
Darryl V. Creel

Stratified Simple Random Sampling: Quality Control

Darryl V. Creel, RTI International

Wednesday, October 24, 2018
Quality, Reproducibility, Rigor, Standardization, and Transparency (QR²ST). Quality is an important aspect Federal statistical information.

Quality

- : how good or bad something is
- : a characteristic or feature that someone or something has: something that can be noticed as a part of a person or thing
- : a high level of value or excellence

from www.merriam-webster.com
Planning for quality control should begin before the project starts: folder structure, naming conventions (folders, programs, functions, variables, data sets, etc.), automation, inputs/outputs, responsibilities, version control, testing, etc.

```
----- ProjectName
  |----- Computing
  |     |----- A_Planning
  |     |----- B_FrameDevelopment
  |     |     |----- C_Sampling
  |     |----- D_DataCollection
  |     |----- E_DataProcessing
  |     |     |----- EA_Weighting
  |     |     |----- EB_Editing
  |     |     |----- EC_Imputation
  |----- F_Analysis
  |     |----- G_Publication
  |----- SubjectMatter
  |----- SurveyMethodology
```
Programs in the sampling folder (C_Sampling).

|----- C_Sampling
| |----- Ca_stratifiedSimpleRandomSampling_selection.Rmd
| |----- Cb_stratifiedSimpleRandomSampling_qualityControl.Rmd
How can we increase quality (better), lower labor costs (cheaper), require less calendar time (faster), and document quality control processes?
RStudio, an integrated development environment for R.
Literate programming weaves the text and program code together.

In a sampling stratum, the sample size should equal the sum of the probabilities of selection. For the h^{th} sampling stratum, the sample size, n_{h}, should equal the sum of the probabilities of selection, p_{hi}. That is, in the h^{th} sampling stratum, the check to ensure that the probability of selection was calculated correctly is

$$n_{h}=\sum_{i=1}^{N_h} p_{hi}.$$

```
```{r probSelSum, type = "latex", results = "asis", echo = FALSE}
psSumPop <- sampSize %>% select(samplingStratum, sampleSize)
psSumSamp <- frame %>% select(samplingStratum, probabilityOfSelection) %>% group_by(samplingStratum) %>% summarize(psSum = sum(probabilityOfSelection))
psSumCheck <- full_join(psSumPop, psSumSamp, by = "samplingStratum") %>% mutate(diff = round(psSum - sampleSize))
psSumDiff <- psSumCheck %>% filter(diff != 0 | is.na(diff))

if (dim(psSumDiff)[1] == 0) {
 cat("Pass: All sampling strata have the sum of the probabilities of selection equal to the sample size.\n")
} else {
 cat("Fail: At least one sampling stratum does not have the sum of the probabilities of selection equal to the sample size.\n")
 psSumDiff.xt <- xtable(psSumDiff)
caption(psSumDiff.xt) <- "Sum Probabilities of Selection not Equal Sample Size"
 print(psSumDiff.xt, include.rownames = FALSE, caption.placement = "top", comment = FALSE)
}
```
```
Using the pipe, `%>%`, in R. It comes from the magrittr package by Stefan Milton.

```r
sampSize <- read_csv("sampleSize_01.csv") %>%
  mutate(posPop = sampleSize/populationCount, dw = populationCount/sampleSize)
```

```r
sampSize <- read_csv("sampleSize_01.csv")
sampSize$posPop <- sampSize$sampleSize/sampSize$populationCount
sampSize$dw <- sampSize$populationCount/sampSize$sampleSize
```
Using the pipe, `%>%`, in R. It comes from the **magrittr** package by Stefan Milton.

```r
psSumSamp <- frame %>% select(samplingStratum, probabilityOfSelection) %>% group_by(samplingStratum) %>% summarize(psSum = sum(probabilityOfSelection))
```

```r
psSumSamp2 <- tapply(X = frame$probabilityOfSelection, INDEX = frame$samplingStratum, FUN = sum)*
```

* Not quite right does not have information when samplingStratum is missing
In a sampling stratum, the sample size should equal the sum of the probabilities of selection. For the h^{th} sampling stratum, the sample size, n_h, should equal the sum of the probabilities of selection, p_{hi}. That is, in the h^{th} sampling stratum, the check to ensure that the probability of selection was calculated correctly is

$$n_h = \sum_{i=1}^{N_h} p_{hi}.$$
In a sampling stratum, the sample size should equal the sum of the sample indicators. For the h^{th} sampling stratum, the sample size, n_h, should equal the sum of the sample indicators, s_{hi}. That is, in the h^{th} sampling stratum, the check to ensure that the sample indicators were calculated correctly is

$$n_h = \sum_{i=1}^{N_h} s_{hi}.$$
Rstudio includes the table derived from the code.

```r
# A tibble: 2 x 4

  samplingStratum sampleSize psSum diff
     <int>     <int> <dbl> <dbl>
 1         2        20   NA   NA
 2        NA       NA   0.3  NA
```

How can we increase quality (better), lower labor costs (cheaper), require less calendar time (faster), and document quality control processes? RStudio and knitr.

Stratified Simple Random Sampling: Quality Control

Darryl V. Creel, RTI International
dcreel@rti.org
(301) 770-8229