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Motivation

”Sometimes R code just isn’t fast enough.“

– Hadley Wickham

◮ Problem: How to combine survey and auxiliary data to
improve the county-level estimates for crops?

◮ Application: Bayesian small area models

◮ Potential bottlenecks of R code: subsequent iterations,
repeatedly calling functions, loops in Markov chain Monte
Carlo (MCMC) algorithms

◮ One solution: rewriting key functions in C++ through Rcpp

packages
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Rcpp Packages

◮ Rcpp is a R package to extend R with C++ codes developed
by Dirk Eddelbuettel and Romain Francois (2013) .

◮ Speed
◮ New Things

◮ RcppArmadillo is a Rcpp extension package that provides all
the functionality of Armadillo, focusing on matrix math.

◮ Easy-to-use
◮ Further speedup
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Using sourceCpp() in R

◮ The Rcpp::sourceCpp function parses the C++ file (.cpp) and
makes C++ functions available as R functions.

Example: Calculate mean of xi , i = 1, . . . , 105, where xi ∼ U(0, 1).
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Comparison

name min mean median max times

Rcpp 105.432 151.448 109.209 228.249 100

R 210.845 237.125 235.366 396.785 100



MCMC in Bayesian Computation

◮ MCMC is a sampling method to draw random samples from
distributions.

◮ Each random sample is used as a stepping stone to generate
the next one (chains).

◮ Gibbs sampler, Metropolis-Hastings sampler and many others
are widely used in Bayesian inference.

◮ Involve loops and calling functions repeatedly within loops.

Rcpp (C++) and RcppArmadillo are useful tools for efficient
MCMC computation.
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Simulated Data

Data: simulated planted acres data in
Illinois (Nandram et al., 2019 and
Battese et al., 1988)

◮ Survey estimates θ̂i , i = 1, . . . , 102

◮ Survey standard errors
σ̂i , i = 1, . . . , 102

◮ Covariates: corn and soybean
planted acres from land
observatory satellites (LANDSAT)
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Fay-Herriot Model
Fay-Herriot Model (1979) in small area estimation:

θ̂i |θi
ind
∼ N(θi , σ̂

2
i ),

θi |β, δ
2 ind
∼ N(x′iβ, δ

2), i = 1, . . . , n,

Priors for the parameters: π(β) ∝ 1;π(δ2) ∝ 1
δ2
.

The full conditional distributions for Gibbs sampling are:
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(
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i=1 xix
′
i )
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′
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′
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(
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)
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Comparison

12,000 iterations with 2,000 burn-in and pick every 10th sample

name min mean median max times

Rcpp 94.863 97.285 96.621 106.362 100

R 4707.729 4856.196 4829.291 4912.025 100



Comparison - R density plots
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Comparison - Rcpp density plots
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Fay-Herriot Model with Benchmarking Constraints

In some applications, we need to incorporate benchmarking
constraints into the model. For example, the county-level
estimates should be summed to state target and they need to
cover certain values. The model with inequality constraints:

θ̂i |θi
ind
∼ N(θi , σ̂2

i ), i = 1, . . . , n,

θi |β, δ
2 ind
∼ N(x′iβ, δ

2), θi ≥ ci ,
n

∑

i=1

θi ≤ a,

where C = (c1, . . . , cn)
′ are known and fixed and a is state target.

The priors are π(β) ∝ 1; δ2 ∝ 1
(1+δ2)2

.
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Joint Posterior Distribution

The posterior density is

π(θ,β, δ2|θ̂, σ̂2) =

∏n
i=1 φ((θi − X′β)/δ)φ((θi − θ̂i )/σ̂i )
∫

θ∈V

∏n
i=1 φ((θi − X′β)/δ)dθ

, θ ∈ V ,

where φ(·) is the standard normal density and the support of θ is

V =
{

ci ≤ θi ,
n

∑

i=1

θi ≤ a, i = 1, . . . , n
}

.

Awkward joint posterior distribution and intractable.
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Computation

Our strategy:

π(θ,β, δ2|θ̂, σ̂2) = π(β, δ2|θ̂, σ̂2) × π(θ|β, δ2, θ̂, σ̂2)

◮ Metropolis-Hastings Sampler
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Metropolis-Hastings Sampler
We will draw (β, δ2) samples from π(β, δ2|θ̂, σ̂2). The proposal
density is

(β, log(δ2)) ∼ MVN(β̂p, σ
2Σ̂p)

ν/σ2 ∼ Γ(ν/2, 1/2)

Bottleneck:
For each iteration h:

◮ Generate: Generate a candidate (βc , log(δ2)c) from proposal
density;

◮ Calculate: Calculate the acceptance ratio
α = π(βc , log(δ2)c)/π(β(h), log(δ2)(h));

◮ Accept or Reject candidate based on the comparison
between α and u ∼ U(0, 1).
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Comparison

10,000 iterations with 2,000 burn-in and pick every 8th sample

name min mean median max times

Rcpp 69.527 70.554 70.711 71.073 10

R 2451.688 2540.393 2519.215 2741.561 10



Gibbs Sampler for θ

The conditional posterior density of θi is

θi |θ(i),β, δ
2, θ̂, σ̂2 ∼ N

(

µi , φi

)

, θi ∈ Vi ,

where µi and φi related to β and δ2 and

Vi =
{

ci ≤ θi ≤ a−

n−1
∑

j=1,j 6=i

θj

}

, i = 1, . . . , n.

Bottleneck:
Each θi related to other θs based on the Vi .
For one iteration, we need to loop n times.
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Comparison

name min mean median max times

Rcpp 2.130 2.162 2.153 2.213 10

R 55.934 56.615 56.696 57.134 10



Convergence Diagnostics

◮ M-H: 1,000 samples of (β(h), δ2(h)), h = 1, . . . , 1000.

◮ Gibbs: for each (β(h), δ2(h)), we run 100 times Gibbs sampler
and pick the last set of θ.

pm psd lb ub gewe.pval ess

β0 116.22 2.01 112.43 120.06 0.45 909
β1 16.74 4.58 7.75 25.29 0.40 870
β2 -4.81 4.23 -13.14 3.35 0.24 968
δ2 325.96 60.78 206.98 469.46 0.64 827

◮ Rcpp vs R code: 72s vs 2576s for 102 samples size in the
constraint Bayesian model.
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Conclusion

◮ Rcpp functions can reduce the running time by a significant
factor and reasonable in further production for county-level
estimates in NASS.

◮ Large data set or complicated hierarchical Bayesian models:
Rcpp packages

◮ Pros: incorporating C++ code into R workflow easily;
substantially speed up MCMC computation in R

◮ Cons: learning curve and long coding time

◮ Small data set or simple, classic Bayesian models: such as
RJags and RStan

◮ Pros: Easy-to-use; less coding time
◮ Cons: Black-box sampler; not for non-standard problems
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Thank You!

lu.chen@usda.gov
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