sensitive information but also reduced data utility. The Post Randomization Method (PRAM) is 

a disclosure avoidance method originally proposed by Gouweleeuw et al. (1998). The main idea behind PRAM is 

to publish redacted data after the values of categorical variables in the original data have been misclassi®ed by a 

known probability mechanism.�This probability�mechanism�is described by�a transition�matrix,�so�called a�PRAM�ma-

trix. While PRAM provides certain advantages compared to other SDC methodologies (e.g., unlike non-perturbative 

methods which lead to loss of detail, PRAM maintains detail in the variables; unlike most perturbative methods, 

the application of PRAM is probabilistic in nature and hence intruders cannot determine which records have been 

perturbed), it has seen a limited use in practice. One of the commonly-discussed issue in the literature is of model 

parameter estimation when data are subject to PRAM. Summary statistics from PRAMed data are typically biased 

and need to be adjusted to take the effects of PRAM into account. Current literature has focused on a speci®c subset 

of problems; for example, Gouweleeuw et al. (1998) proposed an unbiased moment estimator for frequency counts; 

van den Hout and van der Heijden (2002) proposed formulas to estimate odds ratios for data subject to PRAM; and 

van�den�Hout�and Kooiman�(2006)�proposed�an EM�algorithm�to estimate�the�linear�regression�model�with�covariates 

subject to PRAM. 

In this paper, we focus on measuring data utility from the standpoint of statistical inference (e.g., see Slavković 

and Lee (2010)) and propose a way to obtain unbiased estimators of parameters in logistic regression models when 

data have�been subjected�to PRAM. We develop�and implement EM-type algorithms�to obtain asymptotically unbiased 

estimators, that is the maximum likelihood estimators of parameters in logistic regression models, when variables are 

subject to PRAM. The basic ideas are based on the ªEM by method of weights” developed by Ibrahim (1990) for 

generalized linear models�(GLMs)�with�covariates missing�at random,�and�on�the approach proposed by van�den�Hout 

and Kooiman (2006) for linear regression with covariates subject to PRAM. There is an extensive literature for miss-

ing data with either missing covariate or missing response variable. We extend these ideas by developing an EM-type 

algorithm that obtains unbiased estimates of logistic regression when both covariate and  response variables are subject 

to PRAM. This is a more dif®cult problem than either case when covariates or response variables are subject to PRAM, 

and has received little attention in both PRAM and missing data literatures. 

The outline of this paper is as follows. Section�2 presents the EM-type methodology to obtain estimates of the 

logistic�regression�model�when�variables�are�subject�to�PRAM�and reports�the results�of simulation studies�to�evaluate 

the methodology�for�three�different cases:�(1)�covariate�subject�to�PRAM,�(2) response variable�subject�to�PRAM,�and 

(3)�both�covariate�and response variables subject�to PRAM. Section 3 reports�the results�of simulation studies intended 

to evaluate the effects of varying the parameters of the logistic regression model on the proposed methodology. Section 

4 applies the proposed methodology to data from the 1993 Current Population Survey, and Section 5 contains some 

discussion. 
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2 Estimating Logistic Regression Model with Variables Subject to PRAM 
We ®rst introduce the notation for the standard logistic regression model. Let x = (x0, x1, ..., xp)

t denote the vector 

with p covariates, and let Y be the binary response variable. The logistic regression model is written as 

exp(βtx)
E(Y |x) = (1)

1 + exp(βtx) 

where β = (β0, β1, ..., βp) are the parameter coef®cients. We ®x x0 = 1 so β0 is the intercept. Let µ(x) = P (Y = 
1|x, β), so 1 − µ(x) = P (Y = 0|x, β). 

The likelihood function is given by 

Y 
L(β) = [µ(xi)]

yi [1 − µ(xi)]1−yi , (2) 
i 

the loglikelihood is 

n
X 

`(β) = {yilog[µ(xi)]] + (1 − yi)log[1 − µ(xi)]]}, (3) 
i 

and the information matrix is given by 

∂2`(β) X 
I(β)jk = − = xij xikµ(xi)(1 − µ(xi)). (4)

∂βj ∂βk 
i 

Similar�to�the ideas�in Ibrahim (1990)�and van�den Hout�and Kooiman (2006)�for�covariates missing�at random�and 

for covariates subject to PRAM respectively, we develop and implement three EM-type algorithms to obtain unbiased 

estimators for parameters in the logistic regression model for three cases: (1) covariates subject to PRAM; (2) response 

variables subject to PRAM; and (3) both covariates and response variables subject to PRAM. The E-step consists of 

computing the weights with the derived formulas for the conditional distribution of the true data given the observed 

data and current parameter estimates. The M-step can be carried out using weighted regression with any standard 

statistical software, which makes implementation of the algorithms more convenient. Case 3 has not been studied as 

extensively as Cases (1) and (2) in either PRAM or missing data literature, and is more complex. 

2.1 Categorical Covariate Subject to PRAM 
Let X denote the categorical covariate to which PRAM is applied, with X∗ denoting the observed, released version�of 

X . The levels�of X and X∗ are {x1, ..., xJ }. Let PX be the J x J PRAM transition matrix that contains the transition 
∗probabilities, with pXjk = P (x = xk|X = xj ), π

∗ = P (X∗ = xj ) and πj = P (X = xj ).j 

2.1.1 EM Algorithm I 

We present an EM algorithm to obtain unbiased estimates of (1) for Case (1) when covariates are subject to PRAM. 

This method is similar to the ªEM by method of weights” proposed by Ibrahim (1990), which is used to estimate 

parameters in GLMs with missing covariates. Consider the joint distribution of (xi, yi), which can be speci®ed via 

the conditional distribution of yi given xi and the distribution of xi. Then the complete data loglikelihood can be 

expressed as 

n
X 

`(φ; X, y) = `(φ; xi, yi) 
i=1 
n
X 

= {` yi |xi (β) + ` xi (π)} (5) 
i=1 

where φ = (β, π), and the distribution of X is multinomial with parameter π. The E-step can be written as 
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n
X 

Q(φ|φ(v)) = (v)E(`(φ; xi, yi)|data, φ ) 
i 
n J
X X 

= qj (i)`(φ; xi, yi) 
i=1 j=1 

n J
X X 

= qj (i){` yi|xi (β) + ` xi (π)} (6) 
i=1 j=1 

where ) q (v  
j  (i)  is the conditional probability of X|observed data, φ for subject i.�The ®rst part of (6) is the loglike-

lihood of the logistic regression model, and second part is the loglikelihood of a multinomial distribution. 

The M-step maximizes (6). This can be done via a weighted logistic regression, by creating a ªnew” dataset, 

with each subject i having (Xnew = x1), (Xnew = x2), ..., (Xnew = xJ ) with weights qj (i) = P (Xnew(i) = 
∗ xj |y(i), x ∗(i), φ(v)), where x is the observed value of the PRAMed variable. Using Bayes’ rule, the conditional 

distribution of Xnew is 

(v)
pXjkP (Y |xj , β

(v))πj
P (Xnew = xj |X ∗ = xk, Y, φ(v)) = 

PJ (7)
(v) 

l=1 pXlkP (Y |xl, β(v))πl 

for k, j ∈ {1, ..., J}. An example on how the weighted logistic regression�is carried out�is shown below in Table (1). 

Table 1: Methodology: Weighted logistic regression where Y is a response variable, X∗ denotes observed value of 

covariate and Xnew denotes a list of possible values of the covariate. 

Y X∗ Xnew Weight for Xnew 

y(1) x ∗(1) 0 

1 

q0(1) 
q1(1) 

y(2) x ∗(2) 0 

1 

q0(2) 
q1(2) 

. . . 

y(n) x ∗(n) 0 

1 

q0(n) 
q1(n) 

EM Algorithm�I runs as follows: 

EM Algorithm I: Initial values can be the estimates of β from the logistic regression on Y ∼ X∗, where X∗ is the 

PRAMed covariate. π∗ can be used as the initial estimate of π. 

E-step: 
(v)

Compute q (i) for i = 1, ..., n and j = 1, ..., J .j 

M-step: 
(v)

Carry out weighted logistic regression with weights q (i), using standard software. j 
Update φ(v) 

β(v+1) ˆ= β from weighted logistic regression 
P(v) (v) (v) (v)

π(v+1) = (q (+), ..., q (+))t/n, where q (+) = 1 J j i qi 

With the updated φ(v+1),�a new dataset with new weights can be computed in the E-step, and the algorithm continues 

until convergence. 
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2.1.2 Comparison of Estimation With & Without Accounting for PRAM 

To demonstrate the effect of PRAM on maximum likelihood estimates of parameter coef®cients in logistic regres-

sion model (1), a simulation study was carried out, with one binary covariate, β  =   (1   , 2)t, xi1  sampled from 
exp(βtx)Bernoulli(0.4), and yi  sampled from Bernoulli(
exp t )

1+ (β )  . The estimates for the logistic regression of Y on
x

 
X  are reported�in Table�2, labeled�as�ªβ ∗

real”. PRAM is then applied to x  to obtain x  , with the following transition 

matrix 

� � 
p 1 − p

PX = ,
1 − p p 

where we vary the value of p. 

Standard logistic regression is performed on y  with x∗  , while x  is not released and is considered to be unob-

served. We estimate and its approximate   con®dence interval, ˆ ±  ˆβ1  95% β1  2SE(β1
 ). We ran 500 simulations, with 

n  =  100,  1000,  10000, p  = 0.8,  0.9. The mean estimates of β1  and the coverage probabilities of the 95%  CIs are 

computed and are reported in Table 2 in�a row labeled ªβnoadjust”. 

Next, using EM Algorithm I, we obtain the MLEs of model (1). The algorithm ran for 20 steps. The mean estimates 

of β1 and the coverage probabilities of the 95% CIs are computed and reported in Table 2 in�a row labeled ªβadjust”. 

The inverse of the observed information matrix can be used to estimate the covariance matrix. Following the method 

described�in Ibrahim et�al. (2005)�and Louis (1982),�the estimated observed information matrix is given by 

n n
X X 

I(β̂) = −Q ¨(β̂|β̂v) − {[ q̂j (i)Si(β̂|xi, yi)Si(β̂|xi, yi)
t] − Q̇ 

i(β̂|β̂
v)Q̇ 

i(β̂|β̂
v)t} (8) 

i=1 i=1 

Pn PJ ∂2`(β|xi,yi) PJ ∂`(β|xi ,yi) ∂`(β|xi,yi )¨ ˙where Q(β|βv ) = i=1 j=1 qj (i) ∂β∂βt , Qi(β|β
v) = j=1 qj (i) ∂β , and Si(β|xi, yi) = 

∂β . 

From Table 2, we can see that estimates of the logistic regression coef®cients without accounting for PRAM are 

biased (see βnoadjust). The bias appears to increase when p decreases (i.e. higher level of perturbation). Actual 

coverage probabilities also decreases as sample size increases and as p decreases. When accounting for PRAM, the 

estimates appear to be close to their true values (see βadjust). The estimates are less biased as sample size increases, 

for example, when p = 0.9, the bias is −0.0031, 0.0023 and 0.002 for n = 100, n = 1000 and n = 10000 respec-

tively. Coverage probabilities decreases with higher level of perturbation, and larger sample sizes. 

Table 2: Simulated ML estimates of (1)�with accounting for�PRAM. Average ML estimates. Coverage probabilities in 

parentheses 

p = 0.9 p = 0.8 

n = 100 
βreal 

βnoadjust 
βadjust 

0.6062 

0.4403 (0.986) 

0.6093 (1.000) 

0.6062 

0.2872 (0.872) 

0.6914 (0.998) 

n = 1000 
βreal 

βnoadjust 
βadjust 

0.4947 

0.3810 (0.960) 

0.4924 (1.000) 

0.4947 

0.2822 (0.720) 

0.5031 (0.926) 

n = 10000 
βreal 

βnoadjust 
βadjust 

0.4995 

0.3897 (0.350) 

0.5015 (0.890) 

0.4995 

0.2872 (0.02) 

0.5042 (0.790) 

Figures�1 and�2 display the plots�of the true�values�of β1 (in black), along with the estimates of β1 (in red; left 

column without adjustment, right column using adjustment with EM algorithm), and the con®dence intervals for the 

estimates via the EM algorithm (in dotted green), for n = 10000, p = 0.90 and p = 0.80 respectively. We only show 

plots for the ®rst 50 simulations. When not adjusting for PRAM, the true values of β1 barely fall within the con®dence 

intervals, especially when p = 0.8. When the adjustment is made using EM algorithm I, the true values of β1 are more 
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likely to fall within the con®dence intervals. Plots for n = 100 and n = 1000 are shown in Appendix A, Figures 11 -

14. 

Figure 1: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 10000, p = 0.90 

Figure 2: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 10000, p = 0.80 

Additional simulations to study the effect of the proposed EM algorithm with varying π, β and multinomial 

covariates are discussed in Section 3. Next, we focus on presenting EM algorithms for cases (2) and (3). 
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2.2 Response Variable Subject to PRAM 
Let Y denote the binary response variable to which PRAM is applied, with Y ∗ denoting the observed, unreleased 

version of Y . Let PY be the PRAM transition matrix that contains the transition probabilities, with pY jk = P (Y ∗ = 
k|Y = j), k, j ∈ {0, 1}. 

2.2.1 EM Algorithm II 

Following the method proposed in Section 2.1.1, the parameter π in the complete data loglikelihood (5) can be esti-

mated directly since X is not subject to PRAM. Thus, the E-step simpli®es to 

n J
XX 

Q(φ|φ(v)) = rj (i){` yi|xi (β)} (9) 
i=1 j=1 

where rj (i) is the conditional probability of Y |observed data, β(v) for subject i. 

The M-step maximizes (9). This can be done via a weighted logistic regression, by creating a ªnew” dataset, with 

each subject i having (Ynew = 0), (Ynew = 1) with weights rj (i) = P (Ynew(i) = j|y ∗(i), x(i), β(v)). Using Bayes’ 

rule, the weights can be computed as 

pY jkP (Y = j|X, β(v))
P (Ynew = j|Y ∗ = k, X, β(v)) = P . (10) 

l pY lkP (Y = l|X, β(v)) 

EM Algorithm II runs as follows: 

EM Algorithm II: Initial values can be the estimates of β from the logistic regression on Y ∗ ∼ X , where Y ∗ is the 

PRAMed response variable. 

E-step: 
(v)

Compute r (i) for i = 1, ..., n and j = 0, 1.j 

M-step: 
(v)

Carry out weighted logistic regression with weights r (i), using standard software. j 
Update β(v) 

β(v+1) = β̂  from weighted logistic regression 

With the updated β(v+1), a new�dataset with new weights can be computed in the E-step, and the�algorithm continues 

until convergence. 

2.2.2 Comparison of Estimation With & Without Accounting for PRAM 

To demonstrate the effect�of PRAM on maximum likelihood estimates�of parameter coef®cients�in logistic regression 

model (1), a simulation study was carried out, with one covariate, β = (1, 0.5)t, and xi1 sampled from N ∼ (1, 1), and 
exp(βtx)yi sampled from Bernoulli( ). Like before, we report the estimated parameters of the logistic regression of 

1+exp(βtx) 
Y on X (see Table�3, row labeled as ªβreal”). PRAM is then applied to y to obtain y ∗, with the following transition 

matrix 

� � 
PY = p 

1 − p 
1 − p 
p , 

where we vary the value of p. 

∗Standard logistic regression is performed on y with x, while y is not released and is considered to be unob-

served. We estimate β1 and its approximate 95% con®dence interval, β̂  
1 ± 2SE(β̂  

1). We ran 500 simulations, with 
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n = 100, 1000, 10000, p = 0.8, 0.9. The mean estimates of β1 and the coverage probabilities of the 95% CIs are 

computed and are reported in Table 3 in�a row labeled ªβnoadjust”. 

Next, using EM Algorithm II, we obtain the MLEs of model (1). The algorithm ran for 20 steps. The mean 

estimates of β1 and the coverage probabilities of the 95% CIs are computed�and reported in Table 3 in a row labeled 

ªβadjust”. The inverse of the observed information matrix can be used to estimate the covariance matrix. Note that 

X 
I(β) = I(β)i 

i 

where I(β)i is the contribution of subject i to�the information matrix. Following�the method described�in Louis (1982) 

IY ∗|X = IY |X − IY |Y ∗,X . 

From (4), it follows that 

tI(β)i = xixiµ̂(xi)(1 − µ̂(xi)) 
− xix

t
i[P (Y = 1|Y ∗ , xi).(1 − P (Y = 1|Y ∗ , xi))]. (11) 

From Table 3, we can see that estimates of the logistic regression coef®cients without accounting for PRAM are 

biased (see βnoadjust). The bias appears to increase when p decreases. Actual coverage probabilities also decreases as 

sample size increases and as p decreases. When accounting for PRAM, the estimates appear to be close to their true 

values (see βadjust). The estimates are least biased for p = 0.9 and n = 10000. Coverage probabilities decreases with 

higher level of perturbation, and larger sample sizes. 

Table 3: Simulated ML estimates of (1)�with accounting for�PRAM. Average ML estimates. Coverage probabilities in 

parentheses 

p = 0.9 p = 0.8 

n = 100 
βreal 

βnoadjust 
βadjust 

0.5361 

0.3550 (0.922) 

0.5777 (0.970) 

0.5361 

0.2259 (0.754) 

0.6077 (0.854) 

n = 1000 
βreal 

βnoadjust 
βadjust 

0.4962 

0.3216 (0.464) 

0.5015 (0.958) 

0.4962 

0.2117 (0.072) 

0.5101 (0.746) 

n = 10000 
βreal 

βnoadjust 
βadjust 

0.5016 

0.3229 (0.000) 

0.5007 (0.956) 

0.5016 

0.2118 (0.000) 

0.5007 (0.726) 

Figures 3 and 4 display the plots�of the true values�of β1, along with the estimates of β1, and the con®dence inter-

vals for the estimates via the EM algorithm, for n = 10000, p = 0.90 and p = 0.80 respectively. Similar to the results 

from Section 2.1.2, the true values of β1 barely fall within the con®dence intervals when not using the�EM algorithm. 

When the adjustment is made using EM algorithm II, the true values of β1 are more likely to fall within the con®dence 

intervals. Plots for n = 100 and n = 1000 are shown in Appendix B, Figures 15 - 18. 

2.3 Covariate and Response Subject to PRAM 
2.3.1 EM Algorithm III 

The weighted logistic regression�is done�by creating�a ªnew” dataset with each subject i having (Ynew = 0), (Ynew = 
1) and (Xnew = x1), (Xnew = x2), ..., (Xnew = xJ ) with weights wml(i) = P (Ynew(i) = m, Xnew = xl|Y ∗(i) = 
k, X∗(i) = xj , β

(v)). The weights can be computed as 
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Figure 3: Plots of estimates with response subject to PRAM, with 95% CI, when n = 10000, p = 0.90 

Figure 4: Plots of estimates with response subject to PRAM, with 95% CI, when n = 10000, p = 0.80 

P 
pY mkP (Y = m|X = l, β(v)) pXlj π(l) b pY bkP (Y = b|X = l, β(v)) 

wml = P P P . (12) 
pY akP (Y = a|X = l, β(v)) pXcj π(c) d pY dkP (Y = d|X = c, β(v))a c 

The weights (12) are more dif®cult to derive mathematically than the weights (7) and (10). See Appendix C for 

derivations of the weights. 
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EM Algorithm III runs as follows: 

EM Algorithm III: Initial values can be the estimates of β from the logistic regression on Y ∗ ∼ X∗, where Y ∗ and 

X∗ are the PRAMed response variable and covariate. π can�be estimated�by π̂ = (P −1)tπ∗ .X 

E-step: 
(v)

Compute w (i) for i = 1, ..., n and j = 0, 1.j 

M-step: 
(v)

Carry out weighted logistic regression with weights w (i), using standard software. j 
Update β(v) 

β(v+1) = β̂  from weighted logistic regression 

With the updated β(v+1), a new�dataset with new weights can be computed in the E-step, and the�algorithm continues 

until convergence. 

2.3.2 Comparison of Estimation With & Without Accounting for PRAM 

To demonstrate the effect of PRAM on maximum likelihood estimates of parameter coef®cients in logistic regres-

sion model (1), a simulation study was carried out, with one binary covariate, β = (1, 2)t, and xi1 sampled from 
exp(βtx)Bernoulli(0.4), and yi sampled from Bernoulli( ). The parameter estimates of the logistic regression of 

1+exp(βtx) 
∗Y on X are reported�in�Table�4, labeled as ªβreal”. PRAM is then applied to y and x to obtain y and x ∗, with the 

following transition matrix 

� 
P = 0.9 

0.1 
0.1 
0.9 

� 
. 

∗Standard logistic regression is performed on y with x ∗, while y and x are not released and are considered to be 

unobserved. We estimate β1 and its approximate 95% con®dence interval, β̂  
1 ± 2SE(β̂  

1). We ran 500 simulations, 

with n = 100, 1000, 10000. The mean estimates of β1 and the coverage probabilities of the 95% CIs are computed 

and are reported in Table 4 in�a row labeled ªβnoadjust”. 

Next, using EM Algorithm III, we obtain the MLEs of model (1). The algorithm ran for 20 steps. The mean 

estimates of β1 and the coverage probabilities of the 95% CIs are computed and reported in Table 4 in a row la-

beled ªβadjust”. From Table�4, we can see that estimates�of the logistic regression coef®cients without accounting 

for PRAM are biased (see βnoadjust). Similar to the results from the previous sections, the bias appears to increase 

when p decreases. Actual coverage probabilities also decreases as sample size increases and as p decreases. When 

accounting for PRAM, the estimates appear to be close to their true values (see βadjust). The estimates are less biased 

as sample size increases, for example, the bias is 1.0045, −0.0687 and 0.025 for n = 100, n = 1000 and n = 10000 
respectively. Coverage probabilities decreases with higher level of perturbation, and larger sample sizes. 

Table 4: Simulated ML estimates of (1)�with accounting for�PRAM. Average ML estimates. Coverage probabilities in 

parentheses 

βreal 4.4725 

n = 100 βnoadjust 0.8872 (0.516) 

βadjust 3.4680 (1.000) 

βreal 2.0302 

n = 1000 βnoadjust 0.80912 (0.000) 

βadjust 2.0989 (0.922) 

βreal 1.9997 

n = 10000 βnoadjust 0.8003 (0.000) 

βadjust 1.9747 (0.822) 
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Figure 5 displays the plots�of the true values�of β1, along with the estimates of β1, and the con®dence intervals 

for the estimates via the EM algorithm, for n = 10000, p = 0.90. Similar to the previous results, the true values of 

β1 fall outside the con®dence intervals when the EM algorithm is not used. When the adjustment is made using EM 

algorithm III, the true values of β1 are more likely to fall within the con®dence intervals. 

Figure 5: Plots of estimates with response and covariate subject to PRAM, with 95% CI, when n = 10000 

3 Additional Simulations 
In this section, we present additional results on performance of the proposed algorithms subject to varying probabilities 

of success for a binary response variable, varying distribution of a binary covariate, and perturbing multinomial rather 

than a binary covariate. 

3.1 Adjusting Proportions of Covariate and Regression Parameters 
Another simulation study was carried out, with one binary covariate, β = (1, β)t , xi1 sampled from Bernoulli(π), 

exp(βtx)
and yi sampled from Bernoulli( ) with varying the values�of β and π to assess their effect on EM Algorithm 

1+exp(βtx) 
I. The following values were used: β = (−2, −0.5, 0.5, 2), and π = (0.1, 0.2, 0.3, 0.4, 0.5). PRAM is then applied to 

x to obtain x ∗, with the following transition matrix 

� � 
PX = p 

1 − p 
1 − p 
p , 

where we vary the value of p. 

Next, using EM Algorithm I, we obtain the MLEs of model (1). The algorithm ran for 20 steps. The mean estimates 

of β1 and the coverage probabilities of the 95% CIs are computed�and reported in Table 5. We ran�500 simulations. 

The results are displayed in Table 5 for p = 0.9 and p = 0.8. In terms of bias and coverage probabilities, the algorithm 

gives better estimates when the value of π goes closer to 0.5, when β = −0.5, 0.5, as well as when p = 0.9. For 

example, when p = 0.9, we get high probability coverages (greater than 0.95) when π = 0.4, 0.5 and β = −0.5, 0.5. 

This suggests that the EM algorithm works better when the distribution of the response variable and covariate is not 

skewed. 
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Table 5: Simulated ML estimates of (1) with accounting for PRAM, coverage probabilities in parentheses. 

β 
π p -2 -0.5 0.5 2 

0.1 
0.9 

0.8 

-2.0766 (0.760) 

-1.819038 (0.622) 

-0.5000 (0.898) 

-0.4564 (0.690) 

0.5785 (0.828) 

0.5514 (0.642) 

2.4087 (0.630) 

1.6592 (0.594) 

0.2 
0.9 

0.8 

-2.0344 (0.910) 

-1.9753 (0.700) 

-0.5070 (0.982) 

-0.5128 (0.760) 

0.5283 (0.954) 

0.5483 (0.692) 

2.2101 (0.724) 

1.9494 (0.640) 

0.3 
0.9 

0.8 

-2.0201 (0.948) 

-1.9908 (0.742) 

-0.51071 (0.996) 

-0.5159 (0.856) 

0.5051 (0.970) 

0.5281 (0.780) 

2.1480 (0.788) 

2.1353 (0.618) 

0.4 
0.9 

0.8 

-2.0174 (0.976) 

-2.0213 (0.784) 

-0.5037 (0.990) 

-0.5050 (0.866) 

0.5071 (0.986) 

0.5213 (0.806) 

2.0640 (0.882) 

2.1020 (0.642) 

0.5 
0.9 

0.8 

-2.0214 (0.982) 

-2.0110 (0.822) 

-0.5165 (0.994) 

-0.5127 (0.844) 

0.5131 (0.992) 

0.5216 (0.852) 

2.0572(0.936) 

2.1020 (0.716) 

3.2 Covariate with More than Two Levels 
Another simulation study was carried out, with one categorical covariate with 3 levels, β = (1, −1, 1)t , xi1 sampled 

exp(βt x)
from multinomial(0.4, 0.3, 0.3), and yi sampled from Bernoulli( ). The estimates of β1 and β2 from the 

1+exp(βtx) 
∗logistic regression of Y on X are reported�in Table�6, labeled�as�ªβi,real”. PRAM is then applied to y to obtain y , 

with the following transition matrix 

� � 
PY = p 

1 − p 
1 − p 
p , 

where we vary the value of p. 

Standard logistic regression is performed on y ∗ with x, while y is not released and is considered to be unobserved. 

We estimate β1 and β2and their approximate 95% con®dence interval, β̂  
i ± 2SE(β̂  

i). We ran 500 simulations, with 

n = 100, 1000, 10000, p = 0.8, 0.9. The mean estimates of β1 and β2 and the coverage probabilities of the 95% CIs 

are computed and are reported in Table 6 in�a row labeled ªβi,noadjust”. 

Next, using EM Algorithm II, we obtain the MLEs of model (1). The algorithm ran for 20 steps. The mean 

estimates of β1 and β2 and the coverage probabilities of the 95% CIs are computed�and reported in Table 6 in a row 

labeled ªβi,adjust”. Similar to the previous results, the estimates from the algorithm are less biased as sample size 

increases, for both β1 and β2. For example, for p = 0.9, the bias for β2 is −0.1909, −0.0196, −0.0035 for n = 100, 

n = 1000 and n = 10000 respectively. 

Table 6: Simulated ML estimates of β1 & β2 for(1) with accounting for PRAM. Average ML estimates. Coverage 

probabilities in parentheses. 

n = 100 
β1,real 

β1,noadjust 
β1,adjust 

-1.0378 

-0.7762 (0.974) 

-1.0419 (0.972) 

β2,real 
β2,noadjust 
β2,adjust 

1.5883 

0.7781 (0.894) 

1.7792 (0.850) 

n = 1000 
β1,real 

β1,noadjust 
β1,adjust 

-1.0043 

-0.7740 (0.800) 

-0.9988 (0.986) 

β2,real 
β2,noadjust 
β2,adjust 

1.0137 

0.6513 (0.502) 

1.0333 (0.944) 

n = 10000 
β1,real 

β1,noadjust 
β1,adjust 

-0.9970 

-0.7739 (0.000) 

-0.9971 (0.984) 

β2,real 
β2,noadjust 
β2,adjust 

1.0024 

0.6424 (0.000) 

1.0059 (0.952) 

Figure 6 displays the plots�of the true values�of β1, along with the estimates of β1 and the con®dence intervals for 

the estimates via the EM algorithm for n = 10000, p = 0.90. Similar to the previous results, the algorithm works well 

since the true values of β1 are likely to fall in�the con®dence intervals for�the estimates from the�EM algorithm. 
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Figure 6: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 10000, p = 0.90 

In the next simulation study, we had one categorical covariate with 3 levels, β = (1, −1, 1)t , xi1 sampled from 
exp(βtx)multinomial(0.4, 0.3, 0.3), and yi sampled from Bernoulli( ). The estimate of β1 and β2 from the logistic 

1+exp(βtx) 
regression of Y on X are reported�in Table�7, labeled�as�ªβi,real”. PRAM is then applied to x to obtain x ∗, with the 

following transition matrix 

⎛ 
p 1−p 

2 
1−p 
2 

⎞ 

= ⎝ 1−pPX 2 
1−p 
2 

p 
1−p 
2 

1−p 
2 
p 

⎠ , 

where we vary the value of p. 

Standard logistic regression is performed on y with x ∗, while x is not released and is considered to be unobserved. 

We estimate β1 and β2 and their approximate 95% con®dence interval, β̂  
i ± 2SE(β̂  

i).�We ran 500 simulations, with 

n = 100, 1000, 10000, p = 0.8, 0.9. The mean estimates of β1 and β2 and the coverage probabilities of the 95% CIs 

are computed and are reported in Table 7 in�a row labeled ªβi,noadjust”. 

Next, using EM Algorithm I, we obtain the MLEs of model (1). The algorithm ran for 20 steps. The mean es-

timates of β1 and β2 and the coverage probabilities of the 95% CIs are computed and reported�in Table 7 in�a row 

labeled ªβi,adjust”. Similar to the previous results, the estimates from the algorithm are less biased as sample size 

increases, for both β1 and β2. 

Figure 7 displays the plots�of the true values�of β1, along with the estimates of β1 and the con®dence intervals for 

the estimates via the EM algorithm for n = 10000, p = 0.90. Similar to the previous results, the algorithm appears 

to works well since the true values of β1 are likely to fall in the con®dence intervals for the estimates from the EM 

algorithm. 

4 Application to 1993 CPS Dataset 
We implement the methodology described�in Section 2 on data from the 1993 Current Population Survey (CPS). The 

dataset contains 48842 records on 8 categorical variables. We perform logistic regression for salary (0 = <$50,000 

or 1 = >$50,000) on the covariates sex (0 = Female or 1 = Male), race (0 = Non White or 1 = White), and marital 
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Table 7: Simulated ML estimates of β1 & β2 for(1) with accounting for PRAM. Average ML estimates. Coverage 

probabilities in parentheses. 

n = 100 
β1,real 

β1,noadjust 
β1,adjust 

-1.0378 

-0.7762 (0.974) 

-1.0419 (0.972) 

β2,real 
β2,noadjust 
β2,adjust 

1.5883 

0.7781 (0.894) 

1.7792 (0.850) 

n = 1000 
β1,real 

β1,noadjust 
β1,adjust 

-1.0043 

-0.7740 (0.800) 

-0.9988 (0.986) 

β2,real 
β2,noadjust 
β2,adjust 

1.0137 

0.6513 (0.502) 

1.0333 (0.944) 

n = 10000 
β1,real 

β1,noadjust 
β1,adjust 

-1.0034 

-0.8515 (0.038) 

-1.0040 (0.996) 

β2,real 
β2,noadjust 
β2,adjust 

1.0021 

0.7706 (0.006) 

1.0038 (0.980) 

Figure 7: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 10000, p = 0.90 

(0 = Married or 1 = Unmarried). The parameter estimates from ®tting the logistic regression with the original data 

are displayed�in the ®rst line of Table�8, labeled as ªO.D.”. 

We consider the following three cases: 1) marital subject to PRAM; 2) salary subject to PRAM; and 3) both 

marital and salary subject to PRAM. In each case, the following PRAM matrix was applied to the variables that were 

subject to PRAM 

� � 
0.9 0.1 

P = . 
0.1 0.9 

In�each case, standard logistic�regression�is performed�on�the PRAMed data. We estimate βi and their approximate 

95% con®dence intervals, β̂  
i ± 2SE(β̂  

i). We ran 500 simulations for each case. The mean estimates of βi and the 

coverage probabilities of the 95% CIs are computed and are reported in Table 8 in the rows labeled ªwithout”. 

Next, using the EM Algorithms I, II and III, we obtain the MLEs of model (1). The algorithm ran for 20 steps. 

The mean estimates of βi and the coverage probabilities of the 95% CIs are computed and reported in Table 8 in the 

rows labeled ªwith”.� In terms of�bias, EM Algorithm II appears to work�best, followed by EM Algorithm I and EM 

Algorithm III. EM Algorithm III being least effective is no surprise, since PRAM is applied to more variables. For 

example, the bias of β̂  
3 is −0.0604, 0.0116, −0.1303 for algorithm I, II and III respectively. 
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Table 8: Parameter Estimates from Original Data (O.D.), PRAMed Data without EM algorithm, and PRAMed data 

with�EM Algorithm. Average�ML estimates.�Coverage probabilities�in parentheses Case�1: marital subject to PRAM; 

Case 2: salary subject to PRAM; Case 3: both marital and salary subject to PRAM 

β̂0 β̂1 β̂2 β̂3 
O.D. -0.8585 0.2855 0.3925 -2.3166 

Case 1 
without 

with 

-1.4458 (0) 

-1.047738 (0.290) 

0.7398 (0) 

0.3851 (0.124) 

0.4400 (0) 

0.4249 (0.734) 

-1.6009 (0) 

-2.2562 (0.510) 

Case 2 
without 

with 

-0.5475 (0) 

-0.7785 (0.592) 

0.1550 (0) 

0.2138 (0.412) 

0.2323 (0) 

0.3745 (0.946) 

-1.4539(0) 

-2.3282 (0.842) 

Case 3 
without 

with 

-1.2807 (0) 

-1.2469 (0.128) 

0.7283 (0) 

0.4372 (0.098) 

0.2721 (0) 

0.444 (0.468) 

-1.0581 (0) 

-2.1863 (0.262) 

Figures�8,�9 and�10 display the plots�of the estimate�of β3 on the original data, along with the estimates of β3, 

and�the con®dence intervals�for�the estimates�via�the�EM algorithm,�for case�1, case 2 and case 3 respectively. When 

not adjusting for PRAM, the estimates of β3 from the original logistic regression fall outside the con®dence inter-

vals. Indeed, for case 3, the estimates for β3 fall outside the range of the plot. When the adjustment is made using the 

EM algorithm,�the value�of β3 from the original logistic regression is more likely to fall within the con®dence intervals. 

Figure 8: Plots of β3 with CPS data, Case 1: marital subject to PRAM 

4.1 Disclosure Risk Assessment 
We need to evaluate both disclosure risk and data utility after the application of SDC methodology. This concept is 

illustrated via a risk-utility (R-U) map (for more details, see Duncan and Pearson (1991)). 

This paper focuses on preserving data utility of microdata subject to PRAM when ®tting a logistic regression on 

the PRAMed data. We now brie¯y discuss disclosure risk assessment and how a PRAM matrix may be chosen. Ide-

ally, the chosen PRAM matrix is one that maximizes data utility under some predetermined levels of disclosure risk 
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Figure 9: Plots of β3 with CPS data, Case 2: salary subject to PRAM 

Figure 10: Plots of β3 with CPS data, Case 3: marital and salary subject to PRAM 

set by the statistical agency. 

Since the estimates from the EM algorithm converge to the maximum likelihood estimates, data utility is preserved 

for all choices of PRAM matrices. Thus, the next step is to ®nd a PRAM matrix that satis®es some level of disclosure 

control or risk set by the statistical agency. A traditional measure of disclosure risk was proposed by de Wolf and 

van Gelder (2004), which involves calculating the conditional probability that given a score k in the perturbed ®le, 

the original score was k as well, P (X = k|X∗ = k). In the context of PRAM, this conditional probability can be 

estimated by 
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pkkTX (k)
R̂P RAM (k) = P (X = k|X ∗ = k) = P , (13) 

l plkTX (l) 

where TX (l) are the frequency counts in the sample for score l. The numerator of (13) estimates the number of 

scores k in the original ®le that will remain as k in the perturbed ®le, and the denominator estimates the number of 

scores k in the original ®le that remain as k in the perturbed ®le plus the number of scores that were not k in the 

original ®le that take on the score k in the perturbed ®le. According to a traditional threshold rule, a record is safe 

when its score occurs more than a certain threshold d, so a safe record can be linked with at least d records (d to be 

determined�by statistical of®ce or�rules). de Wolf and van�Gelder (2004)�suggest that a�record is safe�whenever 

Tξ(k)
R̂ 

P RAM (k) ≤ (14)
d 

We use case 1, marital subject to PRAM as an example. The three-way table of counts and R̂ 
P RAM (k) for marital, 

sex, and race is displayed in Table�9. R̂P RAM (k) for married females (both non-white and white) is much lower than 

unmarried females (non-white and white). This is expected since the number of unmarried females is greater than 

the number of married females in this example. Thus, even though both unmarried and married females had a 10% 

probability of being misclassi®ed as married and unmarried females, respectively, the actual number of unmarried 

females misclassi®ed as married females is much higher than married females being misclassi®ed. This leads to an 

observation that a higher proportion of married females in the perturbed ®le were originally unmarried females in the 

original ®le. Depending on the disclosure rules set by the agency, such values of R̂P RAM (k) may provide suf®cient 
ˆdisclosure control. For example, if the agency decides that the threshold d = 800, RP RAM (k) is less than 

Tξ (k) 
for

d 
all k, satisfying (14). 

Tξ (k)Table�9: Three Way Table for Marital, Sex and Race. R̂ 
P RAM (k), in parentheses

d 
Married 

Non-White White 

Female 521 (0.6394, 0.65) 2288 (0.6572, 2.86) 

Male 1990 (0.9029, 2.49) 18245 (0.9400, 22.81) 

Unmarried 

Non-White White 

Female 2644 (0.9786, 3.31) 10739 (0.9769, 13.42) 

Male 1925 (0.8970, 2.41) 10490 (0.8380, 13.11) 

5 Discussion 
With increased computing power and built-in statistical packages, many researchers nowadays prefer to work with 

microdata instead of aggregated data. However, releasing microdata instead of aggregated data increases the risk of 

disclosure. The goal of SDC for microdata is that given an original microdata set V, a protected microdata set V’ is 

released in its place so that disclosure risk is low and data utility is high. Most measures of data utility measure the 

distortion in the distribution in V’, when compared to the distribution in V. For examples, see Domingo-Ferrer and 

Torra (2001). In our examples, we propose comparing the coef®cient estimates when ®tting the regression model on 

the original data, on the data that has been subject to PRAM, and using the EM-type methodology on the data that has 

been subject to PRAM. In general, the estimates are biased when ®tting the logistic regression model on the data that 

has been subject to PRAM; using the proposed EM-type methodology, we can obtain estimates that are much closer 

to their true values and asymptotically unbiased. The estimates are less biased with larger sample sizes, and when the 

distribution of the response variable and covariates are less skewed. In terms of coverage probabilities, the algorithm 

appears to work well since most of the coverage probabilities in our examples are high. The next step in this research 

is to extend these methodologies to handle a wider range of analyses including other models in the class of generalized 

linear models (GLMs). 

Shlomo and Skinner (2010) claim that combining sampling with a perturbation method like PRAM offers greater 

protection than using either method on its own. PRAM itself guarantees �-differential privacy (see Dwork (2006)), as 

long as the PRAM matrix does not contain zero elements. We could next evaluate the effect of using both sampling 

and PRAM on the regression coef®cient estimates using our EM-algorithm. We can compare the estimates after both 
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sampling and PRAM has been applied to a dataset. 

There are other SDC methodologies that can be applied to categorical variables in microdata. Data swapping is 

used by agencies like the U.S. Census Bureau, and their approach guarantees that marginals involving the matching 

variables remain the same. However, the effect on regression analysis is ambiguous(e.g., see Fienberg and McIntyre 

(2004)). Reiter (2005) carried out an empirical study using fully synthetic data with the 2000 Current Population 

Study, and found that the coverage probabilities for the logistic regression are extremely low. An interesting next step 

would be to compare performance of synthetic data methodology to our proposed EM algorithms for PRAM. 
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Appendices 
A More Figures from Section 2.1.2 

Figure 11: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 1000, p = 0.90 

Figure 12: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 1000, p = 0.80 
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Figure 13: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 100, p = 0.90 

Figure 14: Plots of estimates with covariate subject to PRAM, with 95% CI, when n = 100, p = 0.80 
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B More Figures from Section 2.2.2 

Figure 15: Plots of estimates with response subject to PRAM, with 95% CI, when n = 1000, p = 0.90 

Figure 16: Plots of estimates with response subject to PRAM, with 95% CI, when n = 1000, p = 0.80 
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Figure 17: Plots of estimates with response subject to PRAM, with 95% CI, when n = 100, p = 0.90 

Figure 18: Plots of estimates with response subject to PRAM, with CI, when n = 100, p = 0.80 
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C Derivation of Weights for EM Algorithms I, II, III 

C.1 Weights for EM Algorithm I 

P (Y, Xnew = xj , X
∗ = xk|φ

(v))
P (Xnew = xj |X ∗ = xk, Y, φ(v)) = 

P (Y, X∗ = xk|φ(v))) 
P (Y |Xnew = xj , X

∗ = xk, φ
(v))P (Xnew = xj , X

∗ = xk, φ
(v)) 

= 
PJ 

P (Y, X∗ = xk, X = xl|φ(v)))l 

P (Y |Xnew = xj , φ
(v))P (X∗ = xk|Xnew = xj )P (Xnew = xj ) 

= 
PJ 

P (Y |Xnew = xl, X∗ = xk, φ(v))P (X∗ = xk|Xnew = xl)P (Xnew = xl)l 
(v)

pXjkP (Y |xj , β
(v))πj

= 
PJ (v) 

l=1 pXlkP (Y |xl, β(v))πl 

C.2 Weights for EM Algorithm II 

P (Ynew = j, Y ∗ = k|X, β(v))
P (Ynew = j|Y ∗ = k, X, β(v)) = 

P (Y ∗ = k|X, β(v)) 
P (Ynew = j|X, β(v))P (Y ∗ = k|Ynew = j) 

= 
PJ 

P (Y ∗ = k, Y = l|X, β(v))l 

pY jkP (Y = j|X, β(v)) 
= P 

P (Y ∗ = k|Y = l)P (Y = l|X, β(v))l 

pY jkP (Y = j|X, β(v)) 
= P 

l pY lkP (Y = l|X, β(v)) 

C.3 Weights for EM Algorithm III 

P (Y = m, X = l|Y ∗ = k, X ∗ = j, β) = P (Y = m|X = l, Y ∗ = k, X ∗ = j, β)P (X = l|Y ∗ = k, X ∗ = j, β) 

The ®rst part is 

P (Y = m, X = l, Y ∗ = k, X∗ = j|β)
P (Y = m|X = l, Y ∗ = k, X ∗ = j, β) = 

P (X = l, Y ∗ = k, X∗ = j|β) 
P (Y ∗ = k|Y = m)P (Y = m|X = l, β)P (X∗ = j|X = l)P (X = l) 

= P 
P (Y = a, X = l, Y ∗ = k, X∗ = j|β)a 

PY mkP (Y = m|X = l, β)P (X∗ = j|X = l)P (X = l) 
= P 

P (Y ∗ = k|Y = a)P (Y = a|X = l, β)P (X∗ = j|X = l)P (X = l)a 
PY mkP (Y = m|X = l, β) 

= P . 
PY akP (Y = a|X = l, β)a 

The second part is 

P (X = l, Y ∗ = k, X∗ = j|β)
P (X = l|Y ∗ = k, X ∗ = j, β) = 

P (Y ∗ = k, X∗ = j|β)
P 

P (Y = b, X = l, Y ∗ = k, X∗ = j|β)b= P P 
P (Y = d, X = c, Y ∗ = k, X∗ = j|β)c d

P 
P (Y ∗ = k|Y = b)P (Y = b|X = l, β)P (X∗ = j|X = l)P (X = l)b= P P 
P (Y ∗ = k|Y = d)P (Y = d|X = c, β)P (X∗ = j|X = c)P (X = c)c d 

P 
pXlj π(l) b pY bkP (Y = b|X = l, β) 

= P P . 
c pXcj π(c) d pY dkP (Y = d|X = c, β) 
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Hence 

P 
pY mkP (Y = m|X = l, β(v)) pXlj π(l) b pY bkP (Y = b|X = l, β(v))

P (Y = m, X = l|Y ∗ = k, X ∗ = j, β) = P P P . 
pY akP (Y = a|X = l, β(v)) pXcj π(c) d pY dkP (Y = d|X = c, β(v))a c 
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