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Graphs are made up of things
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Things are also known as nodes
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Things are also known as vertices
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Things are connected by relationships
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Relationships are also known as links
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Relationships are also known as edges
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Relationships can have direction
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Things can have multiple relationships
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Everything can have attrirbutes
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Attributes can be visualized
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Node attributes can be represented as nodes themselves
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Direct relationships can be inferred from indirect relationships
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These projected relationships enrich our data
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An example of a bipartite graph: an author writes publications
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Other authors collaborated on those publications
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We can now infer a relationship
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Information can be stored in publications
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Information can be transfered to authors
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Information can be stored in relationships
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Collaboration Network:

Authors writing about network science & agent based models
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20 largest components for exploration
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Bag of Words

The fox jumped over the other fox

The dog ran at the foxes

The foxes ran away from the dog

The cat napped on my lap

The lion napped on the hill

The cat jumped on the fox

A standard data structure for text analysis is the Document Term Matrix (DTM). This is a matrix in which
the rows represent the documents in your corpus and the columns represent every word

at away cat dog fox foxes from hill jumped lap lion my napped on other over ran the

doc_1 0 0 0 0 2 0 0 0 1 0 0 0 0 0 1 1 0 2

doc_2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 2

doc_3 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1

doc_4 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1

doc_5 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 2

doc_6 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 2
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Remove Stop Words

For computational reasons, we generally want to remove words that are so common they don’t really provide
us with significant meaning or context.

The fox jumped over the other fox

The dog ran at the foxes

The foxes ran away from the dog

The cat napped on my lap

The lion napped on the hill

The cat jumped on the fox

cat dog fox foxes hill jumped lap lion napped ran

doc_1 0 0 2 0 0 1 0 0 0 0

doc_2 0 1 0 1 0 0 0 0 0 1

doc_3 0 1 0 1 0 0 0 0 0 1

doc_4 1 0 0 0 0 0 1 0 1 0

doc_5 0 0 0 0 1 0 0 1 1 0

doc_6 1 0 1 0 0 1 0 0 0 0
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Unsupervised Topic Modelling

Latent Dirichlet Allocation (LDA) and Structural Topic Modelling (STM) are two methods of classifying text
without providing clues to what we want. These methods are great if we have a large corpus of documents,
but we don’t really know what we’re looking for. The only parameter needed is the number of categories we
want returned

Unsupervised Topic Modelling: K = 3

cat dog fox foxes hill jumped lap lion napped ran

doc_1 0 0 2 0 0 1 0 0 0 0

doc_2 0 1 0 1 0 0 0 0 0 1

doc_3 0 1 0 1 0 0 0 0 0 1

doc_4 1 0 0 0 0 0 1 0 1 0

doc_5 0 0 0 0 1 0 0 1 1 0

doc_6 1 0 1 0 0 1 0 0 0 0

Unsupervised Topic Modelling: K = 2

cat dog fox foxes hill jumped lap lion napped ran

doc_1 0 0 2 0 0 1 0 0 0 0

doc_2 0 1 0 1 0 0 0 0 0 1

doc_3 0 1 0 1 0 0 0 0 0 1

doc_4 1 0 0 0 0 0 1 0 1 0

doc_5 0 0 0 0 1 0 0 1 1 0

doc_6 1 0 1 0 0 1 0 0 0 0
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STM Categories: K = 3

If we run an STM model on all the publications in our collaboration network, we get the following three
categories
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20 Largest Components: STM Categories
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But why are we running an unsupurvised algorithm?

What if a subject matter expert sees three clusters of authors and says, “These authors come from very focused
labs and work on very differnt things.”?
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Start Over

We can use that information to define the categories we want. We have a network of authors and we should
use that information to inform our topic model.
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Term Frequencies

The fox jumped over the other fox

The dog ran at the foxes

The fox ran away from the dog

The cat napped on my lap

The lion napped on the hill

The cat jumped on the fox

FOX is considered important for DOCUMENT 1 because it is the most frequently used word in that document
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Inverse Document Frequencies

The fox jumped over the other fox

The dog ran at the foxes

The fox ran away from the dog

The cat napped on my lap

The lion napped on the hill

The cat jumped on the fox

THE is considered unimportant because it can be found in all documents
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Inverse Document Frequencies

The fox jumped over the other fox

The dog ran at the foxes

The fox ran away from the dog

The cat napped on my lap

The lion napped on the hill

The cat jumped on the fox

LION is considered important because it is only found in one document
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Which document is most similar to document 1?

cat dog fox foxes hill jumped lap lion napped ran

doc_1 0 0 2 0 0 1 0 0 0 0

doc_2 0 1 0 1 0 0 0 0 0 1

doc_3 0 1 0 1 0 0 0 0 0 1

doc_4 1 0 0 0 0 0 1 0 1 0

doc_5 0 0 0 0 1 0 0 1 1 0

doc_6 1 0 1 0 0 1 0 0 0 0
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TF-IDF Categories: 3 Largest Components

Let’s run a TF-IDF on the three largest components and see what words differentiate them from one another
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3 Largest Components: TF-IDF
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20 Largest Components: TF-IDF

Let’s use the words associated with these three largest components and compare them to the words of all the
other components. This will tell us which groups are similar to the three groups we ran the initial TF-IDF on.
This comparison can be done with cosine similarity because the underlying data structure of the text data is
a matrix.
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Two Similar Components
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Why are these two components similar?
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How have these categories changed overtime?
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tidytextmining.com
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kateto.net/tutorials/
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dc2018.satrdays.org
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