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Why hierarchical models in the production of official

statistics?

◮ need to account for various sources of error
◮ sampling error, measurement error, linking error

◮ need for a transparent, reproducible and validated process
◮ analytic techniques

◮ need for measures of uncertainty

◮ entire distribution
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Hierarchical model - general form

Data model: [y |θ, ψ]

Process model: [θ|ψ]

Parameter model: [ψ]

Joint distribution

[y , θ, ψ] = [y |θ, ψ][θ|ψ][ψ]

Predictive distribution

[θ|y , ψ]

Three cases
◮ known ψ
◮ unknown, fixed ψ
◮ unknown, random ψ
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Why model-based small area estimation (SAE) in the

production of official statistics?

◮ need to account for various sources of error

◮ need for a transparent, reproducible and validated process

◮ need for measures of uncertainty

◮ integration of data from multiple sources
◮ observed survey data within area + auxiliary data within area +

information across all areas

◮ growing demand for granular statistics

◮ quantities of interest: i.e. totals, means, ratios
◮ ‘area’ / ‘domain’: i.e. geography, socio-economic status, occupation

◮ increasing costs of data collection
◮ ‘small’: amount of survey data available for estimation within a given

area (realized sample size as small as zero)
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Small domain hierarchical model - general form

Sampling model: [yi |θi , xi , ψθ,i , ψy ,i ]

Linking model: [θi |xi , ψθ]

Parameter model: [ψθ,i , ψy ,i ]

Joint distribution

[yi , θi , xi , ψθ, ψy ,i ] = [yi |θi , xi , ψθ, ψy ,i ][θi |xi , ψθ][ψθ, ψy ,i ]

Predictive distribution

[θi |yi , xi , ψθ, ψy ,i ]

◮ typically known xi , ψy ,i (area-level models)
◮ still three cases

◮ known ψθ

◮ unknown, fixed ψθ

◮ unknown, random ψθ
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Examples of model-based SAE in government programs

◮ Chilean Ministerio de Desarrollo, World Bank: poverty mapping

◮ Casas Cordero Valencia et al. (2016); Elbers et al. (2003)

◮ Census Bureau: income and poverty measures
◮ Bell et al. (2016)

◮ National Agricultural Statistics Service:

◮ cash rental rates, Erciulescu et al. (2018)
◮ crops production, Erciulescu et al. (2019a)
◮ agricultural labor wages, Erciulescu (2018)

◮ Organisation for Economic Co-operation and Development: adult
competency
◮ Krenzke et al. (2019)

◮ Bureau of Labor Statistics: employee compensation components
◮ Erciulescu and Opsomer (2019)
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http://observatorio.ministeriodesarrollosocial.gob.cl/indicadores/docs/Procedimiento_de_calculo_de_la_Tasa_de_Pobreza_a_nivel_Comunal_11feb13_5118dab432f1c.pdf
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPSIA/0,,contentMDK:20477071~pagePK:148956~piPK:216618~theSitePK:490130,00.html
https://www.census.gov/programs-surveys/saipe.html
https://www.nap.edu/read/24892/chapter/6##82
http://www.oecd.org/skills/piaac
https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=300325


A small domain hierarchical Bayes multivariate model

for employee compensation components*

Sampling Model: yi |θi ∼ N(θi ,Σei )

Linking Model: θi |(β,Σv ) ∼ N(xiβ,Σv )

Independent priors: π(β,Σv ) = π(β)π(Σv )

◮ domain i , cross-tabulation of census divisions, 6-digit SOC system
codes, work levels, binary characteristics

◮ θi , quantities of interest, wage and benefits
◮ yi , direct survey estimates, domain-level wage and benefits direct

survey estimates
◮ xi , known covariates, selected using sample domains definitions
◮ β, regression coefficients
◮ Σv , linking model variance-covariance matrix
◮ Σei , known survey variance-covariances matrices

* Erciulescu and Opsomer, 2019
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A common approach for fit and prediction
Fit
◮ Markov chain Monte Carlo (MCMC): multiple chains, iterations,

burn-in, thining; keep R samples for inference

Prediction
◮ in-sample domain i

◮ R samples θiζ , ζ = 1, · · · ,R, from [θi |(yi , ψθ, ψy,i )]

◮ not-in-sample domain i
′

:
◮ generate new R samples θ

i
′
ζ
, ζ = 1, · · · ,R, from [θi |xi , ψθ,ζ ]

◮ small domain posterior means: R−1
∑R

ζ=1 θiζ

◮ small domain posterior variances: R−1
∑R

ζ=1

(

θiζ − R−1
∑R

ζ=1 θiζ

)2

◮ small domain posterior p quantiles: θi(p),θi = (θi1, · · · , θiR)

Practical challenges: number of MCMC samples, large number of domains (in-sample
and not-in-sample), variable selection
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Prediction for other functions

For example,

◮ sum of θi components (total employee compensation, proportions of
adult literacy/numeracy scores in prespecified ranges)

◮ inference using R samples θSiζ := θiζ,1 + θiζ,2, ζ = 1, · · · ,R

◮ ratio of θi components (labor wage as ratio of total income to total
hours worked, crop yield as the ratio of total production to total
harvested acres)

◮ inference using R samples θRiζ := θiζ,1/θiζ,2, ζ = 1, · · · ,R

◮ aggregates of θi for pre-defined domains (2-digits SOC codes,
county-agricultural district-state-census division-nation)

◮ inference using R samples
θDiζ :=

∑
i∈pre-defined domain θiζ , ζ = 1, · · · ,R
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Examples of model validation
Internal

◮ mixing and convergence diagnostics: R̂ , MC effective sample size,
autocorrelation

◮ residuals diagnostics: unconditional and conditional

◮ posterior predictive checks: indicator, correlation, deviance, residuals

◮ alternative model specifications: prior distributions

External

◮ predictions versus direct estimates

◮ predictions for not-in-sample domains versus predictions for
in-sample domains

◮ cross-validation

Practical challenges: autocorrelation, cross-validation, visualization, storage

Improving Lives Through Research 10



Simulation study: Data generation model

yi |θi ∼ N(θi ,Σei )

θi |(β,Σv ) ∼ N(xiβ,Σv )

π(β,Σv ) = π(β)π(Σv )

◮ i = 1, · · · ,m
◮ yi = (yi,1, yi,2)
◮ xi , two identical rows xi,row = (xi,1, xi,2, xi,3, ..., , xi,(p+1))

◮ xi,1 = 1, xi,2 ∼ Beta(2, 4), xi,k ∼ N(µxk , σ
2

xk), k = 3, ..., (p + 1)
◮ µxk ∼ Unif (1, 50), σxk ∼ Unif (1, 10), k = 3, ..., (p + 1)

◮ β = (β1, β2), βj = (βj,1, βj,2, βj,3, ..., , βj,(p+1)), j = 1, 2
◮ β1,1 = 1, β1,2 = 10, β1,k ∼ Unif (1, 5) + N(0, 1), k = 3, ..., (p + 1)
◮ β2,1 = 1, β2,2 = 10, β2,k ∼ Unif (1, 2) + N(0, 1), k = 3, ..., (p + 1)

◮ Σv ∼ inverse −Wishart(3, I2)
◮ diag(Σei ) = (σ2

ei,1, σ
2
ei,2), σ

2
ei,j = exp(log(xi,jβj) + N(0, 1)), j = 1, 2

◮ cor(yi,1, yi,2) ∼ Unif (0.3, 0.9)
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Simulation study: Fitted models

yi |θi ∼ N(θi ,Σei )

θi |(β,Σv ) ∼ N(xiβ,Σv ) ↔ θi |(β, vi ) = xiβ + vi , vi |Σv ∼ N(0,Σv )

π(β,Σv ) = π(β)π(Σv )

Software
◮ R STAN, R JAGS

Bayesian specification
◮ hierarchical Bayes: π(β) = N(0, 104) and

Σv ∼ Inverse −Wishart(3, I )
◮ empirical Bayes: π(β1) = N(0, 104);β

−1 set equal to the least
squares estimates, based on a multiple linear regression model and
Σv ∼ Inverse −Wishart(3, I )

Practical challenges: prior distributions for the linking model variance-covariance
components (Inverse-Gamma/Uniform/Cauchy/F; Inverse-Wishart/LKJ)
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Simulation study: Fitted models specifications

Table 1: Model Specifications

Parameters Model Software # MC samples / chain
(m, p) (start, burn-in, thin)

(100, 10) S1 STAN (3000, 1000, 10)
J1 JAGS (3000, 1000, 10)
J1l JAGS (30000, 10000, 10)

(1000, 100) S2 STAN (3000, 1000, 10)
J2 JAGS (3000, 1000, 10)
J2l JAGS (30000, 10000, 10)

(10000, 100) S3 STAN (3000, 1000, 10)
J3 JAGS (3000, 1000, 10)
J3l JAGS (30000, 10000, 10)
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Simulation study: JAGS HB model specification
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Simulation study: JAGS EB model specification
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Simulation study: STAN HB model specification
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Simulation study: STAN EB model specification
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Simulation study: Computational time results

Table 2: Computational Time Summaries

Model Time (seconds)
HB EB

S1 525 284
J1 5 2
J1l 35 11
S2 32744 14702
J2 1438 24
J2l 14227 109
S3 354416 76992
J3 18210 273
J3l Too long ...
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Simulation study: Convergence results
Table 3: Convergence Results Summaries HB

Model Approach R̂ MC Effective Sample Size
(min, median, max) (min, median, max)

S1 HB (0.995, 1.000, 1.072) (44, 571, 825)
EB (0.995, 1.005, 1.086) (35, 342, 810)

J1 HB (0.999, 1.004, 1.070) (44, 600, 600)
EB (0.999, 1.023, 1.216) (14, 440, 600)

J1l HB (1.001, 1.001, 1.030) (130, 5800, 6000)
EB (1.001, 1.003, 1.014) (190, 3400, 7500)

S2 HB (0.995, 0.999, 1.289) (14, 580, 908)
EB (0.995, 0.999, 1.262) (9, 583, 802)

J2 HB (0.999, 1.010, 1.818) (6, 600, 600)
EB (1.037, 1.116, 2.029) (5, 79, 600)

J2l HB (1.001, 1.002, 1.140) (33, 6000, 6000)
EB (1.001, 1.002, 1.138) (59, 3500, 7500)

S3 HB (0.995, 1.000, 4.097) (2, 582, 989)
EB (0.995, 1.003, 2.427) (3, 503, 1109)

J3 HB (0.999, 1.008, 2.118) (5, 600, 600)
EB (0.999, 1.043, 3.003) (1, 600, 600)
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Example output from the small domain hierarchical Bayes

multivariate model for employee compensation components*

◮ J1/2/3-type model (m = 16, 107; p = 18)

◮ 16,107 survey estimates and in-sample model predictions, and 556,221
not-in-sample model predictions

* Erciulescu and Opsomer, 2019
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Final thoughts...

◮ a flavor of innovation in official statistics programs

◮ existing tools and potential for development of novel ones

◮ software: more than just R JAGS and R STAN

◮ alternative sampling methods

◮ practical challenges: time + number of MCMC samples, large
number of domains (in-sample and not-in-sample), variable
selection, prior distributions for the linking model variance-covariance
components, autocorrelation, cross-validation, visualization, storage

◮ beyond small area estimation - for example, bridging models for the
Association of Fish and Wildlife Agencies (Erciulescu et al. 2019b)
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https://www.fishwildlife.org/landing/blog/afwa-recommends-39-priority-projects-2019-MSCG-cycle
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Thank you!
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